On the m-Hull Number of the Join and Composition of Graphs

Esamel M. Paluga

Department of Mathematics NORMISIST Butuan City, Philippines

e-mail: esamel-paluga@yahoo.com

ABSTRACT

In this paper, the *m*-hull sets in the join and composition of two connected graphs are characterized and their *m*-hull numbers are shown to be direct consequences of these characterizations.

1 Introduction

Given a connected graph G=(V(G),E(G)) and vertices u and v of G, we call any u-v path of length $d_G(u,v)$ (length of the shortest path connecting u and v) as u-v geodesic. Any path that does not contain an edge joining two nonconsecutive vertices u and v is called a u-v monophonic path (or simply, m-path). The monophonic closure of a subset S of V(G) is $J_G[S] = \bigcup_{u,v \in S} J_G[u,v]$, where $J_G[u,v]$ is the set containing u and v and all vertices lying on some u-v-path.

A subset C of V(G) is said to be m-convex if, for every pair of vertices $x, y \in C$, the vertex set of every x-y m-path is contained in C. It is easy to verify that S is m-convex if and only if $J_G[S] = S$.

The m-convex hull $[S]_m$ of a subset S of V(G) is the smallest m-convex set in G containing S. It can be formed from the sequence $\{J_G^p[S]\}$, where p is a nonnegative integer, $J_G^0[S] = S$, $J_G^1[S] = J[S]$, and $J_G^p[S] = J[J_G^{p-1}[S]]$ for $p \geq 2$. For some p, we must have $J_G^q[S] = J_G^p[S]$ for all $q \geq p$. Further, if p is the smallest nonnegative integer such that $J_G^q[S] = J_G^p[S]$ for all $q \geq p$, then $J_G^p[S] = [S]_m$. If $[S]_m = V(G)$, then we call S an m-hull set (monophonic hull set). The m-hull number of G, denoted by mh(G) is the minimum cardinality of an m-hull set in G. Any m-hull set S with |S| = mh(G) is called a minimum m-hull set in G.

The next remark that follows is from the definition of the m-convex hull of a set.

Remark 1.1 Let G be a connected graph and $S \subseteq V(G)$. Then $[S]_m = S$ if and only if S is an m-convex set in G.

Lemma 1.2 Let G be a connected graph. Then mh(G) = |V(G)| if and only if G is a complete graph.

Proof. Let G be a connected graph and suppose that mh(G) = |V(G)|. Suppose further that G is not complete. Then there exist $a, b \in V(G)$ such that $d_G(a, b) \neq 1$. Let $c \in J_G[a, b] \setminus \{a, b\}$ and consider $S = V(G) \setminus \{c\}$. Then S is not m-convex in G; hence $J_G[S] \neq S$. Thus, $S \subset J_G[S]$. It follows that $J_G[S] = V(G)$. This implies that $V(G) = J_G[S] \subseteq [S]_m$. Therefore, $[S]_m = V(G)$; that is, S is an m-hull set in G. Hence, $mh(G) \leq |S| = |V(G)| - 1$, contrary to our assumption. Therefore, G must be a complete graph.

For the converse, suppose that G is a complete graph. Then every subset C of V(G) is m-convex in G; hence, $[C]_m = C$ by Remark 1.1 Thus, $[C]_m = V(G)$ if and only if C = V(G). This implies that C = V(G) is the only m-hull set in G. Thus, mh(G) = |V(G)|.

2 Join of Two Graphs

Our first goal is to characterize m-hull sets in $G + K_n$, where G is a connected graph and K_n the complete graph of order n.

Lemma 2.1 Let G be a connected non-complete graph, $S \subseteq V(G + K_n)$ and $S_1 = S \cap V(G)$. For every $p \geq 0$, if $y \in J^p_{G+K_n}[S] \cap V(G)$, then $y \in J^p_G[S_1]$.

Proof. The conclusion clearly holds for p=0. Let $y\in J_{G+K_n}[S]\cap V(G)$. If $y\in S_1$, then $y\in J_G[S_1]$. Suppose $y\notin S_1$. Then there exist $s,t\in S$ such that $y\in J_{G+K_n}[s,t]$. Since $y\neq s$ and $y\neq t$, it follows that $d_{G+K_n}(s,t)=2$. This means that $s,t\in S_1$. Since every s-t m-path in $G+K_n$ containing y is an s-t m-path in G, it follows that $y\in J_G[s,t]$. Thus, $y\in J_G[S_1]$. This shows that the assertion of the Lemma holds for p=1.

Next, suppose that the assertion holds for $p \ge 1$. Assume that $y \in J_{G+K_n}^{p+1}[S] \cap V(G)$. If $y \in J_{G+K_n}^p[S]$, then $y \in J_G^p[S_1]$ by assumption. So suppose that $y \notin J_{G+K_n}^p[S]$. Then there exist $u, v \in J_{G+K_n}^p[S]$ such that $y \in J_{G+K_n}[u,v]$. Since $y \ne u$ and $y \ne v$, it follows that $d_{G+K_n}(u,v) = 2$. Hence, $u, v \in V(G)$. By the assumption, $u, v \in J_G^p[S_1]$. This implies that $y \in J_G^{p+1}[S_1]$. Therefore, the assertion also holds for p+1. This completes the proof of the lemma.

Theorem 2.2 Let G be a connected non-complete graph. A subset $S \subseteq V(G + K_n)$ is an m-hull set in $G + K_n$ if and only if $S \cap V(G)$ is an m-hull set in G.

Proof. Let G be a connected non-complete graph. Suppose $S \subseteq V(G+K_n)$ is an m-hull set in $G+K_n$, say $[S]_m=J^p_{G+K_n}[S]=V(G+K_n)$, where p is the smallest non-negative integer satisfying the first equality. Let $S_1=S\cap V(G)$ and let $x\in V(G)\setminus J^{p-1}_G[S_1]$. Since S is an m-hull set in $G+K_n$, there exist $a,b\in J^{p-1}_{G+K_n}[S]$ such that $x\in J_{G+K_n}[a,b]$. By the contrapositive of Lemma 2.1, $x\notin J^{p-1}_{G+K_n}[S]$; hence, $x\neq a$ and $x\neq b$. This implies that $d_{G+K_n}(a,b)=2$, that is, $a,b\in V(G)$. Thus, $a,b\in J^{p-1}_G[S_1]$ by Lemma 2.1. Therefore, $x\in J^p_G[S_1]$. This shows that $V(G)\setminus J^{p-1}_G[S_1]\subseteq J^p_G[S_1]$. Since $J^p_G[S_1]$ it follows that $V(G)\subseteq J^p_G[S_1]$. Therefore, S_1 is an m-hull set in $G+K_n$.

For the converse, suppose that S_1 is an m-hull set in G, say $J_G^p[S_1] = V(G)$, where p is the smallest nonnegative integer satisfying the equality. Since $J_G^p[S_1] \subseteq J_{G+K_n}^p[S_1]$, it follows that $V(G) \subseteq J_{G+K_n}^p[S_1]$. If $\langle S_1 \rangle$ were a complete subgraph of G, then $J_G^r[S_1] = S_1$ for all nonnegative integer r. Thus, $J_G^r[S_1] = S_1 \neq V(G)$ contrary to our assumption. Therefore, $\langle S_1 \rangle$ is non-complete. Choose $u, v \in S_1$ such that $d_G(u, v) \neq 1$. Then $d_{G+K_n}(u, v) = 2$ and [u, w, v] is a u-v w-path for every $w \in V(K_n)$. It follows that $V(K_n) \subseteq J_{G+K_n}[u, v] \subseteq J_{G+K_n}[S_1]$. Therefore, $V(G+K_n) \subseteq J_{G+K_n}^p[S_1]$, that is, S_1 is an w-hull set in $G+K_n$. Since $S_1 \subseteq S$, S is also a w-hull set in G. This completes the proof of the theorem.

Corollary 2.3 Let G be a connected non-complete graph. A subset $S \subseteq V(G + K_n)$ is a minimum m-hull set in $G + K_n$ if and only if $S \subseteq V(G)$ and S is a minimum m-hull set.

Proof. Let G be a connected non-complete graph. Suppose $S \subseteq V(G+K_n)$ is a minimum m-hull set in $G+K_n$. Then $S_1=S\cap V(G)$ is an m-hull set in G by Theorem 2.2. Suppose that $S^*=S\cap V(K_n)\neq\emptyset$. Then $S_1=S\backslash S^*$ is an m-hull set in $G+K_n$ by Theorem 2.2 and $|S_1|<|S|$. This contradicts the fact that S is a minimum m-hull set in $G+K_n$. Therefore, $S\subseteq V(G)$. Again, by Theorem 2.2, S is a minimum m-hull set in G, that is, mh(G)=|S|.

The converse can be proved in a similar manner.

The following result gives the m-hull number of $G + K_n$ which is a direct consequence of the above Corollary and Lemma 1.2

Corollary 2.4 Let G be a connected graph of order p and K_n the complete graph of order n. Then

$$mh(G+K_n) = \begin{cases} p+n & if G = K_p, \\ mh(G) & if G \neq K_p. \end{cases}$$

Example 2.5 Let n and m be positive integers. Then

- 1. $mh(K_n + K_m) = n + m$ for all $n \ge 2$;
- 2. $mh(C_n + K_m) = 2$ for all $n \ge 4$;
- 3. $mh(W_n + K_m) = 2$ for all $n \ge 4$.

The next result characterizes m-hull sets in the join of any non-complete graphs.

Theorem 2.6 Let G and H be non-complete graphs. A subset S of V(G+H) is an m-hull set in G+H if and only if there exist $a,b \in S$ with $d_{G+H}(a,b)=2$. In this case, either $a,b \in V(G)$ or $a,b \in V(H)$.

Proof. Let G and H be non-complete graphs and $S \subseteq V(G+H)$ an m-hull set in G+H. If S=V(G+H), then we are done. So suppose $S \neq V(G+H)$. Since S is a m-hull set in G+H, it follows that $S \neq J_{G+H}[S]$ (otherwise, $J_{G+H}^p[S] = S \neq V(G+H)$ for all $p \geq 1$, contrary to our assumption). Let $x \in J_{G+H}[S] \setminus S$. Then there exist $a,b \in S$ such that $x \in J_{G+H}[a,b]$. Since $x \neq a$ and $x \neq b$, $d_{G+H}(a,b) = 2$. In this case, $a,b \in V(G)$ or $a,b \in V(H)$.

Conversely, suppose that there exist $a,b\in S$ with $d_{G+H}(a,b)=2$. Assume that $a,b\in V(G)$. Then $V(H)\subseteq J_{G+H}[a,b]\subseteq J_{G+H}[S]$. Pick $u,v\in V(H)=J_{G+H}[S]$ such that $uv\notin E(H)$. Then $d_{G+H}(u,v)=2$; hence $V(G)\subseteq J_{G+H}^2[S]$. Since $J_{G+H}[S]\subseteq J_{G+H}^2[S]$, $V(G+H)\subseteq J_{G+H}^2[S]$. This shows that S is a m-hull set in G+H.

As a quick consequence of Theorem 2.6, we have

Corollary 2.7 Let G and H be non-complete graphs. Then mh(G + H) = 2.

3 Compositon of Two Graphs

The concept that follows appeared and was illustrated in [5].

Definition 3.1 Let G be a connected graph and $A \subseteq V(G)$. A point a in A is called a monophonic interior point of A if $a \in J_G[A \setminus \{a\}]$. The set of all monophonic interior points of A is denoted by A° .

Lemma 3.2 [5]. Let G be a connected graph and K_n be the complete graph of order n. If $P = [(u_1, v_1), (u_2, v_2), \ldots, (u_r, v_r)], r \ge 2$ is an m-path in $G[K_n]$, then we have the following possibilities:

- i. If $u_i's$ are distinct, then $[u_1, u_2, \ldots, u_r]$ is an m-path in G.
- ii. If u_i 's are not distinct, then r=2.

Lemma 3.3 Let G be a connected graph and K_n the complete graph of order n, and $C \subseteq V(G[K_n])$. Then $(J_{G[K_n]}^k[C])_G = J_G^k[C_G]$.

Proof. We prove this by induction on k.

Let $a\in (J_{G[K_n]}[C])_G$. Then there exists $b\in V(K_n)$ such that $(a,b)\in (J_{G[K_n]}[C])$. Thus, we can find an m-path $[(u_1,v_1),\ldots,(u_s,v_s)]$ in $G[K_n]$ such that $(u_1,v_1),(u_s,v_s)\in C$ and $(a,b)=(u_r,v_r)$ for some $r,1\leq r\leq s$. If s=2, then clearly, $[u_1,u_2]$ is an m-path in G. Thus $a\in C_G$. Suppose $s\geq 3$, then by Lemma 3.2, $[u_1,\ldots,u_s]$ is an m-path in G containing G. Thus, in either case, G is G is an G is an G-path in G containing G.

Conversely, let $a\in J_G[C_G]$. Then there exists an m-path $[u_1,\ldots,u_s]$ in G such that $u_1,u_s\in C_G$ and $a=u_r$, for some $r,\ 1\le r\le s$. Let $v,v'\in V(K_n)$ such that $(u_1,v_1,(u_s,v')\in C)$. If v=v', then $[(u_1,v_1),\ldots,(u_s,v_s)]$ is an m-path in $G[K_n]$ containing (a,v). If $v\ne v'$, then $[(u_1,v),\ldots,(u_s,v),(u_s,v')]$ is an m-path in $G[K_n]$ containing (a,v). Thus, $(a,v)\in (J_{G[K_n]}[C])$. Consequently, $a\in (J_{G[K_n]}[C])_G$.

This shows that the assertion holds for k=1. Next, suppose the assertion holds for k=n>1. Now $(J^{n+1}_{G[K_n]}[C])_G=J(J^n_{G[K_n]}[C])_G$. By induction hypothesis, $J(J^n_{G[K_n]}[C])_G=J(J^n_G[C_G])$. Thus $(J^{n+1}_{G[K_n]}[C])_G=J^{n+1}_G[C_G]$. Therefore, the assertion holds for all integer $k\geq 1$.

Theorem 3.4 [5]. Let G be a connected graph and K_n the complete graph of order n. Then $C = \bigcup_{a \in S} (\{a\} \times T_a)$, where $S \subseteq V(G)$ and $T_a \subseteq V(K_n)$, is monophonic in $G[K_n]$ if and only if S is monophonic in G and $T_a = V(K_n)$ whenever $a \in S \setminus S^{\circ}$.

The next result describes completely the m-hull sets in $G[K_n]$.

Theorem 3.5 Let G be a connected graph, K_n the complete graph of order n, and $C \subseteq V(G[K_n])$. Then $C = \bigcup_{a \in S} (\{a\} \times T_a)$ is an m-hull set in $G[K_n]$ if and only if S is an m-hull set in G and $T_a = V(K_n)$ whenever $a \in S \setminus (V(G))^{\circ}$, where $(V(G))^{\circ}$ is the set of all monophonic interior points of G.

Proof. Suppose $C\subseteq V$ ($G[K_n]$) is an m-hull set in $G[K_n]$. Then $J^l_{G[K_n]}[C]=V(G[K_n])$ for some positive integer l. This implies that $J^{l-1}_{G[K_n]}[C]$ is monophonic in $G[K_n]$. Consequently, ($J_{G[K_n]}{}^{l-1}[C]$) $_G$ is monophonic in G. By Lemma 3.3, ($J^{l-1}_{G[K_n]}[C]$) $_G=J^{l-1}_G[C_G]=J^{l-1}_G[S]$. Hence, $J^{l-1}_G[S]$ is monophonic in G. Thus, $J^l_G[S]=J(J^{l-1}_G[S])=V(G)$, i.e., S is an m-hull set in G.

Next, $J_{G[K_n]}^{l-1}[C]$ monophonic in $G[K_n]$ implies $(J_{G[K_n]}^{l-1}[C])_G$ is monophonic in G and $T_a = V(K_n)$ whenever $a \in (J_{G[K_n]}^{l-1}[C])_G \setminus (J_{G[K_n]}^{l-1}[C])_G^{\circ}$ by Theorem 3.4. This implies that $J_G^{l-1}[S]$ is monophonic in G and $T_a = V(K_n)$ whenever $a \in J_G^{l-1}[S] \setminus (J_G^{l-1}[S])^{\circ}$. Consequently, $J_G^{l}[S] = V(G)$ and $T_a = V(K_n)$

whenever $a \in J_G^{l-1}[S] \setminus (J_G^{l-1}[S])^{\circ}$. Note that $S \subseteq J_G^{l-1}[S]$ and $(J_G^{l-1}[S])^{\circ} \subseteq$ $V(G)^{\circ}$. It follows that $J_G^l[S] = V(G)$ and $T_a = V(K_n)$ whenever $a \in S \setminus$ $V(G)^{\circ}$.

For the converse, suppose S is an m-hull set in G and $T_a = V(K_n)$ whenever $a \in S \setminus V(G)^{\circ}$. Then $V(G) = J_G^l[S] = (J_{G[K_n]}^l[C])_G$. Let $(a,b) \in$ $V(G[K_n])$. If $a \in S \setminus V(G)^{\circ}$, then $(a,b) \in C \subseteq J^l_{G[K_n]}[C]$. Suppose $a \in S$ $(V(G))^{\circ}$. Then there exist $u, u' \in V(G) \setminus \{a\}$ such that $a \in J_G[u, u']$. Let $[u_1, \ldots, u_r, \ldots, u_s]$ be an m-path in G such that $u_1 = u$, $u_r = a$, and $u_s = u'$. Let $v, v' \in V(K_n)$ such that $(u, v), (u'v') \in J^l_{G[K_n]}[C]$. Consider the following cases:

Case I v=v'=b. Then $[(u_1,v),\ldots,(u_r,v),\ldots,(u_s,v)]$ is an m-path in $G[K_n]$ containing (a, b).

Case 2 $v \neq b$ and v' = b. Then $[(u_1, v), \ldots, (u_r, v), (u_r, b), \ldots, (u_s, b)]$ is an m-path in $G[K_n]$ containing (a, b).

Case 3 v = b and $v' \neq b$. This case is similar to Case 2.

Case 4 $v \neq b$ and $v' \neq b$. Then $[(u_1, v), \ldots, (u_r, v), (u_r, b), \ldots, (u_s, b), (u_s, v')]$ is an m-path in $G[K_n]$ containing (a,b). Thus $(a,b) \in J^{l+1}_{G[K_n]}[C]$.

Therefore $V(G[K_n]) = J_{G[K_n]}^{l+1}[C]$. Accordingly, C is an m-hull set in $G[K_n]$.

The next result gives formula for computing the m-hull number of $G[K_n]$.

Corollary 3.6 Let G be a connected graph, K_n the complete graph of order n, and $(V(G))^{\circ}$ be the set of all monophonic interior points of V(G). Then

$$mh(G[K_n]) = min\{n \mid S \setminus (V(G))^{\circ}| + |S \cap (V(G))^{\circ}| : S \text{ is an } m\text{-hull set in } G\}.$$

We now give the m-hull number of the composition G[H], where G and Hare non-complete graphs.

Theorem 3.7 Let G and H be non-complete graphs. Then mh(G[H]) = 2.

Proof. Let $a \in V(G)$ and $b, b' \in V(H)$ such that $d_H(b, b') = 2$. We show that $S = \{(a,b),(a,b')\}$ is an m-hull set in G[H]. Let $(u,v) \in V(G[H])$ such that $u \neq a$ and $[u_1, u_2, \ldots, u_r]$ be an a-u geodesic, where $u_1 = a$ and $u_r = u$.

Claim: For each $(u, v) \in V(G[H])$, there exists l(u) such that $(u, v) \in J^{l}[S]$.

Since $(u_1,b), (u_1,b') \in S, (u_2,b), (u_2,b') \in J[S]$. This implies that $(u_3,b),\ (u_3,b')\in J^2[S].$ Continuing in this manner, we obtain $(u_{r-1},b),$ $(u_{r-1},b') \in J^{r-2}[S], \ r \ge 2.$ Consequently, $(u_r,v) = (u,v) \in J^{r-1}[S].$

Let $n = max\{l(u) : u \in V(G)\}$ and $(u, v) \in V(G[H])$. Then by the Claim, $(u,v)\in J^{r-1}[S]\subseteq J^n[S]$. Thus, $V(G[H])=J^n[S]$. Accordingly, S is an m-hull set in G[H]. Thus, mh(G[H]) = 2.

References

- [1] Canoy S.R, Jr. and Cagaanan, G.B. On the hull number of the composition of graphs. Ars Combinatoria 75 (2005).
- [2] Harary, F., Graph Theory, Addison-Wesley, (1969).
- [3] Paluga, E.M., Canoy, S.R., Jr., Minimal path convexity under some graph operation. Utilitas Mathematica 72 (2007) 77-88.
- [4] Paluga, E.M., Canoy, S.R., Jr., On the monophonic number of the join and composition of graphs. Discrete Mathematics 307 (2007) 1146-1154.
- [5] Paluga, E.M. Monophonic and m-ull number of the cartesian product of graphs. Utilitas Mathematica, to appear.