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Abstract

The determination of the zero-capacity of a noisy channel have
inspired researches of the independence number of the strong product
of odd cycles. The independence number for two infinite families of
the strong product of three odd cycles is considered in this paper. In
particular, we present the independence number of Cy ® Cy ® Cax 41
and an upper bound on the independence number of C;3 K C;3 ®
Co2k+1. The results are partially obtained by a computer search.
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1 Introduction and preliminaries

The Shannon capacity is an important information theoretical parameter
because it represents the effective size of an alphabet in a communication
model represented by a graph. The study of this parameter was introduced
by Shannon in [11]. It turns out that the solution of the problem requires
the determination of the independence number of product of graphs which
contain odd cycles (1, 2, 5, 6, 10, 12, 14].

It may be interesting to note that the capacity of Cs was studied already
by Shannon in 1956 and was determined only in 1979 by Lovész [8]. Fur-
thermore, for C7, or more generally, for the cycle graph C,, with n odd, the
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Shannon capacity is still unknown. Lovész in [8] defined the graph invariant
known as Lovész number that is an upper bound on the Shannon capacity.
In order to establish the lower bound on the Shannon capacity of a graph,
one may search for the independence number of the strong product of its
copies. This approach has been used in [4, 13] where large independent sets
in the strong product of four 7-cycles where found. This results improved
the best known lower bound for the Shannon capacity of C7.

The strong product of graphs G and H is the graph GRH with vertex set
G x H and (1, 22)(%1,¥2) € E(GR H) whenever z1y; € E(G) and 22 = y2
or zoys € E(H) and 71 = y1 or ;1y1 € E(G) and zpy2 € E(H). The
strong product is commutative and associative in an obvious way, having
the trivial graph as a unit. Let a = (a1,a2) € G ® H. The graph induced
on the set H, = {(a1,y) | y € H} is the H-layer through a. The graph
induced on the.set G, = {(z,az) | z € G} is the G-layer through a. If G
and H are cycles, then a H-layer is called a row and a G-layer a column.

The independence numbers of the strong product of even cycles are well
known. The problem is much more involved for cycles with odd length.
Hales (5], as well as Sonnemann and Krafft {12}, discovered the explicit
formula for the independence numbers of the strong product of two odd
cycles.

Theorem 1 [5,12] For j,k €N, >k
&(Caj41 B Coryr) = jk + | £].

The independence numbers of products of more then two odd cycles are
still unknown in most cases. Even for the product of three cycles there are
several products with unknown independence numbers.

The next lemma can be used to bound independent size growth in the
strong products of cycles.

Lemma 2 [5] For any graph G and k > 2,
(G R Cai41) < ka(G) + l“—f-)J .

The next lemma shows that the largest independent set of Car41 B G
can be extended to Cpx43RG if the upper bound from Lemma 2 is reached.

Lemma 3 [12] For any graph G and any k €N,

2k +3
2k+1

213 0@ i Consa BG) = | 2206

(i) &(Cak43®G) > [ o(Cok+1 B G)]

(i) (Cox43 B G) = |
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The following result is also well-known.

Lemma 4 5] For any graph G and n € N,
a(GR K,) = a(G).

This paper considers the independence numbers of two infinite families
of graphs. Section 2 deals with the independence number of C:RCRCoty 1,
while Section 3 presents the upper bound on the independence number of
C13®C 13K Cs 1. The results are partially obtained by a computer search.

2 C;RCoR Chryy

It is known that the independence number of C7 W Cy ® Cop 41 is between
13k + 5 and 13k + 6, c.f. [13], where it was also conjectured that the
independence numbers for C7 ® Cg ® Cyy4; reach the upper bound if k is
large enough. This is indeed true, as follows from the main result of this
section:

Theorem 5 Let k> 4. Then
a(CrHC X C2k+1) =13k + 6.
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Figure 1: 58 independent vertices of Cy Cy B Cy.

Proof.

We found an independent set of C7RCyRCy with cardinality 58 depicted
in Fig. 1. Note that (C; ® Cp)-layers are presented in a clockwise order
- the first row from left to right and then in the second row from right to
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left. Since a(C7 ® Cy) = 13 by Theorem 1, the assertion now follows from
Lemma 3 (ii). O

In the rest of the section we report on the computer search that enabled
the independent set from Fig. 1. The idea is introduced in [7] in a more
general framework, but for our purposes the following description will be
sufficient.

From Lemma 4 it follows that a(C; B Cy B K3) = a(C7; B Cg) = 13. In
other words, two consecutive (C7 ® Cg)-layers can have together at most
13 independent vertices.

We therefore define a directed graph D as follows.

In the set Sz are all independent sets of C7 ®Cy ® K with 13 vertices
such that a (C7 ® Cy)-layer admits either 6 or 7 independent vertices. A
vertex u = ujug of Sz, is therefore composed of components u; and us,
such that u; pdssesses 6 or 7 vertices and |u1| + |uz| = |u] = 13.

Analogously we define the set Sg ¢ composed of all independent sets of
C; R Cy ® K, with 12 vertices, such that both (C7 B Cq)-layers admits
exactly 6 independent vertices. More formally, w = wyus € Se¢ if an only
if jw;] = 6 and |wy| + |w2| = |lw| =12.

We then set V(D) = S7,6 8} Se,e.

Let » = uyug and v = vyv2 be vertices of S76.

We make an arc from u to v in D if and only if ug = v;. Note that if
uv is an arc in D, then ujuzv; induce an independent set in C; KCo R P .

Let u = ujup € S7,6 and w = wywy € Sg 6. We make an arc from w to
u in D if and only if ws = u; and we make an arc from u to w in D if and
only if ug = w;. Apparently, if uw (resp. wu) is an arc in D, then u usw;
(resp. wiwaug) induce an independent set in C,RCyRP; .

The next proposition was then the basis for our computer search.

Proposition 6 C7; R Cy ® Cyiy1 admits an independent set with 13k + 6
independent vertices if and only if D admits a closed directed walk of length
2k+1.

Since the cardinality of Se 6 is too large, we first constructed (by using
a computer program) the subgraph D’ of D induced by S76. The graph
consists of 30702672 vertices with a maximum output degree of 96. Into
the set of vertices of D’ we then add a vertex w = wyws of Sgg if w; = ug
and wp = vy, for u = wyuy € S76 and v = vyvy € S76. For the obtained
subgraph of D induced by {w} U S7¢ we applied the breadth-first search
algorithm in order to find a cycle of minimum length.

The computations were performed on various computers, mainly in Win-
dows environment, but some also using Linux Ubuntu operating system.
The hardware used for computations was also diverse: Intel i7 930 based
personal computer, Intel Q9400 based machine and a computer cluster
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(with up to 24 processor cores). All computations were carried out during
three months. The development environment and class libraries Lazarus
(version of pascal language) were used to write all necessary programs.

3 Ci3XCi3X®¥Cori1

Note first that a(Cyj3 ® C13) = 39 by Theorem 1. The existence of an
independent set with 247 vertices of Cy3 ® Cy3 K C13 was proven in [2].
Moreover, recently it was established that the independent set with more
than 247 vertices cannot exist in this graph [3]. From Lemma 2 and Lemma
3 then it follows that the independence number of C,3RC)3 RCokt1, k= 7,
is between 38k + 19 and 39k + 19. We will show that the upper bound can

be substantially reduced.
All operations in the sequel are performed modulo 13. We also identify

the vertices of C)3 with the elements of Z,3.
We first define the following sets for i € Z;3.

Xi = {(48 + 2k + 2,k) | k € Zy3},
Y: = {(4i + 11k + 6,k) | k € Z)3},
Z; = {(2i + 6k +9,k) | k € Z3},
Wi = {(2i + Tk + 8,k) | k € Zy3}.

Note that the the vertices in the above sets are independent in C;38C}3.
We next define for i € Z;3:

5?:' =X 1 UX;U Xy,

Y :=Yi_,uY; UYi,
Z;:=Zi\UZiUZiy,
ﬁVi = Wi  UW; U Wi,

Proposition 7 Let S be an independent set with 39 vertices of C13®C3.
Then there exists i € Zy3 such that S equals one of X;, Yi, Z;, or W,.

Proof. It is easy to establish that 5(\, , ]7,~, Z-, and IV, are independent sets
of cardinality 39 in C 3 B Cj3.

Let S be an independent set of Cy3 ®C3 with cardinality 39. Note first
that by Lemma 4 every row and column of Cy3 ® Cy3 has to have exactly
3 vertices of S. Using this fact we wrote a simple computer program based
on the exhaustive search which confirmed that C,3 ®C}3 admits exactly 52
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independent sets of cardinality 39, such that every of them equals one of

Xi: Yi: Zi, or Wi- 0O
For an independent set S of cardinality 39 we say that S is of type X,

Y, Z, or W, if it equals X;, Y;, Z;, or W;, respectively, for some ¢ € Z3.

Theorem 8 Let i,j € Zs. Let P; as well as @ stand for one of X, Y,
Z;, or W; and let P; as well as Q; stand for one of X;, i, Z;, or W;. Then
(i) |IPinQ;| =1 for P # Q.
(ii) If ue P;, then {u}UP; is an independent set if and only if
je{ix1,i+2,i+5}.
(i%) | P 0 Piyy] = 26.
(iv) |Picy N Piya| = 13.
(0) |B:nG;| =9 for P #Q.

Proof.
(i) Suppose first that P; and Q; stand for X; and Y}, respectively. Let
i and j be arbitrary but fixed elements from Z;3. Then (4 + 2k + 2, k)
equals (4 + 11k + 6, k) if and only if 4i + 2k +2 = 45 + 11k + 6 (mod 13).
We then get
4k = (45 + 9i + 4) (mod 13).

It is well known, e.g. see [9, Theorem 2.17], that
az = b(mod m)

has a solution if and only if ged(a,m) = g divide b. If this condition is
met, the total number of solutions is g (mod m). Since ged(13,4)=1, the
assertion follows.

The proofs for other pairs of P; and Q; are analogous (note that 13 is
a prime number), we may therefore conclude that this part of the proof is
complete.

(ii) For an arbitrary u € P;, the set {u} U P; is independent if for every
v € P, the difference of u and v is not in the set {-1,0,1} x {-1,0,1}.
The assertion can be checked very easily by hand or by a computer.

(iii) It follows from the definitions of X;, Vi, Z;, and W;.

(iv) It follows from the definitions of 5-(:-, }7,-, Z, and I"’IZ

(v) It follows from (i). ]

If S is an independent set in Ci3 ® C13 ® Coi41, let S; denote the
intersection of S with a (Ci3 ® C3)-layer through i. By slight abuse of
notation, S; will also stand for the projection of S; to C13 8 Ch3.
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Theorem 9 Let k > 7. Then
38k +19< a(C13RCy3 Cok41) < 38k + l.g.l + 19.

Proof. Since o(C13 R C13 RC)3) = 247 [3], the lower bound follows from
Lemma 3 (i). We therefore have to show that for Ci13®C13RCop 1, k> 7,
an independent set with more than 38k + | %] + 19 vertices does not exist.

Suppose then to the contrary that there is an independent set of cardi-
nality 38k + [%J + 20 for some k > 7. Let then S be an independent set of
cardinality 38k + l_lz‘-j + 20 in C13 ® Cy3 ® Cyxy4; such that k is minimal.

Since a(C13 R C 3R K,) = a(C13 ® Ci3) = 39, then there must be

(a) a sequence 55-1,5,Sj+1, Sj+2, Sj+3 with cardinalities 19, 20, 19,
20, 19, respectively or

(b) a sequence S;_o, 5j-1,55,541, Sj+2, Sj+3 with cardinalities 19, 20,
19, 19, 20, 19, respectively.

Suppose now that a sequence (a) exist. From Theorem 8 (v) it follows
that S;_,US;, S;US;, Sj+1U Sj42, and ;42U S;,3 must be of the same
type. Suppose w.l.o.g. that they are all of type X.

We first show the following

Fact. If lSj—ll = ISj+1, =19 and ISJ = 20' then Sj_l USJ' and Sj USj+1
cannot both equal Z . .

Proof: Suppose S US; = ;U S;41 = X;. Then S\ (SjUSj41) is an
independent set of cardinality 38(k —1) + [%J +20in C1aRC13RCor_,
which contradicts the minimality of k. ]

Let then S; U Sj41 = 5(: for some i € Z;3. Since by the above Fact
Sj-1US; cannot equal Y,-, from Theorem 8 it follows that Sj_1US; = )7,;
Suppose w.l.o.g. that S;_,US; = )T_\l Then S;41US;+2 and Sj+2US;43
have to equal )?::1 and )?,-.,.\2, respectively. Since S; is a subgraph of both
)?,-_\1 and 5-(: and since S;; is a subgraph of both 5{\, and )T,—:, we have
Sj = X;_1UX] and Sj4) = X;41U(X:\ X!) for some X! C X;. Thesituation
is depicted in Fig. 2. Furthermore, since Sj41USj42 = )7,-1_\1, then it follows
that S;;2 has to contain the set X!. But since Sj+2USj43 = m, the set
Sj+2 cannot contain vertices from X; and we obtain a contradiction.

Suppose now that a sequence (b) exist. We can conclude analogously as
above that Sj_g U Sj_l, Sj—l U Sj, Sj USJ'+1: Sj+1 USj+2 and Sj+2 U Sj+3
must be of the same type. Suppose again that they are all of type X and
since the Fact holds also for this case suppose w.l.o.g. that S;_, U/‘?L—l =

-

Xi-1and S;_; US; = X;. Since the vertices of Sj-1 compose X;_;, S;
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Figure 2: Distribution of independent vertices in consecutive (Ci3 ® Ch3)-
layers for case (a).

has to contain all vertices of X;41 and some vertices of X1 U X;. We
distinguish two cases:

Case 1. S; contains at least one vertex from X;_;. Then by Theorem
8 (ii) the set Sj41 has to be a subset of Xi41 U Xic1 U Xi. Moreover,
since |Sj41 U Sj42| = 39 and |S; U S;+1| = 38, for some u € X; we get
S;USjy1 = X; — {u}. For the same reason we get Sj+1 U Sjty2 = X:. Let
then S be obtained from S by moving u from S;43 to Sj+1. Note that S’
is an independent set of cardinality |S|. Moreover, 1S5] = 15j421 = 19 and
|S}41] = 20 such that Sj_, U Sj and 55U S} 41 both equals X;. Since we
proved with the Fact that the latter leads to a contradiction, this part of
the proof is settled.

Case 2. S; does not contain vertices from X;_;. Then S; = X;1 U X},
where X! is a subset of X;. By Theorem 8 (iv) is then Sj41 a subset
either of )?: or )7.4.\1 If Sj41 C )?,-, we obtain a contradiction analogous
to Case 1. Let then S;j41 C )7,4.\1 From Theorem 8 (ii) it follows that
Si1 = Xip2 UG\ X)) - {u}, where u is some vertex of X; \ X{. (Note
that u cannot be a vertex of Xiy2, since then S;42U Sjy3 is also equal to
)7.-:1 which leads to a contradiction.) Let then S’ be obtained from S by
moving u from Sj42 to Sj41. Again, S’ is an independent set of cardinality
S|, with |S§| = |S}4o| = 19 and |Sj4+1] = 20 such that S5 U S}, and
Sia Y S} 1o both equals )’(::1 The resulting contradiction completes the
proof of Case 2. 0
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