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Abstract

We present a bijective proof of the hook length formula for rooted
trees based on the ideas of the bijective proof of the hook length
formula for standard tableaux by Novelli, Pak and Stoyanovskii [10}.
In section 4 we present another bijection for the formula.
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1 Introduction

Classically, there are three hook length formulas for the number of standard
tableaux associated to posets [16] the Frame-Robinson-Thrall hook formula
for the number of standard tableaux of a given Ferrers shape, the hook
formula for the number of tableaux of a shifted shape, and the hook formula
for the number of rooted trees with a standard labelling. (In the present
paper we do not address the recent hook formulas for d-complete posets
due to Peterson and Proctor (cf.[14]), which include the aforementioned as
special cases.)

The problem of finding a bijective proof for these surprisingly compact
formulas has a long history for the first case, the case of standard tableaux
of an (ordinary) Ferrers shape (cf. the Introduction of [7]), culminating
in what is now regarded as “the ” bijective proof of the (ordinary) hook
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formula: the bijective proof of Novelli, Pak and Stoyanovskii [10].

Less attention had been paid to the problem of finding a bijective proof of
the shifted hook formula (cf. [7]). However, recently Fischer [1] succeeded in
finding such a bijective proof in the spirit of Novelli, Pak and Stoyanovskii.
The purpose of this paper is to complete this program for the case of rooted
trees as well. In fact, we do not only provide a bijective proof of the hook
formula for rooted trees in the spirit of Novelli, Pak and Stoyanovskii (see
Section 3.), we also provide a second, conceptually different, bijective proof
(see Section 4.).

The plan of this paper is as follows. In Section 2 we recall some definitions
and notations and state the main result. In Section 3 we define the first
bijection (in the spirit of Novelli, Pak and Stoyanovskii). After defining a
map and its inverse, we show, that these maps indeed define a bijection.
The example we give, helps to understand how the maps work. In Section
4 we present the second bijection, by defining another map and its inverse,
proving that there are inverse to each other and illustrating how these maps
work by an example.

2 Notations and the main theorem

A poset T= (V, <) is a rooted tree if it has a unique minimal element. The
Hasse diagram of 7 is a tree T in the graphic-theoretic sense of the term.
The set of the nodes of the tree T is V = V(T). If n is the number of
elements in the poset then a bijection S : V — [n] = {1,2,...,n} is a
labelling on T. An order preserving bijection § : V — [n] = {1,2,...,n}
(v1 < vo implies S(v1) < S(v2)) is a standard labelling on 7. If v is a node
of T, then the hook of v is

Hy={weT|w2>uv},

with corresponding hook length h, = |H,|. In fact the hook length is the
number of successors of the node including the node itself. fr denotes the
number of standard labellings on the tree 7. The following theorem gives
a formula for fr.

Theorem 1
nl

fr=5—"—7
[Meevir o

In order to construct a bijective proof of Theorem 1, we multiply both sides
of (1) by the denominator [[,cv (z) hv:

frx ] ho=n. (2)
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The right side of this equation can be interpreted as the number of labellings
(permutations of [n]), and the left side as the number of pairs of a standard
labelling and a hook function on 7. A hook function on T is a map H :
V — Z, such that H(v) € {1,2,...,h,}. We describe bijections between
these two sets in Section 3 and Section 4, which proves Theorem 1.

3 The first bijection

3.1 The total order on the tree

We fix a total order on the nodes of the tree with the property that the order
of a node is always greater than the order of its successors. We describe
this total order by a map V — [n]. First we define the left most leaf of the
tree. This is the endnode of the unique path P = {¢,,¢,,...,t}, where ¢, is
the root and ¢;, is the first node (moving from left to the right) among the
successors of ¢; for all 1 <7 <! — 1. We construct our map which gives the
total order the following way: Consider the left most leaf of the tree and
assign the least number to it. Delete this node from the set of the nodes
and delete this number from the set of the numbers. A node is denoted by
vj if the number j has been associated to it. We define first a map from

Figure 1: The total order

V11

the set of labellings (L) of the tree T to the set of a pair (S, H) where S is
a standard labelling and H is a hook function of 7 . We will see that this
is a bijective map.

3.2 Themap I: L — (S, H)

The map I transforms a labelling to a pair (S, H) using a sequence of pairs
of a labelling and a hook function (S;, H;), 1 <j < (n+1):

Moue(l) Alove(2) Moue(n)

L — (81, H) (S2, Hz) (Sn+1) Hny1)
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The sequence starts with (S, H1), where 5 is the labelling L and H is
the hook function with h(v) =1 for all v € V(T).

Move(j) transforms the pair (S;, H;) into a pair (Sj+1, Hj41) the fol-
lowing way: Start the process with considering the node v;. We denote the
label of a node v; in S; by L.

Step 0 Let v; be the actual node with label I. Consider the set of the direct
successors (D(v;)) in S;. Let vmin be the node with the minimal label

(lmin) in D(v,-).
Step1  — if lynin <! then interchange the label of v, and v;. The actual
node with [ is vpmin. Go to Step 0.
— if Lynin > ! Go to Step 2.
Step 2 Let vy be the node with the label [ in S;+1. We point to this node

with the hook number which we associate to the node v; and set
h(vj)=j—k+1.

The label ! slides actually from v; to another node v along a unique path.
The labels of the nodes of this path slide one node down and the endnode
of the path receive the label [.

3.3 Example

Lets consider an example. We describe only moves when the labelling
changes.

The first exchange will be necessary

at Move(3) concerning the node v3: The next exchange is at Move(5):
Il = 10 lpin = 3. And we set: [ =4 and lpin = 2. After the ex-
h(vs) =3-1+1=3. change we set: h(vs) =5-4+1=2
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Move(10):

! =11, lpmin = 1, we exchange. We
consider now the successors of vg:
lmin = 6 < 11 so we do another ex-
change and Move(10) ends with set-
ting h(vig) =10-8+1=3.

Move(9): .
l =8, lLnin = 1, so we exchange and
set h(vg) =9-7+1=3.

Move(11): { = 9. We have

L> l(vio) > Uvs) > Uvs) > l(v2),  This is the pair (S12,Hi2). The
so Move(11) ends after 4 exchanges giandard labelling of the tree and
and ! = 9 slides up to the node v,. the hook function.

We have to set h(v;;) =11-2+4+1=

8.

34 The mapIIL: (S,H)— L

We define map II which transforms a pair of a standard labelling and a
hook function (S, H) into a labelling L of the tree T using a sequence of
pairs (S}, H}), 1< j<m:

(5, H) M2 (5, Hy) MG LMD (s ) — L
In the pair (S7, H{) S] is the labelling L and H] is the hook function with

h(vj)=1foralll <j<n.
Move’(j): Consider v; with its hook number h(v;). Set k = j — (h(v;) — 1).
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(k < j, so vy is a successor of v;.) Interchange the labels of the nodes of
the unique walk from vy to v; step by step and set h(v;) = 1.

3.5 The proof

Theorem 2 The map I and map II are inverse to each other.

Proof From the definition of Move(j) follows that Sj is a standard labelling
of the subtree on {vy,...,v;}. It is obvious that Move(j) and Move'(j) are
inverse to each other and the theorem follows.

4 A second bijection

4.1 Notations

There are other possibilities to define a bijection between the set of pairs
(S,H) and the set of labellings L. We describe one in this section. In
the first bijection we moved the labellings of the nodes. In this bijection
in some sense we fix the labellings and move the nodes. We consider a
labelling of the tree as a linear arrangement of the nodes and a label simple
as the position of the node in this arrangement. A standard labelling is a
special labelling which keeps the structure of the tree, the partial order of
the nodes so it holds: if v; < v; in the total order for some 2 and j then v;
stands before v; in the linear arrangement.

We fix the total order of the nodes. The distance of two nodes v; and
v; is the number of the nodes of the unique path in the tree from v; to
v; (involving v; and v;). We say that a node v; is on the level k& when
the distance of the root and v; is k. We fix the total order of the nodes
according the following simple rule: we denote the node on the first level,
the root by v;. Let the right most node on the level (k — 1) be the node
Y(k—1)-- We denote the nodes on the level k from left to the right by
Y(ko1)* 412 V(k—1)" 425+ - - » Vke - k* — (k — 1)* is the number of the nodes on
the level k. (See Figure 2.)

We write the pair (S, H) as a sequence of (vj, h(v;)), where the order of
(v, h(v;)) is given by the standard labelling S. For instance

The associated sequence to in Figure 3:

(S’H) = ('01,3)('03,4)('07,3)(’!}2,1)('011,1)(’06,3)
(v12,1)(va, 2)(v9, 1)(vs, 1) (vs, 1)(¥10, 1)
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Figure 2: The total order

0

Figure 3: The standard labelling and hook function (S,H)

The hook function H

4.2 The map ¢

This map transforms a pair (S,H) to a pair (Sp41, Hns1), & pair of a
labelling and to a hook function with h(v;) =1 for all 1 < j < n step by

step. We associate to S,,4; the labelling L.

(S, H) = (S1, Hy) B (Sp, Hp) %7 ... %20 (5 o1 Hoit) — L

We describe Step j: Consider the node v; and the subsequence of its suc-
cessors A(v;). Move the node v; to the position signed by its hook number
h(v;) among the members of A(v;) and set h(v;) = 1. We arrange the other
members of A(v;) in the remaining positions, occupying by A(v;) keeping
their relative relations. The nodes outside of A(v;) keep their previous

positions.
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4.3 Example

We consider the tree which is shown in Figure 2 with the standard labelling
and hook function given in Figure 3. We apply the map ¢:

Step 1 Consider v;. All the nodes are successors of v; and h(v;) = 3. Sov;
moves to the third position of the whole sequence. We set h(v;) = 1.
The result of the first transformation is:

(S2,Ha) = (vs,4)(v7,3)(v1,1)(v2, 1)(v11,1)(vs, 3)
(v12, 1)(va, 2)(ve, 1)(vs, 1)(vs, 1)(v10, 1).
Step 2 Consider vz. The subsequence of the successors is A(v) = v2,vs and

h(vz) = 1. So vy keeps its position and h(vz) = 1. The result of this
step:

(S3,Hs) = (S2,Ha) = (v3,4)(v7,3)(v1,1)(v2, 1)(v1, 1)
(v61 3)(”12: 1)(”4) 2)(”97 1)(”8) 1)('"5’ 1)(1}101 1)’
Step 3 Consider v3. The subsequence of the successors is
A(vs) = v3,v7,11, V6, V12, V9, V10 8nd h(vg) = 4. w3 moves to the

fourth position of the seven positions of the nodes from A(v3) and we
set h(vs) = 1. The result of this step is:

(S1,Ha) = (v7,3)(v11,1)(v1, 1)(v2, 1)(vs, 1)(v3, 1)
(v12, 1)(va, 2)(ve, 1)(vs, 1)(vs, 1) (v10, 1).

Step 4 Consider vs. A(vs) = va4,V8 and h(v4) = 2. So

(Ss,Hs) = (v7,3)(v11,1)(v1,1)(v2, 1) (vs, 1)(vs,1)
(v12: 1)(”87 1)(”9’ 1)('04’ 1)('1)5, 1)(”10, 1)

Step 5 (Se, Hs) = (S5, Hs) since h(vs) = 1.
Step 6 Consider the node vg. A(ve) = v6, V9, V10 and h(ve) = 3. So

(S7)H7) = ('U7,3)(’011,1)('U1, 1)(”2: 1)(”9: 1)('031 1)
('UIZ: 1)(”8, 1)('0101 1)(”4» 1)('"5: 1)(”6’ 1)‘

Step 7 Consider the node v7. A(v?) = vr,v11, %12 and h(v7) =3. So

(SSy HS) = (vlly 1)(”121 1)(”13 1)(”2, 1)(1)97 1)(1"37 1)
(v, 1)(vs, 1)(vo0, 1)(v4, 1)(vs, 1)(we, 1).

Step 8-12 The other hook numbers h(ws), A(vo), - - - , h(vy2) are all 1, so we have
(Ss, Hs) = (So, Ho) = -+- = (513, Hy3) — L.
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Figure 4: The labelling L

4.4 The map o

The map 9 transforms a labelling L of the nodes into a pair of (S, H), a
pair of a standard labelling and a hook function. The n steps of the map
are:

L (Styp, HEyq) 523 (82, Hy) S S) (p HY) = (S, H)

We consider the nodes in the reverse order. During the generic step Step j*
we replace the node v; and change h(v;) when its necessary. The successors
of v; were already investigated. We denote this subsequence by A*(v;). We
set h(v;) according the relative relation of v; among the members of A*(v;)
and move v; to the first position among A*(v;). We arrange the other
members of A*(v;) in the remaining positions occupying by A*(v;) keeping
their relative relations. The nodes outside of A*(v;) keep their previous
positions.

4.5 Example
We apply now map ¥ to

L=(S13,H3) = (vin,1)(vi2,1)(v1,1)(v2, 1)(vo, 1)(v3,1)
('U7, 1)(”8; 1)(’”105 1)(”4, 1)(05a 1)('061 1)

Step 12* Consider the last node v, = v12. The subsequence of its successors
is A*(v12) = v12. v)2 is the first node in A‘(vlz). So (3;311{1'3) =
(Si2) Hiz).

Step 11% — 8 (Siy, Hi3) = (S, H}y) = -+ = (S5, H3)

Step 7* Consider vy. A*(v7) = v11,v12,¥7. v7 is in the third position. We
put it to the first position in A*(v7), set h(v7) = 3 and shift the other
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nodes in A*(v7) :

(S3,H3) = (vr,3)(v1,1)(v1,1)(v2,1)(ve, 1)(vs, 1)
(v12, 1)(vs, 1)(v10, 1) (v4,1)(vs, 1)(vs, 1)

Step 6* Consider vg. A*(ve) = vg, V10, V6. Ve is in the third position. We put
it to the first position in A*(ve), set h(vg) = 3 and shift the other
nodes in A*(vg):

(S8, H) = (v7,3)(v11,1)(v1,1)(v2,1)(vs, 1)(vs, 1)
('v12s 1)(1}8’ 1)('09, 1)(”4’ l)(v5| 1)(010! 1)'
Step 5* (S¢, HY) = (S, Hg)

Step 4* Consider vs. A*(v4) = vs,vs. We put v to the first position in A*(vq)
and set h(vq) = 2.

(SZ: H;) = (1)7, 3)(”11) 1)(”1: 1)(‘02, 1)('”6, 1)('03: 1)
(1)12, 1)(1}4) 2)(’09, 1)(”8: l)(USa 1)(”10’ 1)°

Step 3* Consider v3. A*(vs) = v7,v11,%6,V3,%12,V9,V10. V3 IS in the third
position. We put it to the first position and set h(vs) = 4.

(S3,H3) = (vs,4)(vr,3)(v1,1)(v2, 1)(v11,1)(ve, 1)
(1)121 1)(”4) 2)(”9) 1)(v8a 1)(”5) 1)(”101 1)
Step 2° (S, H3) = (3, H3):

Step 1* We consider v;. A*(v1) is the whole sequence. v; is in the third
position. We put it to the first position and set h(v) = 3.

(S,H)=(51,H*) = (v1,3)(v3,4)(vr,3)(v2,1)(v11,1)(vs,3)
('Ulz, 1)(”41 2)(1’91 1)(v8a 1)(1’5: 1)(1’10’ 1)'

4.6 The proof

Theorem 3 The map y and the map ¥ are inverse to each other.

Proof: First we give several important properties of the maps:
1. «: The Step 5(S;, H;) change the position of v; according to the
hook number h(v;) in the subsequence A(v;).

¥: The Step j*(Sj+1, Hj+1) change the hook number h(v;) accord-
ing to the position of v; in A*(v;) and moves v; to the first
position in A*(v;).
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2. ¢ After Step j of the map ¢ (in {S;}i5;) the node v; keeps its
position.
¥: The node v; keeps its position until Step j* (in {5} }i>;).
It is obvious that given a set (S, H;):
Step j*(Step j(Sj, Hj)) = (S;, H;)
and given a set (S;-, H;.) :
Step j(Step j*(S(‘j-f.l)’ H(j+l))) = (S(‘j-{-l)a Hz‘j-f-l))‘

This means that Step j and Step j* are inverse to each other and the
theorem follows.
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