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ABSTRACT. In this paper, we give sufficient conditions for the ex-
istence of kernels by monochromatic directed paths (m.d.p.) in di-
graphs with quasi-transitive colorings. Let D be an m-colored di-
graph. We prove that if every chromatic class of D is quasi-transitive,
every cycle is quasi-transitive in the rim and D does not contain poly-
chromatic triangles, then D has a kernel by m.d.p. The same result
is valid if we preserve the first two conditions before and replace
the last one by: there exists £k > 4 such that every E"k is quasi-
monochromatic and every 64 (3 £! £ k—1) is not polychromatic.
Finally, we also show that if every chromatic class of D is quasi-
transitive, every cycle in D induc_ef a quasi-transitive digraph and D
does not contain polychromatic C3, then D has a kernel by m.d.p.
Some corollaries are obtained for the existence of kernels by m.d.p.
in m-colored tournaments.

1. INTRODUCTION

In this paper we study the existence of kernels by monochromatic di-
rected paths (m.d.p.) in digraphs with restricted colorings of its arcs. Spe-
cially, we focus to the so called quasi-transitive colorings (to be defined in
the next section). The research on kernels by m.d.p. goes back to the clas-
sical paper of Sands, Sauer and Woodrow (see [10]) who proved that every
2-colored digraph has a kernel by m.d.p. (particularly, 2-colored tourna-
ments have this property). They also posed the following problem.

Problem 1. Let T be a 3-colored tournament not containing polychromatic
directed triangles. Must T contain a kernel by m.d.p.?
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In 1988, Shen proved that m-colored tournaments without polychromatic
triangles (directed triangles and transitive subtournaments of order 3) have
a kernel by m.d.p. It is also proved that if m > 5, the condition on T' not
containing polychromatic triangles cannot be dropped (see [11]). The case
m = 4 was answered in {7]. In both papers, infinite families of tournaments
of order n are constructed showing that the condition is best possible for
m > 4. For m = 3, the problem is still open. Other results concerning
Problem 1 can be found in [3], [8] and [9], and more recently in [6].

It is of particular interest to find sufficient conditions to the existence of
kernels by monochromatic directed paths (m.d.p.) in general digraphs, or at
least in broader classes of them given the well-known difficulty of the prob-
lem. For instance, in [4] and [5] it was considered the family of m-colored
digraphs resulting from the deletion of a single arc of some m-colored tour-
nament with n vertices. They give conditions on the chromaticity of short
directed cycles and on the closure of the digraphs to prove the existence of
a kernel by m.d.p and in some cases, to show that the digraphs in question
are kernel-perfect.

As mentioned before, we will deal with digraphs with quasi-transitive
colorings. Let D be an m-colored digraph. We prove that if every chro-
matic class of D is quasi-transitive, every cycle is quasi-transitive in the
rim and D does not contain polychromatic triangles, then D has a kernel
by m.d.p. The same result is valid if we preserve the first two conditio_r)ls
before and replace the last one by:_t,here exists k& > 4 such that every Cy
is quasi-monochromatic and every C; (3 < [ < k—1) is not polychromatic.
Finally, we also show that if every chromatic class of D is quasi-transitive,
every cycle in D _induces a quasi-transitive digraph and D does not contain
polychromatic C3, then D has a kernel by m.d.p. Some corollaries are
obtained for the existence of kernels by m.d.p. in m-colored tournaments.

2. PRELIMINARIES

Let D = (V, A) be a finite digraph, where V and A denote the sets of
vertices and arcs of D respectively. For @ # S C V(D) (resp. @ # S C
A(D)) we denote by D|[S] the induced (resp. arc-induced) subdigraph of D
by the subset S. An arc (u,v) € A(D) is asymmetrical (resp. symmetrical)
if (v,u) ¢ A(D) (resp. (v,u) € A(D)). A symmetrical arc (u,v) is denoted
by [u,v]. A digraph D is said to be asymmetrical (resp. symmetrical)
if every arc of D is asymmetrical (resp. symmetrical). We define the
asymmetrical (resp. symmetrical) part of D, denoted by Asym(D) (resp.
Sym(D)), as the spanning subdigraph of D whose arcs are the asymmetrical
(resp. symmetrical) arcs of D. A digraph D is asymmetrical if Asym(D) =
D. A semicomplete digraph D has no pair of nonadjacent vertices.
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A digraph D is said to be m-colored if the arcs of D are colored with m
colors. Given u,v € V(D), a directed path from u to v of D is monochro-
matic if all its arcs have the same color. Directed paths and monochromatic
directed paths from u to v are denoted by u ~ v and u ~~,,, v, respectively.
A subdigraph D’ of D is called quasi-monochromatic if with at most one
exception all of its arcs are colored alike. D' is called polychromatic if its
arcs are colored with at least three colors.

A nonempty set S C V(D) is an absorbent set by monochromatic directed
paths (m.d.p.) if for every vertex u € V(D) — S there exists v € § such
that u ~,, v. A kernel K of D is an independent set of vertices so that for
every u € V(D) — K there exists (u,v) € A(D), where v € K. A digraph
D is kernel-perfect if every induced subdigraph of D has a kernel.

We will use the following well-known result.

Theorem 1 ([2], Théoréme 4.2). If every directed cycle of a digraph D has
a symmetrical arc, then D is kernel-perfect.

Let D be an m-colored digraph. A set K C V(D) is called a kernel by
m.d.p. if
(i) for every u,v € K there is no m.d.p between u and v, and
(ii) for every = € V(D) — K there exists y € K such that z ~, y.
If D = (V, A) is an m-colored digraph, then the closure of D, denoted
by €(D), is the m-colored digraph defined by

V(€(D)) = V(D) and
A(€(D)) = A(D) U {(u,v) of color i : Ju ~, v of color i in D}.

Remark 1. (i) For every digraph D, €(D) is isomorphic to €(€(D)).
(i) D has a kernel by m.d.p. if and only if €(D) has a kernel.

A digraph D is called quasi-transitive if whenever distinct vertices z,y, z €
V(D) such that (z,y) € A(D) and (y,2) € A(D), there exists at least
(z,2) € A(D) or (2,z) € A(D). A directed cycle E')k = (up, U1, .., Uk, Ug) Of
D (k > 2) is quasi-transitive in the rim if for every i =0, 1, ..., k, there ex-
ists (us, uiy2) € A(D) or (uiy2,u;) € A(D), where indices are taken modulo
k+1.

A tournament with n vertices is an orientation of the complete graph X,
Observe that a tournament T is an asymmetrical quasi-transitive digraph
and every cycle cgr'ltajned in T is trivially quasi-transitive in the rim.

We denote by C3 and T'T; the directed triangle and the transitive tour-
nament with three vertices, respectively. We will simply call both of them
triangles.

Let D be an m-colored digraph. A chromatic class of D is the set of
arcs of a same color. We say that a chromatic class S is quasi-transitive
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if D[S] is a quasi-transitive digraph. Abusing the notation, we will denote
the arc-induced subdigraph by a chromatic class with its color.

Proposition 1 ([1], Proposition 3.1). Let D be a quasi-transitive digraph.
Suppose that P = (z1,Z2, ..., Tk) is @ minimal directed path 1 ~ zk. Then
D|V(P)] is a semicomplete digraph and (z;,z:) € A(D) for every j > i+1,
unless k = 4, in which case the arc between x, and z; may be absent.

Corollary 1 ([1), Corollary 3.2). If a quasi-transitive digraph D has a
directed path z ~ y but (z,y) ¢ A(D), then either (y,z) € A(D), or there
exist vertices u,v € V(D) — {z,y} such that (z,u,v,y) end (y,u,v,z) are
directed paths in D.

As immediate consequence of this corollary, we have the following

Corollary 2. If a quasi-transitive digraph D has a directed path  ~ y but
there does not ezist a directed path y ~» z in D, then (z,y) € A(D).

Using this result, the next lemma directly follows.

Lemma 1. Let D be an m- colored digraph such that every chromatzc class
is quasi-transitive. If c « 18 a a directed cycle in Asym(€(D)), then c K 18
a directed cycle in Asym(D).

3. RESULTS

We will need a previous lemma in order to prove the following theorems
It is useful to point out that if D is an m-colored digraph and C k is an

asymmetrical directed cycle in €(D), then there is a vertex of c r where
the cycle changes the color of its arcs.

Lemma 2. Let D be an m-colored digraph such that
(i) every cycle is quasi-iransitive in the rim and
(i) D does not contain polychromatic triangles.

Suppose that k > 3, 6;: = (up,U1,.--,Uk—1,Up) 8 an asymmetrical
directed cycle in C(D) of minimum length and for some i € {0,1,...,k—1},
u; is a vertex where Ck changes of color B to color R. Then

a) (wiz1,%i-1) ¢ A(D) and (ui—1,ui1) € A(D) (the indices are taken
modulo k) and
b) there exists ui+1 ~»m ui—1 of color G different from B and R.

Proof. Suppose that there exists an asymmetncal directed cycle Ck =
(uo, U, vey Uk —1, Ug) in &(D). By Lemma 1, c & is a directed cycle of D We
fix C &, an asymmetrical directed cycle of minimum length. Since Ck is
asymmetrical in €(D), there exists a change of color of its arcs in one vertex,
that is, there exists i € {0, 1, ...,k — 1} such that (u;_;,;) is colored B and



(ui,ui41) is colored R. By condition (i), there exists (u;—1,ui+1) € A(D)
or (ui41,4i-1) € A(D).

Notice that (u; ¢, u;—1) € A(D). If it is not the case, (u;—1, wi, ¥iy1, Ui1)
is a directed triangle and, by condition (ii), (%i4+1,u;—1) is colored B or R.
But then [u;, ui+1] € A(€(D)) or [ui—1,u;] € A(€(D)), respectively, a con-
tradiction to the asymmetry of 6k in €(D). Therefore, (u;-1,ui+1) € A(D)
and part a) is proven.

Since E')k is of minimum length, there exists u;+1 ~+m, ui—1 of color
G. This color is different from B and R, otherwise, if G = B or G = R,
then [u;_1,u;] € A(€(D)) or [ui,ui-1] € A(€(D)), a contradiction to the
asymmetry of 6k in €(D). O

Theorem 2. Let D be an m-colored digraph such that

(i) every chromatic class is quasi-transitive,

(it) every cycle is quasi-transitive in the rim and
(i) D does not contain polychromatic triangles.
Then D has a kernel by m.d.p.

Proof. Let €(D) be the closure of D. We will prove that every directed
cycle of €(D) has a symmetrical arc and thus D has a kernel by m.d.p. in
virtue of Theorem 1 and Remark 1(ii). We proceed by contradiction.

Suppose that there exists an asymmetrical directed cycle in €(D), de-
noted by E"k = (ug, U1, ...y Uk—1,Up)- We fix E')k, an asymmetrical directed
cycle of minimum length in €(D). By Lemma 1, 6k is a directed cycle of D.
Since D satisfies conditions (ii) and (iii), we can apply the results of Lemma
2. Let u; € V(Z')k) be a vertex where C changes color, that is, (u;—1,u;)
is colored B and (u;j,ui+1) is colored R. Then (ui41,ui—1) ¢ A(D) and
(ui-1,ui+1) € A(D), and there exists u;41 ~,, uj_, of color G different
from B and R. We observe that u; does not belong to the path w4 ~ ui—1
(if u; = wu;, where u; is a vertex of the path u;4, ~» u;_;, then we have
that u; ~» u;_; and therefore [u;—1,u;] € A(€(D)), a contradiction to the
asymmetry of 6k in €(D)).

The arc (ui—1,ui4+1) € A(D) is not colored G, because otherwise, we
have a 3-colored TT3 & D[u;i—1,u:, ui+1]. Thus, (ui—1,ui4+1) is colored B
or R. The chromatic class G does not contain the arc (u;—1,u;+;). Since G
is quasi-transitive, using Corollary 1, there exist vertices vx,v; € V(G) —
{ui—1,uis1} (k #1) such that (u;y1, vk, v, ui-1) and (w1, Vk, Uy, Uip1) are
directed paths in G.

The cycle (u;, %it+1, Uk, Vi, ¥i—1, ui) is quasi-transitive in the rim and then
there exists (u;, vx) € A(D) or (vg,u;) € A(D). We have two cases:

(1) If (ui,vx) € A(D), then it is not colored G. Otherwise, there ex-
ists the directed path (u;, vk, v, ui—1) colored G which implies that
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[ui—1,us) € A(€(D)), a contradiction to the asymmetry of Z"k in

_€(D). But then (u;,vx) is colored B and R at the same time, since
Dlu;, i1, ve] = TT3 and Dlui, vk, ui-1) = TT3 satisfy condition
(iii), a contradiction.

(2) If (vx,u;) € A(D), then it is neither colored G, since otherwise
[us,ui41] € A(C(D)), once again a contradiction to the asymmetry
of 6;; in €(D). But then (v, Ef) is colored B and R at the same
time, since (vk, ui, i41,0k) = C3 and Dlu;, vk, ui—1] = TT3 satisfy
condition (iii), a contradiction.

O

Corollary 3. Let T be an m-colored tournament such that

(i) every chromatic class is quasi-transitive and
(i) T does not contain polychromatic triangles.

Then T has a kernel by m.d.p.

Theorem 3. Let D be an m-colored digraph such that
(i) every chromatic class is quasi-transitive,
(i) every cycle is quasi-transitive in th_c; rim and
(i4) there exists k > 4 such that every Cx is quasi-monochromatic and
every Z')l (3 £ 1 < k—1) is not polychromatic.
Then D has a kernel by m.d.p.

Proof. We start in the same way as in the proo_f; of Theorem 2. Suppose
that there exists an asymmetrical directed cycle C'i = (uo, u1, ..., hk—1, ug)
in €¢(D). We fix 6k, an asymmetrical directed cycle of minimum length in
¢(D). By Lemma 1, _6k is a directed cycle of D. Let u; € V(-C_"k) be a
vertex where the cycle changes from color B to color R, that is, (u5-1,u:)
is colored B and (u;,ui41) is colored R. Since D satisfies conditions (ii)
and (iii) of the Theorem, we can apply the results of Lemma 2 and we
have that (ui_1,uis1) € A(D) and (ui41,ui-1) ¢ A(D), and there exists
Ui41 ~*m ui—1 of color G different from B and R. As in the proof before, u;
does not belong to the path u;y) ~ u;—1. We denote w1 ~m Ui-1 by the
m.d.p. P = (Wit1,1,V2, ..., Vs, ui—1) of color G (¢ > 1) and suppose that P
is of minimum length. Consider the following two cases:

Case 1. (ui—1,ui+1) € A(D) is not colored G.

By condition (ii), chromatic class G is quasi-transitive and since P is of
minimum length, Corollary 1 can be applied, that is, P = (i1, V1, V2, %im1),
and (ui41,v1, V2, i—1) and (uj_1,v1, V2, Ui+1) are directed paths in G. Then,
(%, Uig1, V1, V2, Uiz 1, Ui) = 65 is polychromatic. If £ > 5, we arrive to a



contradiction with condition (iii). So, we only have to check the case when
k=4.

Claim 1.1. (v1,u;) € A(D) and it is colored R.

If (g,;,vl) € A(D), then (uj,v1,v2,ui—1,u;) & 64. By condition (iii),
every C4 is quasi-monochromatic in D and therefore (u;,v;) is colored G.
Thi_s) implies that [u;—;,u;] € A(€(D)), a contradiction to the asymmetry
of Ck in €(D).

Then (v1,u;) € A(D) and we have that (vy,u;, u;41,v1) & 63. Observe
that (v, u;) cannot be colored with a color different from G and R (other-
wise (v, u;, Uipr,v;) = 63 is polychromatic, a contradiction to condition
(iii) of the Theorem). The arc (v1,u;) is not colored G, otherwise [u;, 1;41]
€ A(€(D)), a contradiction to the asymmetry of Cj in €(D). Therefore
(v1,u;) is colored R.

Claim 1 is proven.

Thus, we have to check whether (u;,v2) € A(D) or (ve,u;) € A(D).
Claim 1.2. (u;,v2) € A(D) and it is colored B.

If (vg,u;) € A(D), then (u;,uiy1,v1,v2,u;) & 64. By condition (iii),
every 64 is quasi-monochromatic in D and therefore (vg, ;) is colored G.
This implies that [u;,u;+1] € A(€(D)), a contradiction to the asymmetry
of Cg in (D).

Then (u;,v2) € A(D) and we have that (vq,u;—1,u;,v0) & 63. Observe
that (us,v2) cannot be colored with a color different from G and B (other-
wise (ve, wi—1,uqi, v2) = 63 is polychromatic, a contradiction to condition
(iii) of the Theorem). The arc (u;,v2) is not colored G, otherwise [u;i—1,u;]
€ A(€(D)), a contradiction to the asymmetry of 6,; in €(D). Therefore
(u:,v2) is colored B.

Claim 2 is proven.

By Claims 1.1 and 1.2, (u;,v2, %it1,v1,u;) = 64 is polychromatic, a
contradiction to condition (iii} of the Theorem.
Case 2. (ui—1,ui+1) € A(D) is colored G.

Recalling that P is of minimum length, we can apply Proposition 1 and
then D[V(P)] is a semicomplete digraph colored G, (u;—1,v;) € A(D) for
J=12,...,t—1, (Um,v;) € A(D), wheret >m > j+landj =1,2,...,t-2,
and (vj,uiy1) € A(D) for every j = 2,3, ...,t — 1. We have the cycle

—
(Uim1y Uig1, V1, V2, ey Vpy Uic1) = Clyga
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and by condition (iii), t > k — 2.

Using condition (ii) of the Theorem, if there exists & € {1, ..,t —1} such
that (t;,ve) € A(D), then (ui,vat1) € A(D) or (vat1,u:) € A(D). We
analyze the following cases.

(2.1)

(2.2)

(2.3)

(2.3.1)
a)

If there is no 8 € {1,2,...,t} such that (vg,u;) € A(D), then for
every o € {1,2,...,t} we have that (u;,v,) € A(D) and all of them
are not colored G (note that if there exits one of them colored G,
then [u;—1, 4] € A(€(D)), & contradiction). Consider the cycle

—
C= (ui7 Uit1, U1y U2y 000y Uty Ui-1, u‘l)'

This cycle is of length [ = t+3 > k. Since (s, va) € A(D) for every
a € {1,2, ..., t}, there exists the cycle

—_
C'= (’U.,', Vp—(k—3)) Vt—(k=2)» -+ Uty Ui—1, ui)

of length k which is not quasi-monochromatic, a contradiction to
condition (iii).
If (Vat1,%) € A(D), then by condition (i), (va,u:) € A(D) or
(ui,0) € A(D). If there is no 8 € {1,2,...,¢} such that (ui,vg) €
A(D), then for every a € {1,2,...,t} we have that (va, ;) € A(D).
All these arcs are not colored G, otherwise we obtain the contra-
diction [ui,ui+1) € A(€(D)). We proceed similarly as in case (2.1).
Let
a =min{j € {1,2,...,t} : (vj,u:) € A(D)}.
Observe that in virtue of condition (ii), (u;, v1) € A(D) or (v1,u;) €
A(D), and therefore o does exist. Moreover, for every B < a,
(ui,vg) € A(D). We claim that o < k — 2. If it is not the case,
a>k—2and
—
(Uiy Vo (k—2)1 Vo (k—3)s -+ Vas i) = Ci,
(if @ = k — 2, then vq_(k—2) = %i+1) Which is not quasi-monochro-
matic, a contradiction to condition (iii) (recall that (%, Vam(k—2))
and (vq, u;) are not colored G because otherwise, [u;—1,u;] € A(C(D))
or [u, uit1] € A(C(D)), a contradiction to the asymmetry of of C
in €(D)).
Let
B = ma.x{J € {1,2,...,t} : (u,-,'u,-) € A(D)}

With a similar argument as before, for every o > 8, (va,u;) € A(D)
and 8 >t — (k — 3). Therefore:

If 8 > a, then

if B—a>k-—2, then

—_—
(Ui, Vg, VB—(k—3)s VB—(k—2)s +++1 VB—1, Vo i) = C
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is not quasi-monochromatic, a contradiction to condition (iii) (once
more recall that (u;,vg) and (va,u;) are not colored G), and
b) if 3 —a <k —3, then

—_—
(uia Uy Unt1y o0y Uy o0y UBy UB415 -y VS, ui) 2 Chk

is not quasi-monochromatic for 6 — vy = k£ — 2, a contradiction to
condition (iii) (again recall that (u;,v,) and (vs,u;) are not colored

G).
(2.3.2) If B < @, then 8 = @ — 1 by the definitions of & and 3. Thus
Y
(%iy Vyy ooy U8y Vary ooy Vs, 13) 2 C'
is not quasi-monochromatic for § — v = k — 2, a contradiction to

condition (iii) of the Theorem.
a

In a sense, this theorem generalizes Theorem 8 of [9] for a broader class
of m-colored digraphs, those with quasi-transitive chromatic classes and for
which every cycle is quasi-transitive in the rim.

Proposition 2. Let D be an asymmetrical m-colored digraph such that
(i) every chromatic class is quasi-transitive and
. =
(it) D does not contain polychromatic C 3.
If (u,v) € A(D) is asymmetrical in €(D), then there is no 63 in D
containing (u,v).
Proof. Suppose that (u,v) € A(D) is asymmetrlcal in €(D) and there ex-

ists a 03 in D containing (u,v). Let C,; = (u,v, w,u). By condition (ii),
two of the arcs are colored B. Since B is quasi- transn:we and D is asym-

metrical, the remaining arc is colored B. Therefore C3 = (u,v,w,u) is
monochromatic and so, symmetrical in €(D), which is a contradiction. O

Theorem 4. Let D be an asymmetrical m-colored digraph such that
(i) every chromatic class is quasi-transitive,
(i) every cycle induces a quasi-transitive digraph and
(i) D does not contain polychromatic 63.
Then D has a kernel by m.d.p.

Proof. By contradiction, suppose that there exists an asymmetrlcal directed
cycle Ck = (up,u1, ..., Uk—1,up) in €(D). By Lemma 1, Ck is a directed
cycle of D. Since 8k induces a quasi-transitive digraph in D, there exists
(_’uo,ug) € A(D) or (ug,up) € A(D). By Proposition 2, there does not exist
C'3 in D containing (u;,ui4+1) for every i = 0,1,...,k (indices are taken
modulo k+1). Then (ug,u0) ¢ A(D), since otherwise (ug, u;, u2, up) = 6,,
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in D, a contradiction. Therefore, (ug,u2) € A(D). In the same manner,
(uo,u3) € A(D). If (us,uo) € A(D), then (uo,u2,u3,up) would be a di-
rected triangle, once again a contradiction. We continue this procedure
to obtain that (uo,u;) € A(D) for every j = 2,3,..,k — 1. But then
(ug, k-1, Uk, o) = 63 in D, a contradiction to Proposition 2. 0O

The following corollary solves Problem 1 in the special case when the
m-colored tournaments have quasi-transitive chromatic classes for every
color.

Corollary 4. Let T be an m-colored tournament such that
(i) every chromatic class is quasi—tmns_z’)tz‘ve,
(it) D does not contain polychromatic C3.
Then T has a kernel by m.d.p.

We conclude with some remarks:

(1) Condition (i) in Theorems 2, 3 and 4 (every chromatic class is
quasi-transitive) cannot be removed. The already mentioned coun-
terexamples of (7] and [11] still remain valid.

(2) We believe that condition (ii) in Theorems 2 and 3 (every cycle is
quasi-transitive in the rim) could be replaced by another one. In
particular, if one can prove Theorem 3 omitting this condition, a
direct generalization of Theorem 8 of [9] will be obtained.
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