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Abstract

The generalized de Bruijn digraph denoted by Gp(n,m) is
the digraph (V, A) where V = {0,1,...,m — 1} and (4,3) € A if
and only if j = ni + a (mod m) for some a € {0,1,...,n - 1}.
By replacing each arc of Gg(n,m) with an undirected edge and
eliminating loops and multi-edges, we obtain a generalized undi-
rected de Bruijn graph UG g(n, m). In this paper, we prove that
the diameter of UGg(n,m) is equal to 3 whenever n > 2 and

n? + (ﬁ%'i)n <m<2n2

Keywords: generalized de Bruijn graph, diameter.
1 Introduction

Throughout this paper, all graphs we consider are undirected, loopless and
without multi-edges. For the terminologies in graph theory, we refer to [10].
For the sake of brevity, we define [a,b] = {a,a + 1,...,b} for non-negative

integers a < b.

*E-mail: jyhminkuo@gmail.com
tE-mail: hifu@math.nctu.edu.tw

ARS COMBINATORIA 106(2012), pp. 395-408



The well-known de Bruijn network B(n,m) was first generalized by
Imase and Itoh [4] and then by Reddy, Pradhan and Kuhl [9). The gener-
alized de Bruijn digraph Gg(n,m) is the directed graph where the vertices

are 0,1,...,m — 1, and the directed edges (arcs) are of the form
i-in+a (modm),Vie[0,m—1andVac(0,n—-1}.

The generalized undirected de Bruijn graph is the undirected graph,
which is derived from the generalized de Bruijn digraph by replacing di-
rected edges with undirected edges and omitting the loops and multi-
edges. We denote such a graph by UGp(n,m). The set of neighbors of
any vertex i in UGp(n,m) is N(i) = R(i) U L(i), where R(i) = {in+ a
(mod m) : a € [0,n — 1]} and L(¢) = {j : jn + B = i (mod m), where
B €[0,n—1] and j € [0,m — 1]}. Therefore, if j € R(:), then i € L(j) in
UGg(n,m).

Imase, Soneoka and Okada (5] proved that the generalized de Bruijn
digraph Gg(n,m) is (n — 1)-connected and its diameter is bounded from
above by [log, m]. Therefore, UGg(n,m) is also (n — 1)-connected and its
diameter is also bounded above by this value.

Since the study of the diameter of an interconnection network is to
investigate the fault tolerance and transmission delay, it is interesting to
determine the diameter of UGg(n, m). First, Nochefranca and Sy (8] have

shown that the diameter of UGg(n,n(n + 1)) is 3. Later, Escuadro and

396



Muga [3] showed that UGg(n,n?) is 2(n — 1)-regular and has diameter 2,
and N(;chefranca and Sy [7] showed that the diameter of UG g(n, n(n? +1))
is 4 for odd » > 3. Recently, Caro and Zeratsion [2] proved that the
diameter of UGp(n,m) is 2 for m in [n+ 1,7?], and 3 for m in [n% + 1,73
where n divides m. Furthermore, Caro et al. [1] also proved that the
diameter of UGg(n,n? + 1) is at most 4 for odd n > 5. In [6], the authors
proved that the diameter of UGpg(n,m) is 3 whenever 2n? < m < 78 or
m=n2+1 an;i is 2 whenever m = n? + 2 and n > 3. But, whenever
n? + 2 < m < 2n? the diameter of UGg(n,m) is left unknown.

In this paper, we mainly prove that for each m, n2+(ﬁ2ﬂ)n <m < 2n?

and n > 2 the diameter of UG g(n,m) is equal to 3.
2 The main results

Let dg(z,y) denote the distance between two vertices  and y in a graph
G, and diam(G) denote the diameter of the graph G. The following result

is known.

Theorem 2.1. [5] The diameter of UGg(n,m) is 2 or 3, for n? < m < n.

By definition, we know that N(i) = R(i) U L(i) for each i € [0,m — 1].
Let N[i] = N(i) U {i}. Thus, for any two distinct vertices z and y in

G = UGg(n,m), dg(z,y) > 3 if and only if N[z] N N[y] = @ which is
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equivalent to verifying the following six conditions: = ¢ L(y), = € R(y),

R(z) N L(y) =0, L(z) N L(y) = 9, L(z) 0 R(y) = 0 and R(z) N R(y) = 0.

Proposition 2.2. diam(UGg(n,m)) = 3 for n> + 2n < m < 2n? and
n>"7.
Proof. Let [0,m — 1] be the vertex set of G = UGpg(n,m). By the dis-
cussion after Theorem 2.1, it suffices to show that there exists a pair of
vertices  and y' in [0,m — 1] such that dg(z,y) > 3. Note that we shall let
z =1 and find an element y € Y = [n? — 2n,n? — 1] to satisfy the above
inequality, i.e., dg(1,y) > 3. First, we claim the following six statements
are true.
(1) Foreachy € Y, 1 € L(y).

This is a direct consequence of R(1) = {n+ala € [0,n—1]} = [n,2n—1]

andn >4, sinceYN[n,2n—1]=0.

(2) Foreach y € Y, R(1)NL(y) = 0.
From (1), R(1) = [n,2n — 1]. Therefore

U R@)=p*2n*-1=pR%m-1 U [0,2n —1-m].  (21)
i€R(1)

Now the proof follows from the fact that 2r2 —1-m < 2n2—1-n%2-2n <

n? — 2n. Thus, Y N[n%,2n2 — 1] = 0.
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(3) Foreachy e Y, L(1)N L(y) =
Suf)pose not. Then L(1) N L(y) # B. Therefore there exists a k €
[0,m — 1] such that both 1 and y are in R(k). This implies that there exist

o and B, where 0 < o, 8 < n — 1, satisfying

kn+a=1 (modm),
{ kn+B=y (modm) (22)

This implies that 8 —a =y -1 (modm) and B~ € [0,n — 1)U [m —
n+1,m—1]. But y — 1 € [n? - 2n — 1,n? — 2. Thus system (2.2) has no

solutions for (a, ). Hence, we have (3).

(4) There exists a set Y/ C Y with at most four elements, such that for
eachyeY \Y', R(1)NR(y) =
Observe that

U R(y) = U {yn+ala e [0,n—1]} = [n3 - 202, n® — 1]
yeYy yeY

and R(1) = [n,2n - 1].

Since m < IUer R(y)| = 2n? < 2m, there are at most two elements
in [n3 — 2n2,n3 — 1] which are congruent to n modulo m. Let the smaller
y € Y such that n € R(y) be y; and the larger one such that » € R(y) be
y2 (if exists). Note that if yyn # n (mod m) then R(y; + 1) N R(1) # 0.
On the other hand, if y17 = n (mod m) then R(y;) = [n,2n — 1] = R(1)

and R(y; + 1) N R(1) = §. The argument for y, is similar.
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For example, in Figure 1, if R(y1) N R(1) # 0, R(xn + 1) N R(1) # 0
and R(y2) = R(1), then there are exactly three elements of Y satisfying
R(1) N R(y) # 0. If R(y) # R(1) and R(y2) # R(1) (if v2 exists), then
there are at most four elements of Y satisfying R(1) N R(y) # 0. Hence,
by letting Y’ be {y1,1 + 1,¥2,y2 + 1}, we conclude the proof. We remark

here that |yon — y1n — m| < n.

R(y1) Ry +1) R(y2) R(y2+1)
——o—o ——eo—o
[ ® [n® —2n%,n3-1]
—eo ——e
[n,2n - 1] [n,2n - 1)
— —— d
[Oam" 1] [O,m— 1]

Figure 1 R(yl)) R(yl + 1)1 R(yZ)a R(y2 + 1)1 and [n3 - 2"‘2!"3 - 1]

(5) There exist at least three elements y in Y such that L(1)NR(y) =90.
Observe that |,y R(y) = [n° - 2n2,7n3 — 1]. Thus,

U R(i) = [n* = 2n®,n% = 1]

i€[n3—-2n2,n3-1]

which has 2n3 consecutive positive integers. Therefore, by taking modulo
m > n? + 2n, we have at most 2n — 3 integers which are congruent to
1 modulo m, since 2n3 = (n2 + 2n)(2n — 4) + 8n and n > 7. This im-
plies that there are at least three elements, say 3, ¥4,s, in Y, such that

L(1)N R(y;) =0, for i = 3,4,5.



(6) For each y € Y satisfying (4) and (5), 1 ¢ R(y).

Subpose not. Then 1 € R(y), ie,, yn + o = 1 (mod m) for some
0 < a <n-1 Fimst if a = 0, by the fact that yn + (n — 1) = n
(mod m), n € R(1) N R(y), a contradiction. On the other hand, if & # 0
then yn + (e — 1) = 0 (mod m) which implies that 0 € L(1) N R(y), a
contradiction. This concludes the proof of (6).

Now, we are ready to find the pair (1, y) satisfying dc(1,y) > 3. Clearly,
if there exists ag) € {y3, ¥4, ys}\{v1, 11+1, 2, y2+1} in (4) and (5), then this
y satisfies the conditions from (1) to (6). This implies that N[1)N N[y] = 0
and the proof follows. On the other hand, if {ys,y4,45} \ Y’ = 0, then
{y3,va,¥s} € Y’. Without loss of generality, let y3s =y, and yy = y3 + 1 =
¥1 + 1. Then by (5), L(1) N R(y) = 0 and L(1) N R(y, + 1) = §. This
implies that L(1) N [R(y1) U R(y; +1)] = 0. But,

U R(3) = U R(i) = [y1n®, 410> + 2n2 - 1]

i€R(y1)UR(y1+1) i€lyin,y1n+2n—1]

which is a set of 2n? consecutive integers and thus [yn2,y1n? + 202 — 1]
(mod m) 2 [0,m — 1] 2 {1}, a contradiction. So there exists a y € Y such

that dg(1,y) = 3. This concludes the proof. ]

Proposition 2.3. diam(UGg(n,m)) = 3 for n? + (@)n <m<n?+

2n—1and n > 3.
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Proof. Let [0, m—1] be the vertex set of G = UG p(n, m). By Theorem 2.1,
it suffices to show that there exists a pair of vertices z and y in [0,m — 1]
such that dg(z,y) > 3. Here, we let £ = 0 and try to find an element
y € Y = [n?,m — n] to satisfy the inequality dg(0,y) = 3. Now, we
show that the following six statements are true. The proof uses a similar
argument as in the above Proposition.
(1) Foreachy €Y, 0 & L(y).

This is a direct consequence of R(0) = {0n+ea|a € [0,n—1]} = [1,n—1]

and n > 3,since Y N[l,n—-1] =0.

(2) For each y € Y, R(0)N L(y) = 0.
From (1), R(0) = [1,n — 1], and so we have

U rR&= U RG)=mn*-1] (2.3)

i€R(0) i€(l,n—1]

Therefore, Y N [n,n? — 1] = @ for n > 3 and (2) is true.

(3) Foreach y € Y, L(0)N L(y) = 0.
Suppose not. Then L(0) N L(y) # @. Therefore, there exists a k €
[0,m — 1] such that both 0 and y are in R(k). This implies that there exist

o and B, where 0 < a, 8 < n — 1, satisfying

{ kn+a=0 (modm), (2.4)

kn+B8=y (modm).
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This implies that y = —a (mod m) and 8—a € [0,n—1]U[m—n+1,m~1].
But YN ([0,n—1]U [m —n+1,m—1]) = 0. Thus, the system (2.4) has no

solutions for (a, 8). Hence, (3) is true.

(4) There exists an element y € Y such that L(0) N R(y) =
It suffices to show that there exists an element y € Y such that 0 ¢
Usierey) B(?)- First, let t =m—n®—n and A; = [(i — 1)(m —n?) +1,i(m —

n?)), where i = 1,2,...,t+1 Therefore,

t+1
1 Al = (¢ +1)(m = n?) = (t + 1)(n + ).

i=1

Since t > (@)n,

\/'1 f1

n)2 4+ ( Wmidt+n=m.

t+D)n+t)=t2+t+nt+n>(

By the fact that {4;}1] is a collection of disjoint sets and (Ji}] A; =

(1, (¢ + 1) (m — n?)], there exists an ig such that n* (mod m) € A;,.
Now, let y = n2 + 49 — 1. Then we have
yn? = (n® +ip — 1)n? = n* + (ip — 1)(n®) (mod m)
€ [(io—1)(m—n?)+1+(io—1)(n?),io(m—n?) 4 (io—1)(n?)] (mod m)
!

=[1+(io—1)m,m—n?+(io—1)m] (mod m)=[1,m—n? (modm).

This implies that

U RG)={ni+alie R(y) and a € [0,n — 1]}
i€R(y)
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= {ni+ali € [n(n®+ip—1),n(n* +ip—1)+(n—1)] and @ € [0,n - 1]}

é [1,m—=n%+(n?—1)]=[1,m—1], then 0 ¢ U R(3).
i€R(y)

This concludes the proof of (4).
(5) For y € Y satisfying (4), R(0) N R(y) = 0.
Suppose not. Then R(0)NR(y) # @ and thus yn+a = 0n+8 (mod m)

has solutions for some a and 8 where 0 < @, 8 < n — 1. Therefore,
ym=p-a€cl0,n—1jU[m-n+1,m—-1], and (2.5)

yn? € {0,n,2n,...,(n— )n}U{2n+1t,3n+¢,... ,n% +t}. (2.6)
But, since y € Y satisfies (4), yn? € [L,m —n?] = [1,n+t]. This implies
that

yn? € ({0,n,2n,...,(n—1)n}u{2n+t,3n+t,... , 2 +t}N[1, n+t) = {n}.

From equations 2.5 and 2.6, yn = 0,1,...,n—1m-n+1,.... m—1
(mod m) and the corresponding yn? = 0,n,...,n%—n, 2n+t,3n+t,...,n+
t (mod m), we get yn = 1 (mod m), since yn? = n (mod m). Now, by

letting y = n? + 5, 0 < s < t, we have
ymm=nl+sn=(-n—t+sn=—-tn+sn+n+t=1 (modm).

It follows that t — 1 = (t — s — 1)n (mod m). Clearly, this equation has no

solutions for (@)n < t < n— 1. This concludes the proof of (5).



(6) For y € Y satisfying (4) and (5), 0 € R(y).

Suppose not. Then yn + @ = 0 (mod m). If a = 0, then yn? =
(yn)n =0 (mod m), a contradiction to (4), L(0)NR(y) = . If o # 0, then
yn? = —an & [1,m — n?], a contradiction to (4) again. Hence, 0 ¢ R(y).

Since we can always find a pair of vertices z = 0 and y € [n?,m — 1|

that satisfy properties (1) to (6), N[z] N N[y] = 0. We have the proof. B

Then we have the following main theorem.
Theorem 2.4. diam(UGpg(n,m)) = 3 for n? + (@)n < m £ 2n? and
n>2.

Proof. This follows from Propositions 2.2 and 2.3 and the Appendix. B

3 Concluding Remarks

Caro et al. [1] proved the diameter of UGp(n,n? + 1) is at most 4 for
odd n > 5 and proved diam(UGg(n,m)) = 3 when n2 +1 < m < nd
and n|m in [2]. Kuo and Fu [6] proved diam(UGg(n,m)) = 3 when
2n?2 < m < n® and n > 2. In this paper, we have proved that for each
n?+ (-\/—5_2*—’)71 < m < 2n? and n > 2 the diameter of UG z(n, m) is equal to
3. But, for n2 +2 <m < n2+ (l%u)n, the diameters of UGg(n,m) are
still unknown. We expect that their diameters are 3 from the research we

have done so far. Hopefully, this can be verified in the near future.
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The following program generates the results in Table 1 for dg(0,y) > 3.

Forn=2to 6
For m = n? + 2n to 2n?

Fory=n?-2nton?-1

If distanceg(z =0,y) > 3

print m, n, z, ¥y

Endif

Endfor y

Endfor m

Endfor n

n m y
2 8 5
3 15,16,18 9
3 17 10
4 25 16
1 24,27,29,30 17
4 31 18
4 26,28,32 23
5 39,44,47,48,50 25
5 36,38,40,45,46,49 26
5 35,37,42 27
5 41,43 28
6 56,58,61,64,67,68 36
6 | 49,51,53,57,60,63,66,69,70,72 | 37
6 52,54,59,62,65,71 38
6 48,50 39
6 55 10

Table 1: diam(UGg(n,m)) =3 for small n and m



