MAXIMAL SEPARATION ON 2-D ARRAYS
JIM TAO* AND WEN-QING XUt

Abstract. Given m, n and 2 <! < mn, we study the problem of separating { symbols on
an m xn array such that the minimum ¢! distance between any two of the ¢ symbols is as large
as possible. This problem is similar in nature to the well-known Tammes’ problem where one
tries to achieve the largest angular separation for a given number of points on a 2-D or higher
dimensional sphere. It is also closely related to the well-studied problem of constructing
optimal interleaving schemes for correcting error bursts in multi-dimensional digital data
where a burst can be an arbitrarily shaped connected region in the array. Moreover, the
interest in studying this problem also arises from considerations of minimizing the risk of
multiple nearby node failures in a distributed data storage system (or a similar industrial
network) in the event of a relatively large scale random disruption. We derive bounds on
the maximum possible distance of separation for general m, n and {, and provide also optimal
constructions in several special cases including small and large ! values, small m (or n) values,
andn—12 (Il -1){(m —1).
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1. Introduction. In this paper, we consider the discrete geometry prob-
lem of separating 2 < ! < mn symbols on an given m x n array such that the
minimum ¢! distance between any two symbols is as large as possible. The
motivation to study this problem arises from constructing optimal interleaving
schemes for correcting error bursts in multi-dimensional digital data where an
error burst can be an arbitrarily shaped connected region in the array. In an
interleaving scheme [1, 8, 9, 12, 13, 15, 16], the data’s code symbols are scram-
bled to ensure that error bursts spread across multiple codewords. The code
symbols, once de-interleaved, have errors small enough to be corrected easily.
Note that, for single random error correction codes, an arbitrarily shaped error
burst of size ¢ in an interleaved array can be corrected if and only if any cluster
of size t contains at most one symbol from each codeword, or equivalently, the
£! distance between any two symbols from any same codeword in the array is at
least ¢. Therefore, to maximize its burst error correcting power, any two such
symbols should be separated as much as possible so that an arbitrary error
burst of size ¢ can be corrected for the largest value of t. Thus the separation
problem we study in this paper may be considered a variation of the interleav-
ing problem by focusing on one specially selected codeword. Suppose the array
contains m rows and n columns, and the codeword under consideration consists
of | > 2 symbols, the question is then how to place the ! symbols on the m x n
array such that the minimum ¢! distance between any two of these ! symbols
is as large as possible.

The interest in studying this problem also arises from considerations of
minimizing the risk of simultaneous multiple nearby (cluster) node failures in
a distributed data storage system (or a similar facility network). To increase
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reliability against random individual node failures, distributed storage systems
often partition the data, introduce redundancy through erasure coding tech-
niques and store the encoded data across the nodes [5, 11]. However, to further
reduce the risk of cluster node failures in the event of a relatively large scale
damage, whether caused by a natural disaster, enemy attack, or any other rea-
son, it is desirable to further separate the nodes so that such an event would
affect only a small number of nodes.

Furthermore such a problem also occurs when one wishes to minimize un-
wanted collaborations due to proximity among a group of contestants. In this
sense our separation problem is similar in nature to the well-known Tammes’
problem [2, 3, 4, 14] where one tries to maximize the angular separation be-
tween [ points on a 2-D or higher dimensional sphere. (This is also known as
the “inimical dictators” problem: where should ! inimical dictators build their
palaces on a planet so as to be as far away from each other as possible?)

Let Pi(z;,y:), 1 < @ < I, be the cell positions of the symbols in the ar-
ray with 0 < z; < m, 0 < u < n, and (z;,%:) # (z;,y;) for any i # j.
For simplicity, we also write £ = [z1,%2,**, %], ¥ = [y1,¥2, -, %] The dis-
tance of separation of the symbols (in ¢! metric) is then given by d(&,%) =:
mini <izj<t |2i — zj| + |yi — y;|. Thus, given m, n, and !, our goal is to deter-
mine (and realize) the maximum possible distance of separation D(m,n;!) =:
max{d(Z,7) : T € Z,,, 7€ Z,}.

Note that optimal interleaving aims to maximize the distance of separation
for all codewords in an array, while optimal separation achieves maximum dis-
tance of separation for a single codeword, ignoring the other codewords in the
array. Consequently, separation can achieve greater distances than interleav-
ing. Asshown in Fig. 1.1, a 5 x 5 array with 5 symbols can achieve a maximum
separation of distance 4, whereas a 5 x 5 array with 5 codewords and 5 symbols
for each codeword can achieve a maximum interleaving distance of 3.
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FIG. 1.1. Comparison of separation and interleaving: (a) Optimal separation of 5 sym-
bols on a 5 X 5 array with mazimum distance of separation 4. (b) Optimal interleaving of a
5 X 5 array with mazi interleaving distance 3.

Finally, it is easy to see that the above separation problem is equivalent to
its complementary packing problem [6, 7, 10] of finding, for any given m, n, and
d, the maximum number of symbols £(m, n;d) that can be placed on an m x n
array such that the ¢! distance between any two symbols is at least d. Then
L(m,n;d) = max{l : D(m,n;l) > d}, D(m,n;l) = max{d: L(m,n;d) > I}.

Note that by symmetry, we also have D(m,n;l) = D(n,m;!l), L(m,n;d) =
L(n,m;d). Thus unless otherwise stated, we assume m < n in the rest of
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the paper. Additionally, these measures satisfy the following combinatorial
properties:

(1) £L(m,n1 + ng;d) < L(m,n;d) + L{m, ny; d).

(2) If D(m,ny1;4) < d, D(m,ng;lp) < d, then D(m,ny +ng;ly + ) < d.

Some early results on the packing problem can be found in [6, 7, 10] where
the k-packing number of an m x n array, Pi(Pn,»), corresponds to £(m,n;d)
defined above with d = k+ 1. For k = 1, it is known that P,(P,,) =
L(m,n;2) = [mn/2]. For k = 2, with the aid of a computer program for
finding the packing numbers for the cases when m,n < 18, and when m < 8
and n < 25, the 2-packing problem is solved in [6]; in particular, it is ver-
ified that Po(Pm,n) = L(m,n;3) = [mn/5)] for m,n > 9. The problem for
k = 3 is further examined in (7], and again with the aid of computer search,
the 3-packing problem is solved for the cases m < 18 only.

Our primary goal is to determine the maximum possible distance of sepa-
ration D(m,n;l)-for general values of m, n and I. In the following sections, we
derive two types of bounds on D(m,n;!) for general m, n and I, and provide
also optimal constructions in several special cases including small and large [
values, small m values and n —1 > ({ — 1)(m - 1).

2. Zigzag bounds and constructions.

2.1. Preliminaries. We start with the simplest case of { = 2. Obviously,
to maximize the distance of separation, the two symbols must be placed at two
diagonally opposite corners of the array, namely, (0,0) and (m — 1,7 — 1), or
(0,7 — 1) and (m — 1,0). Thus we have

LEMMA 2.1 (Case { =2). D(m,n;2) =m+n—2.

Another simple case is m = 1. In this case, we have

LEMMA 2.2 (Case m = 1). D(1,n;l) = |[(n-1)/(1-1)], £L(1,n;d) =
1+ |(n-1)/d].

Proof. For m =1, we have z; = 0 for all i = 1,2,...,l. Without loss
of generality, we assume 0 < y; < y2 < --- < 3 < n — 1. Then we have
Yi+1 — ¥ 2 d(Z,9) for all i = 1,2,---,1 — 1. Adding all these up, we get
(L - 1)d(&9) < S2i(a1 - %) = w — 3 < n— 1. This yields d(,§) <
L(» = 1)/(I - 1)], and thus D(1,n;1) < |(n ~ 1)/(! - 1)].

On the other hand, it is easy to see that the maximum distance of separation
d = D(1,n;l) = [(n —1)/(! - 1)] can be achieved by taking y; = (i — 1)d,
1<i<i. 0

REMARK 2.3. If (I — 1)|(n — 1), then d = D(1,n;l) can be achieved only
withy; = (i —1)d, 1 <i <, thatis, §=[0,d,2d,---, (I - 1)d].

2.2. Upper bound. Next, by compressing the m x n array into a 1-D
array, we prove

THEOREM 2.4. D(m,n;l) < (m—1) + [(n - 1)/({ - 1)].

Proof. Let & € Z,,, 7 € Z!, and d = d(&,7). Without loss of generality,
we assume y; < y2 < -+ < y. Since |z — ;] + |y — y;j| > d for all i # 7,
and |z; — z;] < m — 1, we have |y; — y;| > d - (m — 1) for all i # j, and
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thus ({ - 1)(d-m+1) < Zi;i |is1 — 35l = v —y1 < n— 1. This shows
d< (m—1)+ [(n—1)/(l - 1)]. Theorem 2.4 now follows. O

2.3. Maximal separation in the case n—1 > ({—-1)(m —1). Our next
theorem shows that the upper bound established in Theorem 2.4 can actually
be achieved when n — 1 > (I - 1)(m — 1).

THEOREM 2.5. Assumel > 2 andn—132> (I-1)(m—1). Then D(m,n;l) =
(m-1)+[(r-1)/( - 1)}

Proof. Let 6 = |(n —1)/(l — 1)} and d = (m — 1) + . Note that the
assumption n — 1> (I — 1)(m — 1) implies § > m — 1. Now consider the zigzag
construction with # = [0,m — 1,0,m —1,---] and § = [0,4,26,--] (that is
y; = (i — 1)6 for all i, and z; = 0 for all i even and ; = m — 1 for all i odd).
Then for i # j and i—j odd, we have |z;—z;| = m—1 and |y; —y;| = [i—jl6 2 6,
and thus |z; — z;| + |y — y;| = (m — 1) + 8 = d. On the other hand, for i # j
and i — j even, we have |z; — z;] = 0, |y — y;| = |[i — j|6 > 26, and thus
lz; — ;] + |y — ¥5] = 26 > (m — 1) + § = d. This shows d(Z,#) 2 d and thus
D(m,n;l) 2d. 0

REMARK 2.6. Ifn—12> (I-1)(m-1) end ({—1)|(n—1), then the mazimal
separation D(m,n;l) < (m = 1) + |[(n — 1)/(I = 1)] can be achieved only with
Z=[0,m-1,0,m—1,--] (or by upside-down flipping, T = [m—1,0,m—1,0,--])
and §=[0,6,26,- -] where 6 =(n—1)/(l -1).

REMARK 2.7. From the proof of Theorem 2.5, it is clear that, in the case
n—1< (1 —1)(m~1) (and thus 6§ = [(n - 1)/(l — 1)] < m — 1), the distance
of separation for the same zigzag scheme £ = [0,m — 1,0,m - 1,- -, 7=
[0,8,25,- -] is then given by 26. The corresponding lower bound D(m,n;l) >
2|(n — 1)/(I = 1)) for the case n — 1 < (I —1)(m — 1), however, is in general
not optimal. This is not surprising, since for relatively large values of I, an
effective separation scheme would have to utilize also the interior cells of the
array, instead of the boundary cells exclusively as in case of the zigzag scheme,
see again the ezample in Fig. 1.1(a). In such cases, the sphere packing bounds
presented in the nezt section will provide more accurate estimates.

3. Sphere packing bounds.

3.1. Discrete 2-D spheres. The concept of discrete spheres plays a key
role in the study of interleaving schemes for correcting burst errors in 2-D and
higher dimensional data [1, 8, 9, 15, 16, 17]. In this section we show how they
can be used to obtain alternate bounds on D(m, n;l).

Given d € N, the discrete 2-D sphere S 4 with diameter d can be defined
as the following subset of Z?

Soum {x €Z?:|z1| + |z2| < d/2} if d is odd,
24 =\ {x € Z? : |z1| + |w2 — 1/2] < d/2} if d is even.

Fig. 3.1 shows the 2-D spheres Sp 4 with d = 1,2,3,4, 5. Geometrically, S2,4
can be constructed recursively by appending all neighbors of Sz 42, starting
with Sz,1 = {(0,0)} if d is odd, and Sz 2 = {(0,0),(0,1)} if d is even. Addition-
ally, any translation Sp,4(C) = S24+C = {x+C€Z?:x€ Ss,a} of Sz,a by
C € 72 will also be referred to as a sphere with diameter d.
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FiG. 3.1. 2-D spheres Sp g with d = 1,2, 3,4, 5.

LEMMA 3.1 ([1, 9]). Letd € N. Then for any x € Saq, y € Sa4, it
holds that d(x,y) < d; and for any X ¢ S»,a, there exists y € Sy q such that
d(x,y) 2 d; also if d(x,y) > d, X,y € Z2, then S3 4(x)NS2,4(y) = §; moreover,
by counting the elements in Sz, we have |Sy 4] = [d?/2].

3.2. Sphere packing bounds. An especially important property of these
discrete 2-D spheres Sz 4 is that they tile up Z2 for any d € N. By labeling each
cell by a distinct integer in the same way for each of these spheres S 4, one
naturally obtains a lattice interleaving scheme on Z? with interleaving distance
d using | Sz 4| distinct integers.

LemMA 3.2 ([1,9]). Letd € N, b=2[d/2] - 1, k = |Sp 4] = [d?/2]. By
labeling cell (1, j) by integer a;; = j—bi (mod k), one obtains a lattice interleaver
on Z? with interleaving distance d using |Sz 4| distinct integers.

Using such lattice interleavers, it is clear that, inside any m x n subarray
of Z?, at least one of the k = |Sy 4] integers will appear at least | = [mn/k]
times. Thus we have

THEOREM 3.3. L(m,n;d) > [mn/|Sa,4|]-

COROLLARY 3.4. D(m,n;l) > d for any d satisfying (I — 1)|S2 .4 < mn.

On the other hand, suppose ! symbols are placed at the cells Pi(z;,:),
i=1,2,...,1, on an m x n array such that the £! distance between any two of
them is at least d, then the ! spheres Sz 4(P;), centered at P;, 1 < i < I, are all
disjoint. While some elements of these spheres may fall outside the given m x n
array, each of these spheres is contained in a d x d array on Z2, with the center
lying inside the given m x n array. It follows that the union of all these spheres
S2,4(F;), i = 1,2,...,1 is a subset of an expanded (m +d—1) x (n +d — 1)
array containing the original m x n array on Z2. This leads to

THEOREM 3.5. Let d = D(m,n;l) or | = L(m,n;d). Then we have
l|Sag| < (m+d-1)n+d-1).

In fact, it is easy to see that, unless d = 1, the union of the spheres S; 4(P;),
i=1,2,...,!, cannot cover the whole expanded (m +d—1) x (n+d — 1) array.
Thus the upper bound in Theorem 3.5 may be improved by examining the
boundary effects more closely. The details can be quite complicated in general,
especially in determining £(m,n;d). However, in the case of relatively large
values of /, so that the maximum possible distance of separation D(m,n;![)
is relatively small compared with m and n, the majority of the symbols will
be sufficiently away from the boundary. In such cases, one would expect the
upper bound provided by Theorem 3.5 to be quite accurate. See Fig. 3.2 for an
example.
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FIG. 3.2. (a) A 5x5 array with 13 symbols and mazimum possible distance of separation
D(5,5;13) = 2. The optimality can be verified by Theorem 3.5 (see also Theorem 4.8 and
Corollary 4.9). (b) A 99 array with 13 symbols and mazimum possible distance of separation
D(9,9;13) = 4, obtained by periodically eztending the 5 x 5 array in Fig. 1.1(a), or by
expanding the 5 X § array in (a) by inserting empty rows and columns. In this case, the
upper bound D(9,9;13) < 4 can also be verified by Theorem 3.5 (with strict inequality).

4. Small and large ! values. With the general bounds on D(m, n;!) and
L(m,n;d) at hand, we now turn our attention to finding the exact values for
D(m,n;l) and £(m,n;d) in several special cases. In this section, we consider
special ! values of { = 3,4,5 and | > [mn/2], and the next section will be
devoted to small m values of m = 2,3,4.

4.1. Case [ = 3. In this subsection, we consider the case { = 3 and prove
THEOREM 4.1. Letl =3 and m < n. Then

2(m+n—-2)/3 ifn<2m -1,
D(m, n;3) ={ L 14 |(n -)/1)J/2J if n>2m— 1.

Note that by Theorems 2.4 and 2.5, we only have to prove Theorem 4.1 for
the case n < 2m — 1. This is achieved by the following two lemmas.

LEMMA 4.2 (New upper bound for | = 3). D(m,n;3) < [2(m+n-2)/3].

Proof LetZ € Z3, 7€ Z3 and d = d(£,%). Thenforall 1 <i<j <3,
we have |z; — ;| + lyi — yj| > d. Adding all these inequalities, we obtain
3d< Ziq lz; — z;] + |y — yj| = 2(max; z; — min; z;) + 2(max; ¥; — min; y;) <
2(m — 1) + 2(n — 1). Thus d < 2(m + n — 2)/3. Lemma 4.2 now follows. O

LEMMA 4.3 (Construction). Let! = 3 and m < n < 2m — 1. Then
D(m,n;3) > |2(m +n —2)/3].

Proof. Let d = |2(m +n—2)/3]),6, = |2n-m-1)/3] =d - (m -1),
8 = |(2m—n-1)/3] = d—(n—1). Note that by assumption m < n < 2m -1,
we have 0 < &; < n, 0 < 8, < m. Next, let P1(0,0), P2(m—1,6,), P3(d2,n—1).
Then we have |P,Po| =m —1+6; =4d, |PiPsl=n—1+0d2 =d, and |P P3| =
m4n—2—08 —8 =2(m+n—2)—2d > 3|2(m+n—-2)/3] —-2d =3d-2d =d.
This shows D(m,n;3) > d = |2(m + n — 2)/3] in this case. O

4.2. Case | = 4. Next for | = 4, we prove the following
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Fic. 4.1. Left: D(4,4;3) = D(4,5;3)
= )

4, 4 with § = [0,3,1), 7§ = [0,1,3]. Right:
D(4,7;3) = D(4,8;3) = 6 with £ = [0,3,0], ).

=1{0,3,6

THEOREM 4.4. Letl=4 and m < n. Then

n_f lm+n-2)/2 if n < 3m -2,
D(m,n,4)—{ ,Lnrflzl(n_lj)/sj ;stz-z.

Again by Theorems 2.4 and 2.5, it remains to prove Theorem 4.4 for the
case m < n < 3m -~ 2. First we have
LEMMA 4.5 (New upper bound for I = 4). D(m,n;4) < |(m +n - 2)/2).
Proof. Let ¥ € Z%, and § € Z3. Denote Pi(z;,v;), i = 1,2,3,4. Without
loss of generality, we assume z; < z2 < 73 < 74. Furthermore, by reflection
(upside-down flipping) if necessary, we may also assume y; < y4. Based on the
values of y, and y3, we separate the following cases:
(a) At least one of yp and ys3 is between y; and y4. Let i = 2 or = 3 with
y1 < yi < ys. Then we have |P\P| + |PPy| = [Pyl <m+n-2
hence d(£, %) < min{|P,P;,|PiPy4|} < [(m +n - 2)/2].
(b) One of y» and y3 is less than y; and the other is greater that y4. Let
1,7 € {2,3} such that y; < y1, y; > ya. Then we have |P, B[ +|P.Py| +
IP]PJI + IPJP‘;[ = 2(3:4 - :61) + 2(y,- - y,~) < 2(m +n - 2) This lmpheb
d(z,9) < min{|P, P, |P:Pil, [PPy1,IPPy]} < |(m +n — 2)/2].
(c) y2 < 91, ya < y1. In this case, we have |P\P,| + |P, P3| = |P Py if
y3 < Y2, and |PoPs| + |PsPy| = |PoPy| if y3 > yo. In either case, we
have d(Z,9) < |[(m +n - 2)/2].
(d) y2 > 4, ys > ya. Then we have [P Py| + |, P3| = |P1 P3| if o < 3,
and | P P3| + |Ps Py| = |PyPy| if ya > y3. Again, in either case, we have
d(Z,9) < |(m +n - 2)/2).
Lemma 4.5 now follows. O
LEMMA 4.6 (Construction for I = 4 and n < 3m — 2). Assume l = 4,
m < n<3m—2. Then we have D(m,n;4) = [(m +n — 2)/2].
Proof. Let d = [(m +n —2)/2], § = |(n — m)/2]. Then from m <
n < 3m — 2, we have 0 < 6 < n. Let P1(0,0), Po(m - 1,4), P3(0,n — 1 - §)
and Py(m — 1,n — 1). Then we have |P\Py| = |P3Py| = m -1+ 4§ = d,
|[PrPyl=m+n—-22>2d, |PPs|=|PaPyl=n—-1-6=[(m+n—-2)] >d, and
finally |2 P3| =m+n-2-20=2m-2=d+(3m-2-n)/2>dforn—-m
even, and | P3| =m+n—-2-2=2m—-1=d+(B3m+1-n)/2>dforn—m
odd. Therefore D(m,n;4) >d=[(m+n—-2)/2] form<n<3m-2.0

4.3. Case ! =5. Next for l = 5, we prove
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(c) (d)

FIG. 4.2. Relative positions of the 4 symbols in the array with 1 < z2 < 23 < 74 and
y1 <wva: (@) 1 Sy2 Sya; () v2 Sy and y3 2 w4 (c) w2,u3 Sws () 2,93 2 va-

Flc. 4.3. Left: D(3,5;4) = 3 with £ = [0,2,0,2], 7 = [0,1,3,4]. Right: D(3,10;4) =5
with £ =[0,2,0,2], 7= [0,3,6,9).

THEOREM 4.7. Let =5 and m < n. Then

e J [2(m+[n/2] -2)/3] fn<d4m -3,
D(m*”'5)‘{ ([m—l)lii-/[(n—l))//tljj if n>dm - 3.

Proof. Again by Theorems 2.4 and 2.5, it suffices to prove Theorem 4.7
for the case m < n < 4m — 3. Note that one of the two m X [n/2] subarrays
consisting of the left and right [n/2] columns must contain at least 3 symbols.
Thus we have D(m, n; 5) < D(m, [n/2];3). The upper bound is then established
by using Theorem 4.1 to verify that D(m, [»/2];3) = [2(m + [n/2] — 2)/3] for
m<n<4dm-3.

Next we show that the above bound can be achieved by using essentially
the same construction in Lemma 4.3. First, for n odd, we write n = 2n’ — 1 so
n' = [n/2]. Then m < n < 4m — 3 implies n’ < 2m -1 and m < 2n’ — 1. By
Lemma 4.3, D(m,n’;3) = d = |2(m + n' — 2)/3] is achieved by using P;(0,0),
Py(m—1,8,), P3(62,n' —1) where 6 = |(20' —m—1)/3|, 62 = |(2m—n'— 1)/3]
with 0 < &; < n/, 0 < 8 < m. Let Py(m —1,2n’ —1 - &), Ps(0,2n' — 1). By
symmetry, we now have |Ps P3| = |Ps P, |PsPs| = |P3Py| and |PyPs| = | P2 P, |.
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Furthermore, we have |P\Py| = |P2Fs| > |P\Py|, |PPs| > |PPy| = 2n' -
1-26, =2(m+n'—2)-2d+1 > d+1. This shows D(m,n;5) > d =
[2(m +n' —2)/3].

Finally, for n even, we have D(m,n;5) > D(m,n ~ 1;5) = |2(m + [(n -
1)/2] - 2)/3) = [2(m + [n/2] — 2)/3]. Theorem 4.7 now follows. O

L [ ]

FiG. 4.4. Left: D(4,7;5) = D(4,8;5) = 4 with = [0,3,1,3,0], 7 = [0,1,3,5,6]. Right:
D(5,5;5) = D(5,6;5) =4 with £ = [0,4,2,4,0], §=[0,0,2,4,4).

4.4. Case | > [mn/2]. When [ is sufficiently large, the high density of
symbols will necessarily lead to the occurrence of a cluster of connected symbols
in the array, thus forcing D(m,n;l) = 1. The next theorem shows this is the
case when [ > [mn/2)].

THEOREM 4.8 (Case of too many symbols: [ > [mn/2]). Letl > [mn/2].
Then D(m,n;l) =1.

Proof. Consider a path that consists of horizontal or vertical moves at
each step and visits each cell of the array exactly once (see Fig. 4.5 for an
example). Suppose D(m,n;!) > 2. Then for each of the ! symbols except the
one (if any) at the end of the path, the cell next to the symbol along the path
must be vacant. Thus we have 2(I — 1) + 1 < mn, or equivalently ! < [mn/2],
contradicting the assumption ! > [mn/2]. O

—|=|=]-=-10 T |e—=]— ]|«

FiG. 4.5. Each path starts with the upper-left cell and visits each cell of the array eractly
once.

COROLLARY 4.9 ([6, 10]). L(m,n;2) = [mn/2].
Proof. By Theorem 4.8, we have L(m,n;2) < [mn/2]. The equality can
be achieved by the standard chessboard scheme, see Fig. 4.6 for an example. 0

5. Small m values.

5.1. Case m = 2. First we consider the case m = 2. By Theorem 2.5, we
have D(2,n;l) =1+ |(n—-1)/(i-1)] ifn—1> (I - 1)(m — 1), that is, ] < n.
On the other hand, for { > n = [mn/2], Theorem 4.8 shows D(2,n;!) = 1.
Combining these, we have

THEOREM 5.1. Letm = 2 andl > 2. ThenD(2,n;1) = 1+|(n-1)/(I-1)].
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FIG. 4.6. Chessboard schemes for achieving L(m,n;2) = [mn/2].

COROLLARY 5.2. £(2,n;1) = mn, and for d > 2, we have £(2,n;d) =
1+ |(n—-1)/(d-1)].

5.2. Case m = 3. Next, for m = 3, we have

THEOREM 5.3 (m =3). Let m=3,1>2. Then

1 if > [3n/2],

2 if [2n/3] <1< [3n/2],
3 if [n/2] <1< [2n/3],
2+ |(n-1)/(1-1)] ifl<[n/2].

Proof. Note that by Theorem 4.8, we have D(3,n;!) = 1 for [ > [3n/2].
Next, by Theorem 2.5, we have D(3,n;l) = 2+ [(n — 1)/(! — 1)] = 4 for
n>2l—1, that is, | < [n/2]. Additionally, by Theorem 2.4 and Corollary 4.9,
we have 2 < D(3,n;!) < 3 in the remaining cases [n/2] <! < [3n/2]. Thus,
to finish the proof of Theorem 5.3, it suffices to show £(3,n;3) = [2n/3].

To show this, we first note that for n = 1,2, 3, the result £(3, n;3) = [2n/3]
holds trivially. Next, for n > 3, by using £(3,7;3) < £(3,n — 3;3) + £(3,3;3),
the upper bound £(3,n;3) < [2n/3] follows easily by induction. Finally we
note that the equality £(3,n;3) = [2n/3] can be achieved by using the periodic
construction in Fig. 5.1. O

. B ° . P

FIG. 5.1. Periodic packing scheme for 3 X n arrays with distance of separation d=3.

COROLLARY 5.4. Let m = 3. Then we have £L(3,n;1) = 3n, £(3,n;2) =
[3n/2], £(3,n;3) = [2n/3], and £L(3,n;d) = 1+ |(n - 1)/(d ~ 2)] for d > 4.

5.3. Case m = 4. We now consider the case of m = 4. By Theorem 4.8
(and Corollary 4.9), we have D(4,n;l) = 1 for [ > L£(4,n;2) = 2n. Also by
Theorem 2.5, we have D(4,n;!) = 3+ |(n — 1)/(1 —1)] for n > 31 =2 (or
equivalently, ! < [n/3]). This implies £(4,n;d) = 1+ |(n — 1)/(d — 3)] for
6 < d < m+n—2. For the remaining cases [n/3] < ! < 2n, we have by
Theorem 2.4, 2 < D(4,n;1) < 5.

LEMMA 5.5 (4xn arrays withn < 7and d = 3). £(4,1;3) = £(4,2;3) =2,
£(4,3;3) =3, £(4,4;3) =4, £(4,5;3) = 5, £(4,6;3) = L(4,7; 3) =6.



Proof. Using earlier results for m < 3, we have £(4,1;3) = £(1,4;3) = 2,
£(4,2;3) = £(2,4;3) = 2, £(4,3;3) = £(3,4;3) = 3. Next, for n = 4,5,6, we
have £(4,4;3) < £(4,2;3)+£(4,2;3) = 4, £(4,5;3) < £(4,2;3)+L(4,3;3) = 5,
£(4,6;3) < £(4,3;3)+£L(4,3;3) = 6. For n =7, we will prove £(4,7;3) < 6 by
showing D(4,7;7) < 2.

Suppose D(4,7;7) > 3. We divide the 4 x 7 array into two subarrays of
size 2 x 7 each. Note that one of these 2 x 7 arrays must contain > 4 symbols.
Without loss of generality, we assume the top 2 x 7 subarray contains > 4
symbols. Since £(2,7;3) = 4, the top 2 x 7 subarray must then contain exactly
4 symbols. Furthermore, by Remark 2.3, £(2,7;3) = 4 can only be achieved
with one of the two schemes shown in Fig. 5.2. In either case, to preserve a
minimum distance of separation of d = 3, the entire third row must then be
vacant. This forces the remaining 3 symbols to be placed on the last row with
D(1,7;3) = 2 < 3 = d. This contradiction shows D(4,7;7) < 2, and thus
L£(4,7;3) <6.

Fic. 5.2. £(2,7;3) = 4.

Finally, it can be easily checked that the equalities are achieved by the
scheme in Fig. 5.3. 0

FiG. 5.3. Optimal separation on 4 X n arrays withn < 7 and d = 3.
LEMMA 5.6. Letn’ = |n/7] andr =n—Tn’ so that 0 < r < 6. Then

oy J M +2 ifr=1,
5(4’n’3)_{6n’+r if r # 1.

Proof. By using £(4,n;3) < L(4,n—T7;3) + £(4,7;3) = L(4,n - T;3) + 6
for n > 7, the upper bound follows from Lemma 5.5 by induction. On the other
hand, the lower bound can be achieved by periodically extending the 4 x 7 array
in Fig. 5630

REMARK 5.7. The above result for £L(4,n;3) can be erpressed more com-
pactly in the form

L(4,7;3) = [6n/T] + X7|(n-1)(n)
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where x7in—-1)(n) =1 # 7| (n— 1) and x7i(n-1)(n) =0 if T4 (n - 1).
LEMMA 5.8. £(4,n;4) = |(3n +4)/5] for 1 <n <10.

Proof. By examining the 4 x 10 array (and its subarrays) in Fig. 5.4, it
is easy to see that £(4,7n;4) > |(3n +4)/5] for 1 < n < 10. Next we show
L(4,n;4) < [(3n +4)/5] for 1 < n < 10.

Using the earlier results for m < 3, we have £(4,1;4) = £(1,4; 4) =1,
£(4,2;4) = L£(2,4;,4) = 2, £(4,3;4) = £(3,4;4) = 2. Next for n = 4, we
have £(4,4;4) < L£(4,1;4) + £(4,3;4) = 3. For n = 5, Theorem 4.4 shows
D(4,5;4) = 3 and thus £(4,5;4) < 3. Finally for 6 < n < 10, we have
‘C(416;4) < 6(4)3; 1) + ‘C(413;4) =4, L(4,7; 4) < £(4,3; 4) + £{4,4; 4) = 5,
£(4,8;4) < £(4,3;4) + L(4,5;4) = 5, £(4,9;4) < L(4,4;4)+ L(4,5; 4) =6, and
£(4,10;4) < £(4,5;4) + L£(4,54) = 6.0

FIG. 5.4. Optimal separation on 4 X n arrays withn <7 andd =4.

LEMMA 5.9. Let m = 4 and d = 4. Then L(4,n;4) = |(3n +4)/5].

Proof. By periodically extending the 4 x 10 array in Fig. 5.4, we can see
that £(4,n;4) > |(3n+4)/5] for all n > 1. On the other hand, the upper bound
£(4,n;4) < |(3n +4)/5] follows from Lemma 5.8 for n < 10 and induction for
n > 10 by using £(4,7;4) < £(4,n — 10;4) + £(4,10;4) = L(4,n—10;4)+6. 0

LEMMA 5.10. Let m =4 andd = 5. Then L(4,n;5) = |(2n +4)/5].

Proof. By using the periodic construction in Fig. 5.5, we can see that
£(4,7;5) > |(2n+4)/5) holds for all n > 1. To establish the upper bound, we
first note that for n = 3,4,5, £(4,1;5) = £(1,4;5) = 1, £(4,2;5) = £(2,4;5) =
1, £(4,3;5) = £(3,4;5) = 2. Next, for n = 4, we have £(4,4;5) < £(4,2;5) +
£(4,2;5) = 2. For n = 5, by Theorem 4.1, we have D(4,5;3) = |2(4 +5 —
2)/3] = 4 < d = 5. This shows £(4,5;5) < 2. Finally, for n > 5, let n =
(n—1)/5] so that n = 5n'+r with1 < r < 5. Then £(4,7n;5) < £(4,n-5;5)+
L£(4,5;5) < --- < L(4,7;5) +n'L(4,5;5) = |(2r +4)/5] +2n’ = |(2n+4)/5]. O

FIG. 5.5. Optimal separation on 4 X n arrays with d = 5.

Summarizing the above results for m = 4, we have
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THEOREM 5.11 (m =4). Let m =4, [ > 2. Then

2n if d=2,
rﬁn/ﬂ + X7|(n~1) ifd= 3,
L{4,n;d)={ [(3n+4)/5] if d=4,
[(2n +4)/5) if d=5,

1+]|(n-1)/(d-3)] ifd>8,
and

1 if 1> 2n,
2 if [6n/7] + X7)(n-1) < { < 2n,
D(4,n; 1) = 3 if [(3n+4)/5] <1< [6n/7]+ X7|(n-1)»
» 4 if [(2n+4)/5] <1< |(3n+4)/5],
5
3

if [n/3] <1< |(2n+4)/5],
+ln-1)/(-1)] iflI<[n/3]
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