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Abstract

The set of unicyclic graphs with n vertices and diameter d is denoted
by Ui ay- For 3 < i < d, let P,_4—1(%) be the graph obtained from
path Pyyy : v1v2 -« - 0441 by adding n—d —1 pendant edges at »;, and
U, 2,_,(i) be the graph obtained from P,_4_(3) by joining v;—2 and
a pendant neighbor of v;. In this paper, we determine all unicyclic
graphs in U(, 4y whose largest Laplacian eigenvalue is greater than
n—d+2. Forn—d2> 6 and G € U, q), we prove further that the
largest Laplacian eigenvalue p(G) < max{u(U, %, ,())|3<i<d},
and conjecture that U, _°d__2(|'-‘2!'| + 1) is the unique graph which has
the greatest value of the greatest Laplacian eigenvalue in U, 4. We
also prove that the conjecture is true for 3 < d < 6.
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1. Introduction

Let G = (V, E) be a simple graph with vertex set V(G) = {v,va,...,vn}.
For v € V, the degree of v, written by d(v), is the number of edges in-
cident with v. Let A(G) be the adjacency matrix of G and let D(G)
be the diagonal matrix of vertex degrees. The Laplacian matrix of G is
L(G) = D(G) — A(G). Denote by ¢(G, x) or simply ¢(G) the characteris-
tic polynomial of L(G). Clearly, L(G) is a real symmetric matrix. From
this fact and Ger3gorin’s theorem, it follows that its eigenvalues arc non-
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negative real numbers. We denote the largest eigenvalue of L(G) by u(G)
and call it the Laplacian spectral radius of G.

The investigation on the Laplacian spectral radius of graphs is an impor-
tant topic in the theory of graph spectra. Recently, the problem concerning
graphs with maximal or minimal Laplacian spectral radius of a given class
of graphs has been studied by many authors. Denote by 7;, the set of trees
on n vertices. Gutman [8] proved that the star has the greatest Laplacian
spectral radius in 7;,. Petrovi¢ and Gutman [12] proved the path has the
smallest Laplacian spectral radius in 7,,. Zhang and Li {14] and Guo {5]
gave the first four trees in Ty, ordered according to their Laplacian radii.
Yu, Lu and Tian [13] determined the fifth to eighth trees in the above or-
dering. Guo [5] found the sharp upper bound for Laplacian spectral radii
of trees in terms of the matching number and number of vertices, and
characterized the graph attained the upper bound. Hong and Zhang [9]
determined the tree with largest Laplacian spectral radius among all the
trees with n vertices and k pendant vertices. Guo (7] determined the first
four graphs with the largest Laplacian spectral radius among all unicyclic
graphs on n vertices.

The diameter of a connected graph is the maximum distance between
pairs of vertices in V. Denote by Uy, 4y the set of unicyclic graphs with n
vertices and diameter d. Denote by Pyi1 : vjv2 -+ -v441 the pathon d +1
vertices. We use U!(i) to denote the unicyclic graph in Uy q), shown in
Fig. 1, where s and t are all nonnegative integers.

The rest of this paper is organized as follows. In section 2 we introduce
some notations and lemmas which will be used later on. In section 3 we
determine all unicyclic graphs in U, 4y whose Laplacian spectral radius
is greater than n — d + 2. In section 4 we prove further that u(G) <
max{ (U, %,_,())| 3 <i<d} forn—d > 6 and G € Upqg. Section 5
contains a conjecture that U, %;_,([4] + 1) is the unique graph which has
the greatest Laplacian spectral radius in U, a). We also prove that the
conjecture is true for 3 < d < 6.

2. Preliminary

Let z be a unit eigenvector of G corresponding to u(G). Then p(G) =
2T L(G)z. It will be convenient to associate with z a labelling of G in
which vertex v is labelled z,. We use At (i), Vi(i) and O,,(?) to denote
the unicyclic graphs in U, 4) shown in Figs. 2-4, respectively, where r, s
and ¢ are all nonnegative integers. The terminology not defined here can
be found in (2, 3].
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Since U,,2) = { K1,n—1 + €}, we assume d > 3 in the following. Now
we introduce some lemmas which will be used later on.
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Lemma 1 [4, 10]. Let G have at least one edge, and let A be the mazimum
degree in G. Then u(G) > A+1. For G a connected graph onn > 1 vertices,
the equality holds if and only if A =n—1.

Lemma 2 [1). Let G be a graph. Then
(@) < max{d(u) + d(v) | uv € E(G) }.

Lemma 3 [11]. Let G be a graph and m(u) be the average of the degrees
of the vertices of G adjacent to u. Then

(@) < max{d(u) + m(u}|ue V(G)}.

Lemma 4 [4]. Let G be a bipartite graph. Then D(G) + A(G) and
L(G) = D(G) — A(G) are unitarily similar. In particular, they have the
same spectrum.

Lemma 5. Let v be a vertez of a connected graph G with d(v) 2 2,
and Gi(k > 1) be the graph obtained from G by attaching a new path
P : v(= vo)v1vz - vk Of length k at v. Let = be a unit eigenvector of G
corresponding to u(G). Then for any fizedi (i =0,1,..., k —1), we have
|Zuesa]| < |2Z0;| and o, 0,y <0, with equalities if only if zy, = 0.

The proof of Lemma 5 is similar to the proof of Lemma 3.3 in [6].
Lemma 6 [6]. Let v be a vertex of a connected graph G and suppose that
v1,02,...,Vs are pendant vertices of G which are adjacent to v. Let G* be

the graph obtained from G by adding anyt (1 <t < ﬂ’;—l)-) edges among
V1, V2,...,Vs. Then we have p(G) = u(G*).

3. All the unicyclic graphs in U, 4) With p(G) >n - d+2

Theorem 1. Let G € Uy ay- Ifd 23 andn—d > 5, then u(G) >n—d+2
if and only if G is one of the following unicyclic graphs:

(1) U, % (), 3<i<d; (2) Dga—fi), 258 d;
(3) V,2 509, 2<i<d.

Proof. For 3 < i < d, by Lemma 1, we have
p(U, 2 2(1)) > d(w) +1=n—d+2,
Similarly, for 2 < i < d, we have
W(Dgn—g-2(i)) >n—d+2, (Vo g-3(3) >n—d+2.
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Let G € Uipna). Suppose that G # U, % ,(4),3 < i < d; G #
Dg_4-2(®), V.24 4(), 2 < i < d. Now our aim is to show that
G <n-d+2.

In the case when max{ d(u) +d(v) |uv € E(G)} < n—d+2, by Lemma
2, we have

#(G) < max{d(u) +d(v)|uv € E(G)} <n-d+2.

So we may assume that there exists an edge e = uv of G such that d(u) +
d(v) 2 n—d+3. Let Pyyy : viva---vg41 be a path of G. We claim that
at least one of « and v belong to Pyyi. Assume, on the contrary, that
neither u nor v belongs to Pyy;. Since G is a unicyclic graph, there exist
at most two cdges of G between Pyyq and edge wv. This implies that
d(u) + d(v) £ n—d + 1, a contradiction. Thus at least one of u and v
belongs to Pyy1. We distinguish the following two cases.

Case 1. One of « and v belongs to Pyy;. Without loss of generality, we
may assume that u = v;. If N(u)NN(v) = 0, since d(u) +d(v) > n—-d+3,
it follows that G must belong to U/;, where

U, = {U:(i) GU(n‘d)l?)Sisd, s>20,t> 1}.
If N(u) N N(v) # @, since G is a unicyclic graph, it follows that [N () N
N(v)| = 1. We obtain similarly that G must belong to U U U, where
U = {Ao';s(i) eu(,,,d)|3 <i<d,s>0,t> 1},
Us {Vi(i) eUpngy|3<i<d—1,s>0,t>1}.

Case 2. Both u and v belong to Psyy. Without loss of generality,
we may assume that v = v;_; and v = v;. If N(u) N N(v) = 0, since
d(u) +d(v) 2 n - d + 3, it follows that G must belong to U,8 ,Uf;, where

Uy = {0.(i)) €EUpngl2Li<d, s>0,t>0},
Us = (Vi) eUpay|3<i<d, s>1,t>0},
Us = {UNLG)eUpnagyl3<i<d-1,s>1.t>0},
U = {U7()) EUpnagy)3<i<d,s>1,t>0},
U = {Us'g(i)GU(n,d)l:.;SiSd,le,tZO},

O,.(3), Ut (i), U, (i) and Us,(i) are shown in Figs. 4-7 respectively,
Vit(i) € U gy is the graph obtained from V2(i) by attaching s(> 1)
pendant edges to the vertex v;_1.

If N(u)NN(v) # 0, since G is a unicyclic graph, it follows that |N(z)N
N(v)| = 1. Since d(u) +d(v) > n—d+3, it follows that G must belong to
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Uy U Uy U Uy, where

U = {A,.'ls('i)GU(n'd)|3SiSd,T20,SZO},
Upo = {A%()€Ung)|3<i<d=1,s20,r20},
Uy = {82(0,7) €EUpna)|35i<d,2<5<d, 520,71 201\A,

A= {AL,_q_a(i)|3 < i <d}, Ad(i) and A% (i,5) are shown in Fig. 9
and Fig. 8 respectively.

For any G € Uy, from the definition of Uy, we have s +¢t =n — d-—2,
1<t<n-d-20<s<n—d-3. By properties of the function
f(z) =z +az"! (a > 0), we have

d(u) + m(u) < s+3+s+2:—j_-;2+2=3+3+£§%
—d+4 -
< max{3+n—$—,n—d+%—i—:—i}$n—d+2

for n —d > 5. For any other vertex w of G, we can similarly verify that
d(w) + m(w) <n—d+2
for n — d > 5. By Lemma 3, we have
u(G) < max{d(w) + m(w) |lw e V(G)} <n—-d+2.

Similarly, by Lemma 3, we can verify that when n—d > 5, u(G) £ n—d+2
holds for any G € UL, U;.
Combining the above arguments, we obtain a proof of Theorem 1.

4. The Laplacian spectral radius of unicyclic graphs in U, q)
Theorem 2. Suppose that d > 3 and n—d > 6. Then for any G € U a)
u(G) < max{p(U,24_2()))|3<i<d}.

The proof of Theorem 2 follows immediately from Theorem 1 and the
following lemmas 7 and 8.

Lemma 7. Suppose thatd >3, n—d > 5. Then
/‘(A0?11—d—2(i)) < F’(Un—od—2(i))1 for 3 S i S d;
(DG —a-2(2)) < (U, 24—2(d))-

Proof. For3<i<d, let p= y(Ao?n_d_z(i)), and x be a unit eigenvector
of A, 4—2(i) corresponding to (AL —a-2(%)). Then

LAL—g_2(D)z = pz, p=2"L(Dgn_a-2(i))z:

52



We associate with = a labeling of Ag’,_;_,(i) in which vertex v; is labeled

zjfor j=1,2,...,d+1and uis labeled Zy, where u is shown in Fig. 2.
So we have
—Ti + 2Ty — Tin) = PTy,  — Ti = Ty +3Tim) — Timg = pxi_).

From the two Equations, we have
Ti—y — Ti—2 = (3 — p)(2y — zi—y).

If z, —2i_1 =0, then z;_; = z;_5. By Lemma 5, we have z;_; = 0. From
above we get further z, = z;_y = z;_2 = z; = 0. Again by Lemma 5, we
have z = 0, a contradiction. Hence x, — z;_; # 0. Since n —d > 5, by
Lemma 1, we have p > 7.

By Courant-Fisher Theorem for Hermite matrices, we further have

w(U, —Od—2(i)) —#(Aoon a-2(?))
2 ( (Un= d— 2(8)) — L(Ao n—d— 2("))) x
27, Zi_1 — 2Ty Tig — T2 + T2,
= 2(zi—1 — Ti2)(Tu — Tiz1) + (Tim1 — Tiza)?
= (u—3)(p - 5)(xu — 7i1)? > 0.

I

For i = 2, since both A, _,_5(2) — uv; and U, %,_,(d) are bipartite
graphs, by Lemma 6, Lemma 4 and the Perron-Frobenius theor y of non-
negative matrices, we have

#(Du—a—2(2)) = #(Ao n—d—2(2) —uv1) < (U, 2% _5(d)).
This completes the proof.

Lemma 8. Suppose that d > 3, n —d > 5 and 2 < i < d. Then for
3<i<d,

l‘(vno—d—fi(i)) < #(Un—od—Q(i))
and

1V g—3(2)) < 8(U,5_5(d)).

Proof. For 3 <i < d, since V,2 ,_,(i) — uw is bipartite graphs (u and w
are shown in Fig. 3), by similar arguments to that in the proof of Lemma
7. we have

#(an-d-s(i)) = /‘(Vno—d—a(i) —uw) < #(Un-od-z(i))-

For i = 2, we obtain similarly x(V,2 ;_3(2)) < u(U, °,_,(d)). This com-
pletes the proof.
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5. Two conjectures
Concerning Theorem 2, we have further the following conjecture.

Conjecture 1. Suppose that d > 3 and n—d > 6. Then for any G € U(n,a),

W) < (U, Saa(T51+ 1),

and the equality holds if and only if G = U, %_,([§]1+1).

Denote by Uy (a, b) the unicyclic graph shown in Fig. 10, where a, b,t are
all nonnegative integers. We abbreviate Un—d—2(a,b) = U(a,b). It is easy
to see that Uy(a,0) = U;—1(e,1) fort > 1, and U, 9 _,(3) =U(i-3,d+1—1)
for3<i<d.

a b
f—/\—\ ,—M
b o o PR Pl @ -+ v o= >—0
v V2 Vi-3 Vi Vd Vd41

i ned—2
Fig. 10 Ut(a,b) Fig. 11 U(i-3,d+1—- 1)

Obviously, Conjecture 1 follows from Theorem 2 and the following Con-
jecture 2.

Conjecture 2. Suppose that n —d > 6. Ifd >3 is odd, then
p(U(a, b)) < p(U(a+1,b—1)) for b—a23,
w(U(a,b)) < p(U(a—1,b+1)) for a—b21

And if d > 4 is even, then
p(U(a,b)) < p(U(a+1,b—1)) for b—a2=4,
p(U(a,b)) < p(U(a—1,b+1)) for a—b=0.

Next we show that some particular cases of Conjecture 2 are true, and
from these particular cases and Theorem 2 we prove that Conjecture 1 is
true for 3 <d < 6.

Lemma 9. Let v be a vertez of a connected graph G, and suppose that
a path of length k is attached to G by its end vertez at v to form Gi. In
particular, Go = G. Then

B(Gr) = (z — 2)p(Gi—1) — $(Gk-2), (k=2).
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The proof of lemma 8 can be obtained easily by expansion of det(z] —
L(Gk)).
Lemma 10. Ifd > 5 is odd, a = [g] —3,andn—d>5, then
wU(e,a+3)) < p(U(a +1,a+2)),
uU(a+3,0)) < p(U(a+2,a+1)) < p(U(a +1,a + 2)).

Proof. By the direct calculation, we have
$(Un—_5(0,1)) = z(z - 2)(z = 1)""%[z° — (n+3)z? + (4n— 2)z — 2n)
=z(z — 1)" %[z* — (n +5)2® + (6n + 4)z% — (10n — d)z + 4],
$(Un-6(1,1)) = z(z—2)(x—1)""[z* ~ (n+4)x*+(6n—4)22— (8n—12)x+2n).
In the following, let t = n — d — 2. Then ¢ > 3. By Lemma 9, we have

#(U(a,a+3)) = (z - 2)¢(U(a,a + 2)) — ¢(U(a,a + 1)),

¢(Ula+1,a+2)) =(z-2)¢(U(a,a+2)) — p(U(a — 1.a + 2)).
Thus we have
#(U(a,a+3))—od(U(a+1,a+2)) =d(U(a-1,a+2)) — ¢(U(a,a + 1)).
Repeating above procedure, we have

d(U(a,a+3))—d(U(a +1,a+2))
= ¢(U(a-1,a6+2))-d(U(a,a+1)) =---=¢(U(0,3)) - (U(1,2))
= (2-2)9(U(0,2)) - 6(U(0,1)) - [(= — 2)6(U(1,1)) — (U (1.0))]
= (z-2)[(x-2)8(U(0,1)) — $(U(0,0))] — (U(0,1))

o}z —2)(x —~ 1) 2 — (¢ + T)2? + (3t + 14)z — 2t + 12

z?(z - 2)(z — 1) Ya(z —t — 4)(z — 3) + 2z — 2t + 12].
It follows that when = > u(U(a,a + 3)) > t +4,

#(U(a,a+3)) > ¢(U(a+1,a+2)).

Therefore u(U(a.a + 3)) < p(U(a + 1,a + 2)).

By similar reasoning, we have when z > u(U(a + 3,a)) > t + 4,
¢(U(a +3,0)) —d(U(a+2,a+1)) = ¢(U(3,0)) — ¢(U(2.1))
a?(x — 2)(x = 1)*7Y(t + 1)z — 7(t + )22 + (3t + 14)z — 6t — 8]
z*(z — 2)(x — 1) (¢ + 1)a(z — 1)(x — 6) + (Tt + 8)z — 6t — 8] > 0,



and when z > u(U(a +2,a+1)) >t +4
d(U(a+2,a+1)) —oU(a+1,a+2)) =$U(1,0)) — $(U(0,1))
=tz?(z — 2)%(z —1)"" > 0.
Therefore
p(Ula +3,a)) < p(U(a+2,a+1)) <pU(a+1,a+2)).

This completes the proof.

Lemma 11. Ifd > 6 is even, a = [$] — 3 and n —d > 6, then
p(U(a,a+4)) <p(U(a+1,a+3)),
p(U(a+4,a)) < p(U(a+3,a+1)) < p(U(a+2,a+2)) < p(U(a+1,a+3)).

Proof. Let t = n —d — 2. Then t > 4. By similar arguments to that in
the proof of Lemma 10, we have when = > u(U(a,a +4)) >t +4,

$(U(a,a+4)) - o(U(a +1,a+3)) = 6(U(0,4)) - #(U(1,3))
= 22(z — 2)(z — 1)*"[z* — (¢ + 9)z® + (5¢ + 27)2? — (7t 4 31)z + 4t + 12]
=22(z - 2)(z— 1) [z?(z - 5)(z -t —4) + 7z% — (Tt 4 31)z + 4t +12] > 0,
when = > p(U(a + 4,a)) >t +4,

$(U(a+4,0)) —d(U(a+3,a+1)) = (U(4,0)) - ¢(UG,1))

= 22(z—2)(z—1)" " [(t+1)2* ~9(t+1)2®+(26t+27)x® — (27t - 31 )+ 8t - 12]
= 2?(z—2)(z—1)"" (t+ 1)z?(z—3)(z—6)+(8t+9)z®— (27t —31)z+8t — 12
>0,
and when z > u(U(a + 3,2 + 1)) >t + 4,

#(U(a+3,a+1)) —p(U(a+2,a+2)) = (U(2,0)) — $(U(1,1))
= (t+1)2%(z—2)(z—4)(z—1)* > 0.

Therefore
w(Ua,a+4)) <plU(a+1l,a+ 3)),

p(U(a +4,a)) < p(U(a+3,a+1)) < p(Ula +2,a +2)).

Similarly, we have

o(U(a+2,a+2)) —¢(U(a+1,a+3))=¢U(1,1)) - $(U(0,2))
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= —z%(z—2)(x—1)""Y (22 - (t+5)z +4).

Let F(z) = —(2? — (t + 5)z + 4). It is easy to see that F(z) is decreasing
strictly on the interval [t +4, t+4 + 't_-%.'i]’ and FP(t+4+ H_ia) >0fort >4
So we have

d(U@+2,a+2))-¢(U(a+1,a+3)) >0

on the interval [t +4, ¢ +4 + —t{-g] Moreover, by Lemma 1 and 3, we have

3
t+4<pUle+2,a+2),uUla+la+3) St+d+ ——.

Thus
nU(a+2,a+2)) <p(U(a+1,a+3)).

This completes the proof.

Theorem 3. Suppose that 3 <d <6, n—d > 6. Then for any G € Uy, q),

d
#(G) < pUnZa—o([51+ 1)),
and the equality holds if and only if G = U, %,_,([%] +1).

Proof. For d = 3, by Theorem 2 we have nothing to prove. For d = 4, by
similar arguments to that in the proof of Lemma 11, we have

#(Un Za-2(4)) < (U, 24-2(3)).
Then Theorem 3 follows from Theorem 2. For d = 5,6, Theorem 3 follows
from Theorem 2, Lemina 10 and Lemma 11 immediately, This completes
the proof.
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