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Abstract The concept of the sum graph and integral sum graph were
introduced by F.Harary. In this paper, we gain some upper and lower
bounds on the sum number and the integral sum number of a graph and
these bounds are sharp, and some new properties on the integral sum graph.
Using these results, we could directly investigate and determine the cxclu-
sive integral sum numbers, the exclusive suin numbers, the sum munbers
and the integral sum numbers of the graphs K,\E(2P;), K,\E(P;) and
any graph H with minimum degree 6(H) = n — 2 respectively as n is more
than a given number. Then they will be the beginning of a new thought
of research on the (exclusive) sum graph and the (exclusive) integral sum
graph.
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Section 1. Introduction

For a simple graph H = (V(H), E(H)), let V(H) denote its vertex set and
E(H) its edge set. If a vertex of a graph is adjacent to every other of the graph
then it is called a saturated vertex. All other notation and terminology are
referred to [1].

The concept of the sum graph and the integral sum graph were introduced
by F.Harary ([2][3]). Let N denote the set of all positive integers. The sum
graph G*(S) of a finite subset S C N is the graph (S, E(G)) with uv € E(G)
ifand only if u +v € S.

A simple graph G is said to be a sum graph if it is isomorphic to the sum
graph of some S C N. We say that S gives a sumn labeling for G.
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In a labeling of a graph, vertices whose label corresponds to an edge arc said
to be working vertices. It has been realized that certain graphs can only be
labeled in such way that all the working vertices are also isolated; such graphs
are called exclusive.

For a simple graph H = (V(H), E(H)), the sum number o(H) of a graph
H is the smallest number of isolated vertices which when added to H result in
a sum graph. The exclusive sum number, e(H), of the graph H is the smallest
integer r such that H U X, has an exclusive sum labeling.

The integral sum graph, the exclusive integral sum graph, the integral sum
number ¢(H) and the exclusive integral sum number e(H) of a connected graph
H are also defined when S is extended from the positive integers sct N to the
integer set Z. It is obvious that (H) > o(H) > ((H) and e(H) 2 e(H) 2 ¢(H)
for a connected graph H.

Exclusive (integral) sum graphs are of interest for two reasons: they may
be easier to label optimally, and they mnay be more likely to have a large suin
number. It turns out that X, and W, are exclusive, while F, and K, are
not. Some useful results have been gained ([2-14]), but the characterization of
(cxclusive) integral sum graphs remains an open problem.

In this paper, we gain some upper and lower bounds on the sumn number, the
exclusive sum number, and the integral sum number, the exclusive integral sum
number of a graph and these bounds are sharp, and some new results on the
(exclusive) integral sum graph. Using these results, we could directly investigate
and determine the exclusive integral sum numbers, the exclusive sum numbers,
the sum numbers and the integral sum numbers of the graphes Kx\E(2Fs),
K. \E(Ps) and the connected graph H with minimum degrec 6(H y=n-2
respectively as n is more than a given number. Then they will be the beginning
of a new thought of research on the (exclusive) sum graph and the (exclusive)
integral sum graph.

To simplify notations, we may assume that the vertices of a (exclusive) sum
graph and an (exclusive) integral sum graph are identified with their labeling
throughout this paper.

Section 2. New lower bounds on the (integral) sum number

In this section, we will give new lower bounds on the (integral) sumn number
of a connected graph H. Let an integral sum graph G = H UL, which implies
that some isolated vertices are added to a connected graph If and results in an
integral sum graph G. Let S is the sum labeling set or the integral sum labeling
of G and C is the sct of its isolated vertices.

Theorem 2.1 Let H = (V(H), E(H)) be a simple graph and 6(H) > %"—1-,
where n be the vertices number of H and n > 6. Then H is not an integral sum
graph.

Proof: We argue by contradiction. Assume that H is an integral suin graph.
Then u +u' € V(H) for any edge uv’ € E(H). Let V(H) = {u1,u2,-* ua},
where u; < up < --- < 4,. Then we obtain at least (2n — 3) numbers u; +up <
utuz < - <uptu, <uptu, <ugtu, <0 < Unoy + u,. Let
U = {u) + ug,ug +uz, -+ ,u1 +Un, Ug + Un, U3+ Un, " s Uny + un}-
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Since two vertices u; and u, have (n—1) —dy(u,) and (n—1)— dgy(u,) non-
adjacent vertices respectively, in the set U there are at least (2n—3)—[(n—-1)—
du(w1)] = [(n— 1) = dy{u,)] numbers which must be edge sums of the graph H.
Since H is an integral sum graph, (2n—3)—[(n—1)~dy(u1)]—[(n—-1)~dn(u,)] <
n. that is, dy (u1) +dgy(u,) < n+1. Combined dy(uy) > 6(H), dgy(un) > 6(H)
and 6(H) > 2, we have 26(H) < dy(u1) + dy(ua) < n + 1, which implies
O(H) < &1 . but o(H) > 2£1 a contradiction.

Thus, Themem 2.1 holds (]

Theorem 2.2 Let I1 be a connected graph with the vertices number n and
the minimum degree §(H). II each vertex of H is non-working, then the sum
number o(H), the integral sum number {(H), the exclusive sum number e(H),
the exclusive integral sum number ¢(H) of the graph H satisly ¢(H) > o(H) >
C(H)>26(H)—1and ¢(H) > ¢(H) >26(H) - 1.

Proof: Let n > 3 and H = (V(II), E(II)). Without loss of generality,
we may assume that V(H) = {z;,z2,73,...2,}, where 1 < 72 < ... < z,
and x,, > 0 (otherwise, we just consider another integral sum labeling by using
(—1)- S instead of S).

Sincex)+a <y +us<..<n+te,<za+z, <..<x,-1+I,, these
21— 3 numbers are distinct. Since two vertices z) and x,, have (n—1)—d (1)
and (n—1)—dg(x,) non-adjacent vertices respectively, in the set U there arc at
least (2n—3)—[(n—1)=dg(z1)]—[(n—1)—dn(xn)], that is, dg () +dy(z.)—1
numbers which must be edge sums of the graph H. Since dy(x;) > 0(H) and
du(x,) 2 6(I), dy(xy) +dy(zn) — 12> 26(I7) - 1.

On the other hand, since each vertex of H is non-working, &; + x; € C
for all edges x;2; € E(H). Then s(H) > o(H) > ¢(H) > 26(H) -1 and
€(H) 2 ((H) 2 26(H) - 1.

Thus. Theorem 2.4 holds. O

Corollary 2.3 Let IT be a simple graph with vertices nummber n > 4. If
d(H)=n~-1.then e(H) = ¢(H) =o(H) = ¢(H) = 26(H) — 1 = 2n — 3, that
is, the lower bound of Theorem 2.2 is best possible.

Proof: If §(H) =n—1, then H is the complete graph, denoted K, which
each vertex’s degree is n — 1. Reference [1] has proved that each vertex of K, is
non-working and o(I) = ((H) = 6(H ) —1=2n -3 for any n > 4. Combined
Theorein 2.2, Corollary 2.3 holds.

Up to now, we automatically think about the following questions.

Question 1. Let H be a simple graph with the vertices number n and the
minimum degree §(H). The lower bound on &(H), ¢(H), ((H) and o(H) in
Theorem 2.2 is best possible for all 1 < 6(H) < n —2?

To be surprise, the numbers e(H), e(H), {((H) and o(H) of almost of the
graphs which have been investigated and determined by some rescarchers are
best possible of the bounds in Theorem 2.2 as n is more than a given munber.
Then we are considering the following question and try to answer it.

Question 2. Which graphs are exclusive?

First we will consider some graphs H with higher degree. such that A(H) =
nu — 1, that is. IT has at least one saturated vertex.
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Section 3. Properties on the integral sum graph

In this section, give some Properties on the integral sum graph G. Let
G = HUT, be an integral sum graph and shows that the least isolated vertices
are added to a connected graph H and results in an integral sum graph G. Let
S is the sum labeling set or the integral sum labeling of G and C' is the set of
its isolated vertices.

Theorem 3.1 Let H = (V(H), E(H)) be a connected graph with n vertices
and one saturated vertex v,. If there exists u € V(H) such that u+v, € C and
dy(u) > 3, then u+ u; € C for any edge uu; € E(H).

Proof: Let H = (V(H), E(H)) be a connected graph with n vertices and
one saturated vertex v,. For any edge wu; € E(H), since v + v, € C and
dg(vs) = n—1, (u+u;)+v, = (u+vs)+u; € S, which implies u+u; € {v,}UC.
Then there is at most one edge adjacent to the vertex u such that its sum equals
v, and the others belong to the isolated set C. Since dy(u) > 3, there exists at
Jeast Lwo distinct, vertices in the subset N(u)\{v,}, denoted u;,, ;.

If there is one edge adjacent to the vertex  such that its sum is v,. Then
there is the unique edge and denote it wu;,. Then u +u;, = v and u+u, € C.
Since utuy, € C, vy+uy, = (utuy)+ui, = (utu;,)+u;, ¢ S.but v,+u;, €85,
a contradiction. Thus, u + u; € C for any uu; € E(H). O

Theorem 3.2 Let H = (V(H), E(H)) be a connccted graph with n vertices
and n > 4. If H has two distinct saturated vertices such that their sums belong
to the isolated set, then all of the edges sums adjacent to themn also belong to
the isolated set.

Proof: Let v,,,vs, be two distinct saturated vertices of H. Then v, vs,
have edges with all other vertices of H. TFor any edge vivs, € E(H), since
Vyy + V3 € C, (05 + Vs,) + vy = Vi + (vs, + vs,) & S, which implies v; + s, €
{vs,} UC. Thus, there is al most one edge adjacent v,, such that its sum is vs,
and others belong to the set of isolated vertices C. Since d(v,,) =n—-123,
there exists at least two distinct vertices in the set N(s1)\{vs, }, denoted vi, , v,

If there is one edge adjacent to the vertex v,, such that its sum is vs,. Then
there is the unique edge and denote it v;, vs,. S0 vi, +vs, = Vs, and v, +v,, € C.
Then ve, + vi, = (Vi + Vs,) + Vi = (Vi3 +V5,) + sy €5, but ve, +vi, €5, a
contradiction.

Thus. v; + vs, € C for v;v,, € E(H). Similarly to v,,. O

Theorem 3.3 Let H = (V(H), E(H)) be not an integral sum graph with
one saturated vertex v, and n vertices. Then there exists one edge adjacent to
v, such that its edge sum belongs to the isolated set.

Proof: Let IT be not an integral sum graph with one saturated vertex v,
and n vertices. Then 0 ¢ S and d(v,) =n— L.

Let N(v,) = {v1,v2, -+ ,vn-1}, where vy <wz <++- < ¥n_1. Then V(H) =
{v1,v2,-** ,Un—1,Vs} ADd Vs +V1, VsV, - Vs +VUL € S with vg+v) < vs+v2 <
o & Uy +VUn1. Ifve+v; € V(H), then ve+v; = v; forany i € {1.2,--- .n—-1},
which implies v, = 0, a contradiction.

Thus, there exists one edge adjacent to v, such that its edge sum belongs to
the isolated set. D
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Theorem 3.4 Let H be not an integral sum graph with one saturated
vertex vy, I (H) > 3. then any edge sum belongs to the isolated set.

Proof: Let u be any vertex of H except for the saturated vertex v,. Since
v, is one saturated vertex of G, there is an edge between u and vy. By Theorem
3.3 and 3.1, u +u; € C lor any edge uy; € E. O

Section 4. The (exclusive) sum number and the (exclusive) integral
sum number of the graph K,\F(2P;)

In this section, consider the connected graph H = K, \E(2Ps). Let V(K,\
E(21%)) = {v(,va,- -+ ,v,} and the two deleted 3—paths 2% are denoted vy vavs.
and v v g respectively, n is the vertices number of K\ E(2P;) and then dg(v2) =
de(vs) = n =3, de(t1) = d(vs) = dg(vy) = de(v) = n — 2 and d(e;) =0 — 1
for any 7 € {7,8.--- ,n} as n is more than a given number (n > 8).

Let G = [K,\E(2P;)] UK, be an integral sum graph. which shows that the
least isolated vertices are added to Kp\E(24%) and results in an integral sum
graph G and S is an integral sum labeling of G and C is the set of isolated
vertices.

Lemma 4.1 K,\E(285) is not an integral sum graph for n > 8.

Proof: Since 6(),\E(2Ps)) =n —3 and n > 8, §(K,\E(2P3) > 2. By
Theorvem 2.1, £,\E(2/%) is not an integral sum graph for n > 8. O

Lemma 4.2. G is exclusive.

Proof: Let S is the sum labeling set or the integral sum labeling of G =
[K.\E(2P3)]U K, and C is the set of its isolated vertices. Since §(G) > 3, by
Theorem 3.4, u + v € C for any edge uv € E(G).

Lemma 4.3. (K,\E(25)) 2 o(IC\E(283)) > (KA \E(244)) 220 -7
and (I \E(2Ps)) 2 e(K \E(2PR)) 2 2n—T forn > 8.

Proof: By Theorem 2.2, Lemma 4.3 holds. O

Lemma 4.4. (K,\E(2P;)) < ¢(K.\E(2P;)) <2n—7 for n > 8.

Proof: Let K, \E(2P;) = (V,E) and V = {x),29,23,--- ,n} and S =
VU, where C is the set of its isolated vertices and n > 8.

First, let r; = (i—1)x10+1and ¢; = jx10+2. Then V = {(i-1)x10+1:i=
1,2,....n} and the isolated set C = {¢; : j = 1,2,...,2n — 3} — {ei,. iy Cig, iy )
This key is to find c;,.ciy, ¢iy, iy, and two deleted 3-paths vy vavg, and vyvsve.

Second, let us look for them and verify that this is an exclusive sum la-
beling in detail. Let {c;,.ci,.ciy,ci,} = {e1.¢2,c2n4,can-3}. Then the iso-
lated set C={c; : j = 1,2,...,2n — 3} — {e1.c2.e2n—a.Con-3} and E(2P;) =
{w w2, 3  wnx 1, nien—2}. In fact, we have

(1) The vertices in S are distinct.

(2) For any vertices u; € {2,063, ,&n} and ¢, € C, since a; + ¢ =
3(mod10), z; + . € S.

(3) For any distinct vertices ¢;, ¢, € C, since ¢; +¢ = 4(mod10). ¢;+c¢ € S.

(1) Let 1 £i# j <n. Forany distinet vertices a;, x; € {1, @283, , 20},
£Xy +.l-‘j = (’l+_] —2) x 1042 = Ciyj-2-

Sincex; +xj=c) <<= i+j-2=1<=i+j=3<=(i.j)=(1.2).

Sincex; +r; =m<<=it+j-2=2=i+j=41< (i,j) =(1.3).
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Since x; + xj = Can-1 = i+tj—2=n—-4d<=it+j= 2n -2 <
(,3) = (n — 2.n).

Since z; +&; = Con3 &> i+ -2 = M- e i+j=2n—4 &
("J) = (n - l'n)'

Then it is an exclusive sum labeling of (Kn\E(2P3))U(2n—7) K1, where the
two deleted 3—paths 2P; are denoted x2z123, and T,_oTnT,—1 respectively. O

Theorem 4.1. ((K.\E(2Ps)) = o(K.\E(2Fs)) = e( Kn\E(2Ps))= e(Kn\
E(@2P;))=2n—-Tforn 2>8.

Proof: By Lemma 4.3 and 4.4, Theorem 4.1 holds. O

Section 5. The (exclusive) sum number and the (exclusive) integral
sum number of the graph K,\E(Ps)

I this section, consider the connected graph H = Kn\E(F3). Let V(Kn\E(I’3))
= {v1, V2, ,Va}, the deleted 3—path P is denoted vjvaug, 7 iS the vertices
number of the graph K\ E(Ps). Then d(vo) = n — 3, d(v1) = d(v3) =n —2
and d(v;) = n— 1 for any i € {4,5,-- ,n} as n is more than a given number
(n 2> 8).

Let G = [Ka\E(Ps)) UK, be an integral sum graph, which shows that the
least r isolated vertices are added to Kn\E(Ps;) with n vertices number and
results in an integral sum graph G and S is an integral sum labeling of G and
C is the sct of isolated vertices.

Lemma 5.1 K,\E(Ps) is not an integral sum graph for n > 8.

Proof: Since 6(K,\E(P3)) =n—3 andn 2 8, 5(K.\E(Ps) > 2. By
Theorem 2.1, K,\E(Ps) is not an integral sum graph for n > 8. O

Lemma 5.2 The integral sum graph G is exclusive.

Proof Let S is the sum labeling set or the integral sum labeling of G =
[Kn\E(Ps)]UK, and C is the set of its isolated vertices. Since 6(K.\E(P3)) 2 3,
by Theorem 3.4, u+ v € C for any edge wv € E(G). O

Lemma 5.3 (K \E(Ps)) > o(K,\E(P)) 2 C(K\E(Ps)) > 2n—5 and
e(K\E(P3)) = K N\E(P)22n—-5 for n > 8.

Proof Without loss of generality, we may assume that V(K AE(P) =
{#1,22.T3, .. Tn }, Where T3 < Tz < ... < Zn and z, > 0 (otherwise, we just
consider another integral sum labeling by using (=1) - S instead of S).

Since zy + T < T1 + T3 < ... < T+ T < T2+ &n < o < Tp—1 + &n, these
91 — 3 numbers are distinet. Since two vertices z1 and T, have (n—1) —d(x1)
and (n — 1) — d(z.) non-adjacent vertices respectively, in the set U there are at
least min{(2n —3) — ((n — 1) = d(z1)]], (2n — 3) = [(n — 1) — dp(zn)]} numbers
which must be edge sums of the graph K, \E(Ps).

Since §(Ka\E(Ps)) = n—3, dz1) 2 n-3 and d(z,) = n—3. Then
min{(2n - 3) - [(n — 1) —d(z1)]], (2n - 3) - [(n=1) = du(za)]} = 2n 5.

Since each vertex of K,\E(Ps) is non-working, x; + z; € C for all edges
ziz; € E(K,\E(F3)). Then (K \E(P3)) 2 o(K \E(13)) 2 C(KN\E(Ps)) 2
2n — 5 and e(K,\E(Ps)) 2 (K \E(P3))>22n—5forn2>8. D

Lemma 5.4 €(K,\E(P3)) < e(K.\E(Ps)) £ 2n -5 forn 2 8.

Proof Let K,\E(/3)=(V,E)andV = {z1,22,®3, " ,Tn} and S = VUC,
where C is the set of isolated vertices and n 2> 8.
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First, let #; = (i—1)x10+1and ¢; = jx10+2. Then V = {(i—1) x 10+1:
i = 1.2,...,n} and the isolated set C = {c; : j = 1,2,...,2n — 3} — {ci,.ci,}.
This key is to find ¢i,, ¢i, and the deleted 3-path vyvgrs.

Second, let us look for them and verify that this is an exclusive sum la-
beling in detail. Let {ci,,c:,} = {e1,c2}. Then the isolated set C={c; : j =
1,2,...,2n = 3} = {e1,c2} and E(Ps) = {x12, 2223}, which implics that thc
deleted path is @ zex3. In fact, we have

(1) The vertices in S are distinct.

(2) For any vertices x; € {x), 79,3, - ,zn} and ¢x € C. since x; + ¢ =
3(mod10), x; + ¢ € S.

(3) For any distinct vertices ¢;, cx € C, since ¢; +cx = 4(1n0d10), ¢;+ep € S.

(4) Let 1 < i # j < n. For any distinct vertices x;, z; € {&x, 22,23, -+ , 2.},
Ti+xi=(i+7-2)x10+2=cipj_2.

Sincex; +uxj=¢i =i+ j-2=1i+j=38« (i,j)=(1.2).

Sincer;+x, = =i+j-2=2i+j=4 < (i,5) = (1,3).

Thus, it is an exclusive sum labeling of (K, \ E(Ps))U(2n — 5) K, where the
deleted 3—path Pj is denoted zoxyz3. O

Theorem 5.1 ((K.\E(P)) = o(K.\E(Ps)) = ((K.\E(Ps))=¢(K.\E(Ps))
=2n -5 for n > 8.

Proof By Lemma 5.3 and 5.4, Theorem 5.1 holds. O

Section 6. The (exclusive) sum number and the (exclusive) integral
sum number of the connected graph with its minimum degree §(G) =
n—2

In this section, we will consider the (exclusive) sum number and the (exclu-
sive) integral sum number of the connected graph IT with its minimum degree
dHYy=n-2

Let H be a simple graph with n vertices. If §(H) = n — 2, then cither
dy(v) =n—2ordy(v) =n—1 for any vertex v. Thus, if and only if /T must
be the counected graph, denoted K,\E(rK,), deleted r matchings from the
complete graph K,,. Then if n is even then 1 < » < 3, otherwise, 1 < r < "' .
Thus, 1 <r < 3],

Let H=K ,,\E(rKg), where the r deleted matchings E{rK»} = {vyv].v2v}.

- vpp}, nis the vertices munber of H. Then either dy(v) = n—1ordy(v) =
n — 2 for any vertex v € V(H). Besides, if r is odd, then 1 < 7 < &3 l; ifris
even, then 1 <r < 2. Thus, 1 <7< [3].

Let G = [K ,.\L‘(rl\z)] UK, be an integral sum graph, which shows that the
least isolated vertices are added to K,\E(rK2) and results in an integral sum
graph G and S is an integral sum labeling of G and C is the sct of isolated
vertices.

In this section, one special sign is used. For a vertex v; € V(H), let v/
denote the vertex such that v;v} ¢ E(H), that is, v;v} is one deleted matching
and vv] € E(rK2). According to the structure of the graph H = K, \E(rKs),
if dg(vi) = n — 2 then the vertex v} exists; if dj;(v;) = n — 1 then v} does not
exist at all.
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Lemma 6.1 For n > 7 and r = 1, o(K,\E(rK2)) = ((K.\E(rK2)) =
2n—-4.

Proof: For n > 7 and r = 1, K,\E(rK2) = K,, — e. Relerence [6](7] has
determined that o(K,, —e) =({(K,—€e)=2n-4. 0

Lemma 6.2 For n > 7 and 2 < r < [3), Kn\E(rK>2) is not an integral
sum graph.

Proof: Forn > 7and 2 <7 < [§], 8(K.\E(rK2)) =n—-2> sl By
Theorem 2.1, K,\E(rK3) is not an integral sum graph. O

Lemma 6.3 Let n > 7, 2 < 7 < [2] and an integral sum graph G =
(K \E(rK2)) UK, with H = K \E(rK2) = (V,E). Assume vnux be a vertex
whicl absolute value is maximum in V. Then there exists one edge adjacent to
Vimax Such that their label sum belongs to the set of isolated vertices C.

Proof: Letn > 7.2 < r < [%] and an integral sum graph G = [K,\E(ri2)]V
K, with Il = K,\E(rK3) = (V,E). Assume vnux be a vertex which absolute
value is maximum in the set V. Without loss of generality, we may assuine
Vmax € V and vpax > 0 (Otherwise, we just consider another integral sum
labeling by using (—1) - S instead of S).

We argue by contradiction. Suppose that v +vmax € V for all edges vvyax €
E. According to the choice of vmax, we have v < 0 and v + vmex > 0. Notice
that dg(vmax) € {n — 2,7 — 1}. Then assume vy, v,"-* ,Vn-3,Vn-2 8I€ its
distinct adjacent vertices, where v; < v2 < -++ < VUn-3 < Un-2 < 0. Then
0 < v1 + Vmax < V2 + tmax < *** < Vn=3 + Vmax < Va-2 + Umax < Vmax and they
belong to the vertices set V.

Up to now, there are at most one vertex vz, which signs may be positive.
Since0gV,n—2<1,thatisn < 3, but n > 7, which is a contradiclion.

Thus, Lemma 6.3 holds. O

Lemma 6.4 Letn > 7,2 < r < [%‘] and an integral sum graph G =
[Kn\E(rK2)] UK, with H = K\E(rKz) = (V,E). Assume vnax be a vertex
which absolute value is maximum in the set V. Then v+ vunx € C for all edges
Vmax € B.

Proof: Letn > 7,2 < r < [2] and an integral sum graph G = (KW \E(rK2)u
K, with H = K, \E(rK;) = (V, E). Assume that vy is the vertex which abso-
lute value is maximum in the set V. Without loss of generality, we may assume
that and vmax € V and vpmax > 0 (Otherwise, we just consider another integral
sum labeling by using (—1) - S instcad of ).

According to the structure of the graph K.\E(rK32), dg(vmax) € {n —2,n—
1}. Since n > 7, there are at Jeast 4 edges adjacent to the vertex vyax. By
Lemma 6.3, there exists one edge vigUmax € E such that v;; + Uinax € C. Then
for any edge vvmax € E\{vigmax}> Vio + (v + Umax) = (¥iy + Umax) + 0 € S,
which implies there is no edge between (v + Uinax) and vj,, that is, v + Unux €
({vig} U {v},}) UC, denoted (1).

Thus, there are at most 2 such edges such that their suins belong to the
vertices subset {v;,} U {v},}. Since n > 7, there must exist at least (n — 2) —
1 -2 > 2 edges adjacent 10 Vpmax, denoted ¥4, Vnaxs VisVmax € E, such that
their sums belong to the isolated set C, that is, i, + Vmax, Viz + Vmax € C.
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Similarly (1), the sums of other edges adjacent to v,,4x must belong to [({vinJu
{vi, DN {vi, Ju vl }) N ({vi, }U{e},)D]UC. Since vy, v;, and v;, are distinct,
{w Ju{vi, D ({wi, }u {v], DO ({vi, }U{v],}) = 0. Then the sums of all edges
adjacent to v,.x must belong to the isolated set C. O

Lemma 6.5 Let n > 7,2 < r < [£] and an integral sum graph G =
[Ki\E(rK2)] UK, with H = K,\E(rK») = (V,E). Then v; + vj € C' for any
edge v;v; € E.

Proof: Letn > 7,2 < r < [4] and an integral sum graph G = [K,\ E(rK2)JU
K, with Il = K, WN\E(rK,) = (V, E). Assume that v,y is the vertex which abso-
lute value is maximum in the set V. Without loss of generality, we may assume
that and vpux € V and vyux > 0 (Otherwise, we just consider another integral
sum labeling by using (—1) - S instead of S).

For any edge v;v; € E, since §(vmax) € {n — 1,n — 2}, there is at least one
vertex in the subset {v;,v;} such that it is adjacent to the vertex ty.x. Without
loss of generality, we may assuine v;tmax € E.

By Lemma 6.4, v; + vpux € C. Thus, for any edge viv; € E\{v;vyux},
(i + vmax) +vj = (0 4+ 1) + Vax € 8. S0 v; + v; € ({vmax} U {t/un}) U C,
which implies that there are at most two distinct edges adjacent to v; which
sums are in ({vmax} U {05 }), denoted (2).

For n > 7. since d(v;) € {n — 1,n — 2}, At the same time. there are at least
two distinct edges adjacent to v;, denoted v;v;, and v;0j,, such that their edge
sums are in the set of isolated vertices C. Similarly (2), for any edge v;v; €
B\ {vitwux, vivjy vivg ), vi 4 v € [({vnax} U {thax DN ({2, U o) D N ({vi} U
{e;, DU C. Since vyax.vj, and vj, are distinct, according to the structure of
KAE(H2). [({taune} U {0} 0 ({53} U {2, D) 0 ({2} O {of, D] = 0. Thus,
v+ vy € C.

Thus, Letnina 6.5 holds. O

Corollary 6.6 Let n > 7, 2 < r < [5] and an integral sum graph G =
[K.\E(rK2)]UK,, where K, \E(rK>) is a connected graph with 6(H) = n -2,
Then G is exclusive as n is more than a given number, for example, n > 7.

Proof: By Lemma 6.5, Corollary 6.6 holds. O

Lemma 6.7 Forn > 7and 2 < r < [§], (K. \E(rK2)) > o(K,\E(rK2)) >
C(Kn\E(rK2)) 2 2n — 5 and (K, \E(rK2)) > e(K,\E(rK3)) > 2n — 5.

Proof: Letn >7and 2 < r < [3]. By Lemma 6.5, G = [K,\E(rK»)|UK,
is an exclusive integral sum graph. By Theoremn 2.2 and 8( K,\E(rK2)) = n -2,
e(KW\E(rKy)) 2 o( K \E(rK3)) 2 C(K\E(rK2)) > 26(C)-1 = 2(n—2)-1=
2n—>5 and e(K,\F(rK2)) 2 (K \E(rK2)) 2 20(G)—1 = 2(n—2)—1 = 2n-5.
0O

Lemma 6.8 Forn > 7and 2 < r < [3], e(Kn\E(rK>)) < (K \E(rK2)) <
2n — 5.

Proof: TFor n > 7and 2 < r < [3], let K,\E(rK;) = (V.E) and V =
{wrr e, as. - cn} and S =V UC, where C is the set of isolated vertices.

Let i =(-1)x10+1and¢;=3x10+2 Then V={(i-1)x 10+ 1:
i=1,2.--- .n} and the isolated set C = {¢; : j =1.2,--- .2n — 3} — {c;;. cin }-
This key is to find ¢, ¢;, and the deleted matchings E(rK,) in the following
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cases respectively.

Case 1. 7 is odd and 7 is odd. Let ¢;; = ¢r—1 and ¢i; = Can—r-2- The
deleted matchings r K2 are 1%y, LoZp—1, *** » Tec1 T and Tp—yTn, Tn—r—1Tn—1,""" «
Tan—r-1Tan-ril. Then the set of isolated vertices é={Cj 3 =12,---,2n—
3} — {cr-1, Con—r—2}. Verify that this is an exclusive sum labeling in detail.

In fact, we have

(1) The vertices in S are distinct.

(2) For any vertices z; € {z1,22, 23, ,Zn} and ¢ € C, since r; +cx =
3(mod10), =; +cx € S.

(3) For any distinct vertices ci,cx € C, since ¢; +cx = 4(mod10), ¢; +cx & S.

(4) For1<i#j<n and any distinct vertices z;, z; € {Z1,72,%3." " yZn}
T +x; = (‘i+j—2) x 10+ 2 = cigj-2.

Since rr > 2 and z; + 1j = Cr—) 4=>i+j—2=r—l4=>i+j=r+1<=>
(7".7) € {(1.1‘), (2,7’ - 1)' (3,7‘— 2)v" ' ,(r_;l_’ L:2'-_")}

Since r > 2 and x; +xj = Can—r-2 i+j—2=2n-r-2i+j=2n-
r <= (i.j) € {(n—r,n), (n—-r—1,n-1), (n—7=2,n=2).- (o=l Znopdl))

Then the deleted matchings are 1%y, L2Tr-1,° , TraTris and ZTyp—rTn,

2
Tper—1Tn—l,'*" , T2n-r=1T2n-rsl. Thus, it is one exclusive sum labeling of

(Ka\E(rK2)) U (2n — g)Kl when n and r are odd.

Case 2. nisodd and r is even. Let ¢c;;, = ¢ and ¢;, = C2n—r-1- ‘The deleted
matchings 7K» are T1ZTr4+1,%2%p, *70 2 TETrgd and Tp—r41Tns TuerZn-1s"""
TanorTanris. Then the set of isolated vertices C={c; : j =1,2,--+ ,2n =3} -
{c,.con-r—1}. Similarly, this is one exclusive sum labeling of (K, \E(rK2)) U
(2n — 5)K when n is odd and r is even.

Case 3. n is even and 7 is odd. Let ¢;, = ¢—2 and ¢;; = C2u—r—2. The
deleted matchings K are 212y 1, £oTr—2, "+ 1 Trs1Trdl and Lp—rTny, Lner+1Tn—1s
e Tan—r=3Taa=rsa. Then the isolated set C={c; : j = 1,2,---.2n — 3} -
{€r-2,Can-r-2}- Similarly, this is one exclusive sum labeling of (K, \E(rK2))U
(2n — 5)K; when n is even and r is odd.

Case 4. n is even and r is even. Let ¢, = ¢—1 and ¢;; = cen—p—2. The
deleted matchings r K are 1%y, ¥2Zr-1," "+ , T5T o2 and Ty rTns En—r+1Tn—1."""

2
Tan.e-3T2n ria. Then the isolated set C={c; : = 1,2, -~ ,211—3}—{(:,._1,cgn_,._g}.

Similarly. this is one exclusive sum labeling of (K. \E(rK2))U(2n - 5)K; when
n and 7 are even.

Thus, (K. \E(rK2)) <2n—-5forn>7and 2<7 < f31. O

Theorem 6.1 Forany n>7and 1 <7< (4],

CKn\E(rIG)) = o(K\E(rkz)) = { mot =l

Proof: For n > 7, by Lemma 6.1, 6.7 and 6.8, Theorem 6.1 holds. O
Section 7. Conclusion

Similarly, using these results of Section 2 and 3, we could directly investigate
and determine the (exclusive) sum number and the (exclusive) integral sum
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number of some classes of graphs H with 6(H) > 3 or one saturated vertex v,
as the vertex number is more than a given number. This paper has proved that
the method in this paper is much easier that the former, applied to determine the
exclusive integral sum numbers, the exclusive sum numbers, the sum numbers
and the integral sum numbers of the graphes. Then the method will be the
beginning of a new thought of rescarch on the (exclusive) sum graph and the
(exclusive) integral sum graph.
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