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Abstract: The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological
index. In this paper we study PI index of thorn graphs, and we present a
generally useful method which can reduce the computational amount of PI
index strikingly.
Introduction

Wiener index (W) and Szeged index (Sz) are introduced to reflect certain
structural features of organic molecules [1-6]. [7, 8] introduced another index
called Padmaker-Ivan (PI) index. PI index is a very useful number in chemistry,
as demonstrated in literature [8-16]. In [8] authors studied the applications of Pl
index to QSRP/QSAR. It turned out that the PI index has a similar
discriminating function as Wiener index and Szeged index, sometimes it gave
better results. Hence, PI index as a topological index is worth studying. In [9]
authors pointed out that PI index is superior to °X, 2X and logP indices for
modeling Tadpole narcosis. In [10] the authors reported quantitative structure—
toxicity relationship (QSTR) study by using the PI index. They have used 41
monosubstituted nitrobenzene for this purpose. The results have shown that the
Pl index alone is not an appropriate index for modeling toxicity of nitrobenzene
derivatives. Combining PI index with other distance-based topological indices
resulted in statistically significant models and excellent results were obtained in
pentaparametric models. For the previous results about PI index, please see [17,
18,19, 20, 21].

Let G be a simple connected graph. The PI index of graph G is defined as
follows:

PI(G) = ¥ [neu(elG) + n.v(e|G)],

where for edge e = uv n.,(e|G) is the number of edges of G lying closer to u
than v, n.(e|G) is the number of edges of G lying closer to v than u and
summation goes over all edges of G. The edges which are equidistant from u
and v are not considered for the calculation of PI index [18]. In the following
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we write n., instead of ne,(e|G). Let ne = ngy + Ny,
. Preliminaries
For further details, see [22, 23].
Definition 2.1[24]. Let G be a graph on n vertices vy, V2, ..., Vn- The thorn graph
of G with parameters p, P2, --; Pns denoted by G or G'(p., P2 -++s Po)s iS
formed by attaching p; new vertices of degree one to the vertex v; of G, i=1,
2, ..., n. f wEV(G")—V(G), we call w a thorn vertex.
Definition 2.2. Let w be a thomn vertex of G', vi€ V(G), wv; EE(G"), define
m; =|{uv EE(G)| d(u, w) = d(v, W)}
Lemma 2.3[8]. Let T be a tree with n vertices, n > 2, we have
) PI(T)=(n - 1)(n-2).
Lemma 2.4[8]. Let P, be a path with n vertices, n>2. We have
PI(P.) = (n — 1)(n-2).
Lemma 2.5 [8]. PI(K,,) =n(n—1).
Lemma 2.6[8]. (1). Let Caq+) be an odd cycle, n> 1, we have
PI(Czq+1) =2n(2n + 1).
(2). Let C;, be an even cycle,n> 2, we have PI(C;,) = 4n(n—1).
Lemma 2.7[8). PI(Kn,) = mn(m +n—-2).
Lemma 2.8[8]. For n > 2 we have
PI(K,) = n(n — 1)(n - 2).
Lemma 2.9[22]. G is a bipartite graph if and only if G contains no odd cycle.
PI Indices of Thorn Graphs
Theorem 3.1. Lety =p; +pz + ... + pn We have
PI(G") =PI(G) + yQRIE(G)| +y —1)~(mip; + ... + MaPn),
where m; is defined in Definition 2.2.
Proof. Let x = [E(G")| = [E(G)| + y. Let w be a thorn vertex and wv;&€ E(G").
When e = wv;, by the definition of PI index we have
New + Nevi =X — 1.
Hence, the total contributions of edges connecting with thorn vertices of G'to
PI (G') are y(x—1).
Similarly, by the definition of PI index the total contributions of edges in E(G)
to PI(G") are
YIE(G)] + PK(G) - (mp1 + ... + Mgpy).
Hence, we have
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PI(G") = PK(G) + yIE(G)| +y -1) — (myp, + ... + myp,,).
The theorem follows.
Theorem 3.2. Let G be a bipartite graph and y = p, + p, + ... + p,, we have
PI(G") = PI(G) + Y(2|[E(G)] +y -1).
Proof. Let uv € E(G) and w be a thorn vertex. Let P, and P, be the shortest paths
from u to w and v to w respectively, and let zE V(P,)NV(P,) be the first vertex
from u to w along P,. If |[E(P,)| = |[E(P;)| we have
[E(Py(u, 2)| = [E(P(v, 2)|.
Hence, we have an odd cycle
C=Py(u, 2) UPx(v, 2)U {uv},
which contradicts with Lemma 2.9. Thus, we have m; =0,i =1, 2, ..., n. By
Theorem 3.1 the theorem follows.
By Theorem 3.2, Lemmas 2.3-2.7 the following theorems 3.3-3.7 are obvious,
wherey=p;+p2+... +pn.
Theorem 3.3. Let T be a tree with n vertices, n > 2, we have
PT)=(@n-1)n-2)+y@2n+y-3).
Theorem 3.4. Let P, be a path with n vertices, n>2. We have
PI(P,") = (n— 1)(n-2) + y(2n + y -3).
Theorem 3.5. PI(K,..,") = (n — 1)(n-2) + y(2n +y -3).
Theorem 3.6. Let C,, be an even cycle, n > 2, we have
PI(Cz ) =4n(n—1)+y(4n +y-1).
Theorem 3.7. PI(Kp,, ) = mn(m +n—2) +y2mn +y -1).
Theorem 3.8. Forn>2,y =p, +p; + ... + pa, we have
PIK,) = n(n — 1)(n - 2) +0.5y(n” + n + 2y — 4).
Proof. By the definition of K, we have
m;=0.5nn-1)-(n-1)
=0.5(n - 1)(n-2).
By Lemma 2.8 and Theorem 3.1 the theorem follows.
Theorem 3.9. Let Cy,y be anodd cycle,n> 1,y =p, + p, + ... + pau+1, we have
PI(Caae1”) =2n(2n + 1) + y(4n + y).
Proof. Obviously, m; = 1,i=1, 2, ..., 2n + 1. By Theorem 3.1 the theorem
follows.
A General Method for the Calculations of PI Index
For a simple graph G, let @ be a bijection: V(G) — V(G). For any pair of
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vertices u, v € V(G), uv EE(G) if and only if ®u)®(v) €E(G), we call ® an
automorphism of G [22].

Let G be a graph with automorphism group I If T" acts as a permutation group
on V(G), we use [I, V(G)] to denote the permutation group. Similarly, if T acts
as a permutation group on E(G), we use [T, E(G)] to denote the permutation
group. Each permutation group [T, X] partitions set X into orbits. If the number
of orbits equals one, we say that I’ is transitive on X. G is a vertex-transitive
graph if and only if T acts on V(G) transitively. Similarly, G is an
edge-transitive graph if and only if I' acts on E(G) transitively [25]. By the
definitions above we have our theorem as follows:

Theorem 4.1. If edges e and f belong to the same edge orbit, we have n. = ng,
where n, and n¢ are defined in section 1.

Remark: Because the edge orbits of many graphs have been determined ( [25],
[26] ), Theorem 4.1 is a very generally useful method which can reduce the
computational amount of PI index strikingly. In the following we use Theorem
4.1 to determine the PI indices of three famous graphs.

Theorem 4.2. Let G be a Petersen graph defined in [22], we have PI(G) = 180.
Proof. By the definition of edge orbit we can prove that Petersen graph has two
edge orbits easily, one with 5 edges, the other with 10 edges. By the definition
of PI index we have n. = 12, where e is an edge in the two orbits either. By
Theorem 4.1 we have PI(G) = 180. The theorem follows.

Theorem 4.3. Let G be a Folkman graph defined in [22], we have PI(G) =
1200.

Proof. Folkman proved that Folkman graph is an edge-transitive graph [22]. By
the definition of PI index we have n. = 30. By Theorem 4.1 we have PI(G) =
1200. The theorem follows.

Theorem 4.4. Let G be a Heawood graph defined in [22], we have PI(G) = 252.
Proof. By the definition of edge orbit we can prove that Heawood graph has two
edge orbits easily, one with 14 edges, the other with 7 edges. By the definition
of PI index we have n. = 12, where e is an edge in the two orbits either. By
Theorem 4.1 we have PI(G) = 252. The theorem follows.
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