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Abstract

Let G be a graph with vertex set V(G) and edge set £(G), and let
g and f be two integer-valued functions defined on V(G) such that
0 < g(z) £ f(z) for each z € V(G). A (g, f)-factor of G is a spanning
subgraph F of G such that g(z) < dr(zx) < f(z) for each z € V(F).
A (g, f)-factorization of G is a partition of E(G) into edge-disjoint
(9, f)-factors. Let F = {F,,F,---,F.} be a factorization of G and
H be a subgraph of G with m edges. If F;, 1 < i < m, has exactly
one edge in common with H, we say that F is orthogonal to H. In
this paper it is proved that every (mg+k~—1,mf —k+1)-graph con-
tains a subgraph R such that R has a (g, f)-factorization orthogonal
to any given subgraph with k edges of G if f(z) > g(z) > 0 for each
z € V(G) and 1 < k < m, where m and k are two positive integers.

Keywords: graph, (g, f)-factor, orthogonal (g, f)-factorization.

AMS(2000) Subject Classification: 05C70

1 Introduction

The factors, factorizations and orthogonal factorizations in graphs are very
useful in combinatorial design, circuit layout, optimization and network
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design and so on [1]. The file transfer problem can be modeled as (0, f)-
factorizations (or f-colorings) of a graph [2]. The designs of Latin squares
and Room squares are related to orthogonal factorizations in graphs which
were firstly presented by Alspach et al. [1].

The graphs considered in this paper will be finite undirected simple
graphs. Let G be a graph with vertex set V(G) and edge set E(G). For a
vertex z € V(G), we denote the degree of z in G by dg(z). Let g and f be
two integer-valued functions defined on V(G) such that 0 < g(z) < f(=z)
for each z € V(G). A (g, f)-factor of G is a spanning subgraph F of G
satisfying that g(z) < dp(z) < f(z) for each x € V(G). In particular, G
is called a (g, f)-graph if G itself is a (g, f)-factor. A subgraph H of G
is called an m-subgraph if H has m edges in total. A (g, f )-factorization
F ={F,F,,--+,Fn} of G is a partition of E(G) into edge-disjoint (g, f)-
factors Fy, Fy,- -, Fr. Let H be an m-subgraph of a graph G. A (g, f)-
factorization F = {Fy,Fs,--+,Fm} of G is orthogonal to H if |E(H) N
E(F;)| = 1 for 1 < i < m. Undefined notations and definitions in this
paper can be found in (3].

Recently, many authors studied the factors [4-12], factorizations [13].
The interested readers may find many relevant results about factors and
factorizations in [1,14]. Alspach et al. [1] presented the following problem:
Given a subgraph H of G, does there exist a factorization F of G with some
properties orthogonal to H? Liu proved that every (mg+m—1,mf-m+1)-
graph has a (g, f)-factorization orthogonal to a star or a matching [15,16].
Li and Liu showed that every (mg + m — 1,mf — m + 1)-graph has a
(g, f)-factorization orthogonal to any given subgraph with m edges [17].
Feng and Liu studied the orthogonal (0, f)-factorizations [18,19]. Zhou
also studied the orthogonal (0, f)-factorizations [20,21). Li, Chen and Yu
showed that every (mg+ k, mf — k)-graph contains a subgraph R such that
R has a (g, f)-factorization orthogonal to a given subgraph with k edges.
The purpose of this paper is to prove that for any k-subgraph H of an
(mg + k —1,mf — k + 1)-graph G, there exists a subgraph R of G which
has a (g, f)-factorization orthogonal to H, where m and k are two positive
integers with 1 < k < m and f(z) > g(z) = 0 for each z € V(G). Our
result is an improvement of the results in [15,16,17,22].

2 Preliminary results

Let G be a graph and S C V(G). For any function f defined on V(G),
we put f(S) = 3 ,es f(z) and f(@) =0. For S C V(G) and A C E(G),
we denote by G — S the subgraph obtained from G by deleting the vertices
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in S together with the edges incident with vertices in S, and by G — A
the subgraph obtained from G by deleting the edges in A, and by G[S]
(rep. G[A]) the subgraph of G induced by S (rep. A). Let S and T be
two disjoint subsets of V(G). We write Eg(S,T) = {zy : zy € E(G),z €
S and y € T} and eg(S,T) = |Ec(S,T)|. Let g and f be two integer-
valued functions defined on V(G). If C is a component of G — (SUT') such
that g(z) = f(z) for each = € V(C), then we say that C is odd or even
according to eg(T,V(C)) + f(V(C)) being odd or even, respectively. We
denote by hg (S, T) the number of the odd components of G — (SUT'). Set

66(8,T) =dg-s(T) — 9(T) — ha(S,T) + f(S).

Note that when f(z) # g(z) for each z € V(G), hg(S,T) =0.

In [16] Guizhen Liu got a necessary and sufficient condition for a graph
to have a (g, f)-factor containing a given edge.

Lemma 2.1 6] Let G be a graph and g(z) and f(z) be two nonnegative
integer-valued functions defined on V(G) with 0 < g(z) < f(z) for each
z € V(G). Then G has a (g, f)-factor containing any given edge e of G if
and only if

6c(S,T) > f(S) +de-s(T) — 9(T) 2 &(S,T)

for any two disjoint subsets S and T of V(G), where £(S,T) is defined as
follows:

(1) e(S$,T)=2, ife=uv, u,vES;

(2) €(S,T) = 1, if there ezists a neutral component C of G — (SUT) such
that e € Eg(S,V(C));

(3) e(S,T) = 0, otherwise.

The following result was proved by Guojun Li et al. [22].
Lemma 2.2 2 Let G be an (mg+ k,mf — k)-graph, and H a k-subgraph
of G, where 1 < k < m and f(z) > g(z) > 0 for each x € V(G). Then
there exists a subgraph R of G such that R has e (g, f)-factorization F =

{F1,Fy,---,Fy} orthogonal to H, and G—F} — Fp — ... — F}, is an ((m —
k)g, (m — k) f)-graph.

3 The proofs of Main results

Let G be a graph and let g and f be two integer-valued functions defined
on V(G) such that 0 < g(z) < f(z) for each z € V(G). In order to prove
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the main theorem, we first prove the following lemma which plays a crucial
role in the proof of our theorem.

Lemma 3.1 Let G be an (mg,mf)-graph with m > 1 end m # 2, where
0 < g(z) < f(x) for each = € V(G). Then G has a (g, f)-factor containing
any given edge e of G.

Proof. Obviously, the result holds for m = 1. In the following we may
assume m > 3. According to Lemma 2.1 it suffices to show that for any
two disjoint subsets S and T, we have

8c(S,T) = £(S) + dg-s(T) — 9(T) 2 &(5,T)-

Claim 1. 6¢(S,T) = 22de-s(T) + Ldg_1(5).
Proof. Since G is an (mg,m, f)-graph, we have

5c(S.T) = f(S)+de-s(T)—g(T)
= £()+da(T) — ec(8,T) - 9(T)
— Lo~ oD+ £(8) - 7-46(S)
+m1; Lie_s(T) + ;;-dG-T(S)
dg-s(T) + r_ln'dG—T(S)-

m—1
m
Now, we divide this proof into three cases.
Case 1. Ife=uv, u,v € 3, then £(5,T) =2.

Clearly, dg-7(S) = 2. In the following we prove 6c(S,T) 2 (S, T).
Case 1.1. dg-s(T) #0.

In view of Claim 1 and dg_7(S) = 2, we obtain

2

m-—1 1
8a(5,T) 2 — dg-s(T) + ;dG-T(S)
> T__l + 3 =1+ i > 1.
m m m

By the integrity of d¢(S,T), we get
5¢(S,T) 22 =¢(S5,T).
Case 1.2. dg-s(T)=0.

If g(z) = O for each z € T, then §g(S,T) = f(S) 2|8l =2 2 =¢(S,T).
In the following we may assume there exists x; € T such that g(z;) > 0.
Since G is a simple graph, then we have

|S] = mg(T).
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Thus, we obtain

f(S) = |S| 2 mg(T).
Hence, we have

6c(8,T) F(S) + da-s(T) — g(T)
mg(T) — g(T) = (m - 1)g(T)

m—12>2=¢S,T).

vV IV Il

Case 2. If there exists a neutral component C of G — (S UT) such that
e € Eg(S,V(C)), then ¢(5,T) = 1.

Obviously, de-7(S) = |E¢(S, V(G)\T)| 2 |Ec(S,V(G)\ (SUT))| =
|Ec(S,V(C))| = 1. In view of Claim 1, we obtain

m

-1 1
de_s(T)+ ;dG—-T(S)

ba(ST) 2 T

P iClc;'_:r(S) > l > 0.
m m
According to the integrity of éc(S,T’), we have
0¢(S,T) 21=¢(S5,T).
Case 3. If neither case 1 nor case 2 holds, then £(5,T) = 0.
According to Claim 1, we get that

1 io-5(T) + ~do-1(S) 2 0 = £(S,T).

JG(S,T) P m

The proof is completed.

Now we are in a position to prove the main theorem.

Theorem 1 Let G be an (mg + k — 1,mf — k + 1)-graph, eand H a k-
subgraph of G, where 1 <k <m and m —k # 1 and f(z) > g(x) = 0 for
each x € V(G). Then there ezists a subgraph R of G such that R has a
(g, f)-factorization orthogonal to H.

Proof. In view of Lemma 3.1, the theorem holds for k¥ = 1. In the following
we may assume k > 2. For any edge e of H, set H' = H — e. Then H' is a
(k — 1)-subgraph of G. According to Lemma 2.2, there exists a subgraph
R’ of G such that R’ has a (g, f)-factorization F¥ = {F,Fs,---,Fx_1}
orthogonal to H and G—F, — F, — -+ — Fy_y isan ((m —k +1)g,(m —
k + 1)f)-graph. Since m — k # 1, then m — k +1 # 2. By Lemma
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31,G-—F —F,— -+ — Fg has a (g, f)-factor Fj containing e. Put
R = R'UF,. Clearly, R is a subgraph of G and Rhas a (g, f)-factorization
F={R,F,- - , Fi—1, Fi.} orthogonal to H.

Completing the proof.

In Theorem 1, if £ = m, then we get the following corollary.

Corollary 1 23 Let G be an (mg+m—1,mf —m+1)-graph, and let g and f
be two integer-valued functions defined on V(G) such that 0 < g(z) < f(z)-
If H is an m-subgraph of G, then G has a (g, f)-factorization orthogonal
to H.

By Theorem 1, the following result holds.

Corollary 2 (22 Let G be an (mg+k, mf —k)-graph, and H a k-subgraph
of G, where 1 < k < m and f(z) > g(z) 2 0 for eachx € V(G). Then there
exists a subgraph R of G such that R has a (9, f)-factorization orthogonal
to H.
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