Total edge irregularity strength of
strong product of two paths*

Ali Ahmad!, Martin Baga?3, Yasir Bashir®
Muhammad Kamran Siddiqui®

1College of Computer Science & Information Systems
Jazan University, Jazan, Saudi Arabia
ahmadsms@gmail.com
2Department of Appl. Mathematics and Informatics,
Technical University, Kosice, Slovak Republic
martin.baca@tuke.sk
3Abdus Salam School of Mathematical Sciences,
GC University, Lahore, Pakistan
{yasirb2,kamransiddiqui75}@gmail.com

Abstract

The strong product G; ® G2 of graphs G; and G is the graph
with V(G1) x V(Gz2) as the vertex set, and two distinct vertices
(z1,22) and (y1,y2) are adjacent whenever for each i € {1, 2} either
Zi = yi or z;y; € E(Gy).

An edge irregular total k-labeling o : VUE — {1,2,...,k} of
a graph G = (V, E) is a labeling of vertices and edges of G in such
a way that for any different edges zy and z'y’ their weights () +
e(zy) + ¢(y) and (z') + p(z'y’) + (') are distinct. The total edge
irregularity strength, tes(G), is defined as the minimum & for which
G has an edge irregular total k-labeling.

We have determined the exact value of the total edge irregularity
strength of the strong product of two paths P, and P,,.
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1 Introduction

Baga, Jendrol, Miller and Ryan (3] defined the notion of an edge irregular
total k-labeling of a graph G = (V, E) to be a labeling of vertices and edges
of Gy :VUE — {1,2,...,k} such that the edge weights wt,(zy) =
o(z) + @(zy) + ¢(y) are different for all edges, i.e. wt,(zy) # wiy(z'y') for
all edges zy, 'y’ € E. The minimum k for which the graph G has an edge
irregular total k-labeling is called the total edge irregularity strength of G,
tes(G).

The original motivation for the definition of the total edge irregularity
strength came from irregular assignments and the irregularity strength of
graphs introduced by Chartrand, Jacobson, Lehel, Oellermann, Ruiz and
Saba [6]. An irregular assignment is a k-labeling of the edges ¢ : E —
{1,2,...,k} such that the sum of the labels of edges incident with a vertex
is different for all the vertices of G, and the smallest k for which there is
an irregular assignments is the irregularity strength, s(G).

Finding the irregularity strength of a graph seems to be hard even for
graphs with simple structure, see [4, 8, 11, 16]. Karoriski, Luczak and
Thomason [14] conjectured that the edges of every connected graph of order
at least 3 can be assigned labels from {1,2,3}, such that for all pairs of
adjacent vertices the sums of the labels of the incident edges are different.

Let us mention the following result from [3] giving a lower bound on the
total edge irregularity strength of a graph:

tes(G) > maX{ |'|E(G§| + 2] , [A(Gz) ha 1] } ' 1

where A(G) is the maximum degree of G. The authors of (3] determined
the exact values of the total edge irregularity strength for paths, cycles,
stars, wheels and friendship graphs.

Recently Ivanéo and Jendrol [10] posed the following conjecture:

Conjecture 1 [10] Let G be an arbitrary graph different from Ks. Then

tes(C) =max{|'|E(G§|+2]’ [A(G2)+1]}_ @
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Conjecture 1 has been verified for trees in [10], for complete graphs and
complete bipartite graphs in [12] and [13], for the Cartesian product of two
paths P,,0F,, in [15], for corona product of a path with certain graphs in
[17], for large dense graphs with EL%U'*—"’ < A—(%’i in [5], for the categorical
product of two paths P, x P,, in [2] and for the categorical product a cycle
and a path C, x Py in [1].

Motivated by the papers [7], [15] and [18] we investigate the total edge
irregularity strength of the strong product of two paths.

The strong product Gy B G5 of graphs G, and G5 has as vertices the pairs
(z,y) where z € V(G,) and y € V(G3). Vertices (z;,y;) and (z2,y2) are
adjacent if either z;z5 is an edge of Gy and y; = y» or if z; = z2 and Y12
is an edge of G5 or if )z, is an edge of G; and y,y» is an edge of G3. Note
that the edge set of the strong product G; ® G5 is the union of the edge
sets of the Cartesian product G;00G2 and categorical product G; x G3, see
e.g. [9].

For integers a and b let [a,b] be an interval of integers ¢, a < ¢ < b.
If we consider graph G as the path P, with V(P,) = {z1,z2,...,Zn},
E(P,) = {zizi41 : i € [1,n — 1]} and graph G as the path P,, with
V(Pr) = (U1,¥2,- -}y E(Pm) = {y;3541.: j € [1,m — 1]} then

V(P B Py,) = {(zi,y;) : 1 € [1,n], j € [1,m]} is the vertex set and

E(Pn ng) = {(xi:yj)(xi-{-l,yj) S [1,n - 1]1 JjE€ [lsm]}
U{(zis1, 95 )@, yj41) 1 € [Lin—=1], j € [1,m = 1]} U {(zi, ;) (Zir1, Yj1)
i€ll,n-1], je[l,m-1)}U{(zi,y; }(z:,yj+1) : i € [L,n], j € [1,m 1]}
is the edge set of P, ® P,,.

The paper adds further support to Conjecture 1 by demonstrating that

the strong product P, ® P,, has total edge irregularity strength equal to

[ 1E(P..®P.,.)|+2]
3

.

2 Total edge irregularity strength for small
cases

In this section we discuss the total edge irregularity strength for P, ® P,,
if2<m < n<6. It is easy to verify that tes(P ® P,) = 3.

Lemma 1 Let 2 <m < 3. Then tes(Ps® Pp) =3m —1.

Proof. Since |[E(P; R P,)| = 9m — 7 and A(P3 X P,,) = 3m — 1 then
from (1) it follows that tes(P; ® P,,) > k = 3m — 1. The existence of the
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optimal labeling ¢, proves the converse inequality.

1, ifi=1, je1,m]
gol((:z:,',yj)) = m-—1+437, ifi=2, je [I,m]
k, ifi=3, je€ [l,m]

p1((i, 95 )(Zi41,95)) = (= 1)(m - 1) + 5,
01((Zi+1,%3) (=i, y541)) = (- 1)(m = 3) + i+,
1, ifi=1, j=1
e1((zi, y;) (@i yi+1)) = k—-m, fi=23, j=1
2,  ifie[1,3), j=2

o1((zi, Y5)(Zit1,¥i41)) =k — (2 —i)m. a
Lemma 2 Let 2 < m < 4. Then tes(P4® Pp,) = [ﬁ"mT"'l—)] —(m+4).
Proof. According to (1) it is enough to prove that tes(Py ® Pp) < k =

[M:,ﬂ-l — (m + 4). It follows from the next construction of the labeling
2, where j € [1,m].

ji ifi=1,2
‘P2((zi,yj))= 2m—-1+7, ifi=3
k, ifi=d
wa((i, ¥5) (Ti+1,95)) =
1, ifi=1
= po((Tit1,¥5) (Zir Yj41)) = § 4m—3, ifi=2
8m—k—6+j, ifi=3
2m —1, ifi=1
4m - 3, ifi=2
p2((Ti, y5) (i, ¥541)) = am—1), fi=3
12m -2k -7+3, ifi=4
2m, ifi=1
ea((Zi ¥5)(Tir1, Yj41)) = { 2m—1, ifi=2

ém—k—-3+j4 ifi=3.

It is easy to see that ¢ is an edge irregular total labeling having the
required property. @]
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Lemma 3 Let m<n,2<m<6and5<n<6. Then tes(P, B Py,) =
[4—4 '";‘“)] —(m +mn).

Proof. Again with respect to (1) it is enough to prove that tes(P,®P,) <
[ﬂﬂ;"ﬂ] —(m+n). Let k = l-ﬁ-'%"'—l)] —(m+n) and j € [1,m]. For
n =5 we define the labeling @3 and for n = 6 we define the labeling ¢4 in
the following way:

7 ifi=1,2

dm—-24j, fi=3

e3((ziyy;)) = k—-m+j, ifi=4

_ k, ifi=5
e3((@i, ¥;)(Tit1,95)) =
1, ifi=1
3m -2, ifi=2
=es((@any)@oyn)) =9 o 3, fi=3
13m -2k ~-8+4+3, ifi=4
2m -1, ifi=1
4m — 3, ifi=2,3
P3((zi, y5)(zi, ¥i41)) = 16m — 2k — 10, ifi=4
16m—-2k—-10+3, ifi=5
2m, ifi=1
m, ifi=2
‘PS((:B:': yj)(xi+l?yj+l)) = 8m—k— 4, ifi=3
15m —2k -8+, ifi=4
7 ifi=1,2
2m -1+ 7, ifi=3
‘P4(($iayJ))—' k—m(n—i)+j, ifi=4,5
k, ifi=6
Pal(zi, y5)(iv1,95)) =
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1, if =1
om —1, if i =2
mn+2) —k—4, ifi=34
10m—k—7+j ifi=5

= (p4((‘xi+1, yj)(xHyJ“’l)) =

2m —1, ifi=1
6m —2 —1, ifi=2,3
(P4((Ti,yj)($i,yj+1)) ={ m(n+5)—k-6, ifi=4
m(2n+1)—-k-9, ifi=5
mn+7) —k—9+j, ifi=6

2m, ifi=1

: 4m -2, ifi=2
Pa((i, ¥5) (Ti41, Ys41)) = m(n+4) - k—5, ifi=34

m(n+6)—-k—7+j, ifi=5.
One can check that all vertex and edge labels are at most k. Moreover
under the labeling @3 (respectively, p4) the weights of the edges

(i) (x1,;)(2, y;) and (x2,;)(x1,y;+1) admit the consecutive integers from
the interval (3,2m + 1],

(i) (z1,¥;)(21,¥541) and (z1,9;)(z2,¥j+1) admit the consecutive integers
from 2m + 2 to 4m — 1,

(iii) (z2,y;)(x3,y;) and (23,y;)(22,y;j+1) receive the consecutive integers
from 6m — 2 to 8m — 4 (respectively, from 4m to 6m — 2),

() (z2,9;)(z2,yj+1) and (2, ¥;)(Z3, ¥j+1) admit the consecutive integers
from the interval [4m, 6m — 3] (respectively, from the interval [6m —1,8m —

4),

(v) (x3,y;)(z4,y;) and (z4,y;)(23,Y;541) receive the consecutive integers
from the interval [8m — 3,10m — §),

(vi) (x3,9;)(z3,Yj+1) and (z3,¥;)(Z4, Yj+1) admit the consecutive integers
from 10m — 4 to 12m — 7,

(vii) (z4,y;)(Ts5,y;) and (5, ¥;)(T4, Yj+1) receive the consecutive integers
from 12m — 6 to 14m — 8,

(viii) (4, Y;)(T4, Yi+1) and (z4, ¥;)(2s, Yj+1) admit the consecutive integers
from the interval [14m — 7,16m — 10].

Under the labeling (3 the weights of the edges
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(iz) (zs,9;) (s, yj+1) receive the consecutive integers from 16m—9 to 17m—
11.

Under the labeling o4 the weights of the edges

(z) (zs,y;)(w6,¥;) and (zs,y;)(5,yj+1) admit the consecutive integers
from 16m — 9 to 18m — 11,

(xi) (z5,y;)(Zs, y;+1) and (z5,y;)(Z6, ¥j+1) receive the consecutive integers
from the interval [18m — 10,20m — 13},

(zii) (z6,y;)(6,yj+1) receive the consecutive integers from 20m — 12 to
21m — 14.

We can see that weights of the edges under the labeling 3 (respectively,
4) create the integer interval (3, 17m—11] (respectively, [3,21m—14]. Thus
the labelings 3 and ¢4 are the desired edge irregular total k-labelings. O

3 Main Result

As |E(P, R Pp)| = 4mn—3m—3n+2 then (1) implies that tes(P, R P,,) >
[IE(G;'”] = l_"("‘;"“)] — (m + n). The main result of the paper proves
equality. More precisely we prove

Theorem 1 Let m,n > 2 be positive integers and P, ® P,, be the strong
product of two paths P, and P,,. Then

4(mn +1)

tes(P, B Pp,) = [ 3

I-—(m+n).

Proof. The cases when 2 < m < n < 6 were discussed in the previous
section. Because the graphs P, ® P,, and P, R P,, are isomorphic, it is
sufficient to prove the statement for n > m. Thus we suppose that n > m,

n27,m22andk=|-w-|—(m+n).

We split the edge set of P, R P,, into mutually disjoint subsets A;, B; and
C;, where

Ai = {(26,9)(Tir1,95) 1 5 € [1, M} U {(Zi41, 43) (@i, y541) 1 5 € [L,m = 1]}
for all i € [1,n - 1],

B; = {(xi, ¥ (i, ¥j41) : 5 € [L,m — 1]} for i € [1,7] and

C; = {(x,—,yj)(:z:,-.,.l,yjH) tj € [l,m - 1]} fori e [1,n - 1]
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n—1 n
Clearly, |4;| = 2m—1, |B;| = |Ci| = m—1 and > (Al +|Cil)+ X |Bil =
. i=1 i=1
|E(Pr R Pp)l.

Now we construct the total labeling ¥ : V(P, B P,) U E(P, ® Pp) —
{1,2,...,k} as follows:

3, ifi=1,2
_ ) m(i-2)+7, ifief3[3))
P@ov) =\ ko mn—i)+j, ific[Z]+1Ln—1]
k, if i =n.

If an edge e4 belongs to A;, an edge ep belongs to B; and an edge ec
belongs to C; then we define:
(1, ifi=1
@2m-3)(1—2)+3m -2, ifie(2,[3] -1
Ylea) =< 2m-3)|3]+(r-3m—-k+4, ifi= 3]

T @m-3)(i+2-n)+k—6m+6, ific[|}]+1,n-2]

Lk—4m+3+j, fi=n-1,
( om—1, ifi=1
peg)— | BT ikImA2, ifie2 (2]
B)=\ em—3)i+1-n)+k-m+1, ific(|§+1,n—1]
| k—m+1+7, if i =n,
[ 2m, ifi=1
(2m — 3)(i — 2) + 5m — 3, ifie2 2] -1]

Y(ec) = § (2m-3)|3]+(n-1)m—k+3, ifi=|3]
(2m-3)(i+2—-n)+k—4m+5, ifi€([3]+1,n-2|
k—2m+3+3, fi=n-1.

Under the total labeling 1 the weights of the edges

(i) from the set A; admit the first 2m—1 integers from the interval [3,2m+
1],

(ii) from the set B; (respectively, C1) receive the consecutive even integers
from 2m + 2 to 4m — 2 (respectively, the consecutive odd integers from
2m + 3 to 4m — 1),

(iii) from the set A;, 2 <i < %) — 1 admit the consecutive integers from
the interval [(4m — 3)i — 4m + 6, (4dm — 3)i — 2m + 4],
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(iv) from the set B; (respectively, C;), 2 < i < |2] — 1, receive the con-
secutive even or odd integers from (4m — 3)i — 2m + 5 to (4m — 3)i + 1
(respectively, the consecutive odd or even integers from (4m — 3)i — 2m + 6
to (4m — 3)i + 2),

(v) from the set Az admit the consecutive integers from the interval
[(4m —3)| 3] — 4m + 6, (4m — 3)| 2] — 2m + 4],

(vi) from the set By (respectively, C|3)) receive the consecutive even or
odd integers from (4m 3)3]—2m+ 5to (4m —3)| 5] + 1 (respectively,
the consecutive odd or even integers from (4m — 3)[ % j 2m + 6 to (4m —

3)13] +2),

(vii) from the set A;, |3| +1 < i < n — 2, admit the consecutive integers
from 3k + (4m —3)i —4mn—m+3n+2 to 3k + (4m — 3)i —4dmn+m + 3n,

(viii) from the set B; (respectively, Ci), [3] + 1 < i < n — 2, receive the
consecutive even or odd integers from 3k + (4m - 3)i —dmn+m+3n+1
to 3k + (4m — 3)i — 4mn + 3m + 3n — 3 (respectively, the consecutive odd
or even integers from 3k + (4m — 3)i —4mn + m + 3n + 2 to 3k + (4m —
3)i —4mn + 3m + 3n - 2),

(iz) from the set A,_; admit the integers from the interval [3k — 5m +
5,3k — 3m + 3],

(z) from the set B,,_; (respectively, Cr_1) receive the consecutive even or
odd integers from 3k — 3m + 4 to 3k — m (respectively, the consecutive odd
or even integers from 3k — 3m 4 5 to 3k — m + 1),

(zi) from the set B, admit the consecutive integers from 3k — m + 2 to 3k.

Now, it is not difficult to see that all vertex and edge labels are at most k
and the edge-weights of the edges from the sets A4;, C;, i € [1,n — 1], and
B;, i € [1,n], are pairwise distinct and create the integer interval
[3, 3k] for 4(mn + 1) =0 (mod 3),
[3,(4m —3)| 3] +2JU[(4m —3)[3] +5,3k] for 4(mn + 1) = 1 (mod 3),
[3,(4m —3)| 5] + 2] U [(4m — 3)| 2] +4,3k] for 4(mn + 1) = 2 (mod 3).
Thus, the resultmg total labeling is desired edge irregular k-labeling. This
concludes the proof. a
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