ON THE CYCLOMATIC NUMBER OF LINEAR HYPERGRAPHS IOAN TOMESCU FACULTY OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF BUCHAREST STR.ACADEMIEI, 14 010014 BUCHAREST, ROMANIA E-MAIL: IOAN@FMI.UNIBUC.RO AKHLAQ AHMAD BHATTI* NATIONAL UNIV. OF COMPUTER AND EMERGING SCIENCES LAHORE CAMPUS ABDUS SALAM SCHOOL OF MATHEMATICAL SCIENCES 68-B, NEW MUSLIM TOWN, LAHORE, PAKISTAN E-MAIL: AKHLAQ.AHMADQNU.EDU.PK ABSTRACT. In this note it is shown that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number. Keywords: linear hypergraph, hypertree, cyclomatic number. ### 1. Notation and preliminary results A simple hypergraph $H = (X, \mathbb{E})$, with order |X| and size $m = |\mathbb{E}|$, consists of a vertex-set V(H) = X and an edge-set $\mathbb{E}(H) = \mathbb{E}$, where $E \subseteq X$ and $|E| \ge 2$ for each E in \mathbb{E} . H is h-uniform, or is an h-hypergraph, if |E| = h for each E in \mathbb{E} and H is linear if no two edges intersect in more than one vertex. The number of edges containing a vertex x is its degree $d_H(x)$. ^{*}The research was partially supported by Abdus Salam School of Mathematical Sciences and Higher Education Commission of Pakistan. A path of length k joining vertices u and v in H is a subhypergraph consisting of k distinct vertices $x_0 = u, x_1, ..., x_k = v$ and k distinct edges $E_1, ..., E_k$ of H such that $x_{i-1}, x_i \in E_i$ for each i $(1 \le i \le k)$. Similarly, a cycle C of length k in H [3] is a subhypergraph comprising k distinct vertices $x_1, ..., x_k$ and k distinct edges $E_1, ..., E_k$ of H such that $x_i, x_{i+1} \in E_i$ for each $i, 1 \le i \le k-1$ and $x_1, x_k \in E_1$. Two vertices u, v of H are in the same component, if there is a path joining them. If H has only one component then it is connected; otherwise it has $p \ge 2$ connected components. An hypertree is a connected linear hypergraph without cycles. **Lemma 1.1.** Let H be a linear hypergraph without cycles and with order n, size m and p components. Then $$n = \sum_{E \in \mathbb{E}(H)} |E| - m + p.$$ **Proof.** This property follows from the fact that an hypertree with m edges has order $$\sum_{E\in\mathbb{E}(H)}|E|-m+1.$$ If H is an h-uniform hypertree then n = m(h-1) + p [6]. The cyclomatic number of a graph G(also called co-rank of G) [4] is denoted by $\mu(G)$ and it is equal to m-n+p, where m, n and p are the number of edges, vertices and components of G, respectively. If G is cycle-free, i.e., G is forest, then $\mu(G) = 0$. Acharya and Las Vergnas defined a parameter denoted by $\mu(H)$ for an hypergraph H and also called the cyclomatic number of H so that if H is simple graph, $\mu(H)$ is a generalization of this concept. In order to define this notion (see [3]), let H be an hypergraph such that $\mathbb{E}(H) = \{E_1, E_2, ..., E_m\}$ and $V(H) = \bigcup_{i=1}^m E_i$. The intersection multigraph L(H) associated with the hypergraph H is valuated by associating to each edge $u = e_i e_j$ the weight $w(u) = |E_i \cap E_j|$. If F is a spanning forest of L(H), its weight is $w(F) = \sum_{u \in F} w(u)$. The cyclomatic number of an hypergraph H without isolated vertices (i.e., such that $V(H) = \bigcup_{i=1}^m E_i$) is defined as follows: $$\mu(H) = \sum_{i=1}^{m} |E_i| - |X| - w_H,$$ where w_H is the maximum weight of a spanning forest $F \subset L(H)$. If H has a single edge E_1 , we have $\mu(H) = |E_1| - |E_1| = 0$; the same situation holds if H has only two edges E_1 and E_2 since this case $\mu(H) = |E_1| + |E_2| - |E_1 \cup E_2| - |E_1 \cap E_2| = 0$. In these two cases H cannot contain any cycle. In general we have $\mu(H) \geq 0$ [3]. Acharya [1] established sharp bounds for the cyclomatic number $\mu(H)$ and Acharya and Las Vergnas [2] showed that if $\mu(H) = 0$ then the maximal edges of H with respect to inclusion are the cliques of a traingulated graph. By computing in two different ways the sum of cardinalities of all the edges of a hypergraph, Lewin [5] proved that $\mu(H) = 0$ if and only if some maximum forest of the weighted intersection multigraph L(H) has the property that for every vertex of H the subgraph of the forest induced by these edges containing that vertex is connected. If H is a linear hypergraph without isolated vertices, having order n, size m and p components, a maximum spanning forest F of L(H) has cyclomatic number $\mu(F) = 0$. It follows that m(F) - n(F) + p(F) = 0, where m(F), n(F) and p(F) denote the number of edges, vertices and components of F, respectively. But n(F) = m and p(F) = p, which implies m(F) = m - p. By the linearity of H each edge of L(H) has weight 1, hence w(F) = m(F) = m - p. In this case $$\mu(H) = \sum_{E \in \mathbb{E}(H)} |E| - n - m + p. \tag{1}$$ Note that for linear hypergraphs H the condition that H does not contain isolated vertices is immeterial. Indeed, let H_1 be a hypergraph deduced from the linear hypergraph H by adding new s isolated vertices. In this case $$\sum_{E \in \mathbb{E}(H_1)} |E| = \sum_{E \in \mathbb{E}(H)} |E|, n_1 = n + s, m_1 = m \ and \ p_1 = p + s.$$ By (1) we deduce that $\mu(H_1 = \mu(H))$. In particular, if H is a simple graph (with or without isolated vertices), then $\mu(H) = 2m - n - m + p = m - n + p$ is the cyclomatic number of H. It is well known that the cyclomatic number of any graph G is a lower bound for the number of all cycles of G. In the next section we shahh prove this property also holds for linear hypergraphs. #### 2. Main Result **Theorem 2.1**: Let H be a linear hypergraph of order n, size m, having k cycles and p connected components. Then $$k \ge \mu(H) = \sum_{E \in \mathbb{E}(H)} |E| - n - m + p. \tag{2}$$ **Proof**: We shall apply induction on the number of edges. If m = 0, then H is cycle-free, n = p, $k = \mu(H) = 0$ and (2) is an equality. Let $m \geq 1$ and suppose (2) is valid for any linear hypergraph of order n and size at most m-1. If we delete an edge E from an hypergraph H the resulting hypergraph, denoted by H-E, has by definition V(H-E)=V(H) and $\mathbb{E}(H-E)=\mathbb{E}(H)\backslash\{E\}$. By deleting one edge, say E_1 from H we get a linear hypergraph $H'=H-E_1$ having order n, size m-1, k' cycles and p' components for which (2) holds, i.e. $$k' \ge \mu(H') = \sum_{E \in \mathbb{E}(H')} |E| - n - m + 1 + p'.$$ (3) Suppose that E_1 includes $s \ge 0$ vertices of degree one. Vertices of degree greater than or equal to two of E_1 can be partitioned into two groups: One group consists of $r \geq 0$ vertices $z_1,...,z_r$ which belong to r distinct components $C_1,...,C_r$ in H' such that $z_i \in C_i$ for $1 \leq i \leq r$; the other group includes t disjoint subsets of vertices $X_1 = \{z_1^1, z_2^1, ..., z_{m_1}^1\}, X_2 = \{z_1^2, z_2^2, ..., z_{m_2}^2\}, ..., X_t = \{z_1^t, z_2^t, ..., z_{m_t}^t\}$ such that all vertices of X_i belong to a component C_i^1 in H' for $1 \leq i \leq t$ and all components $C_1, ..., C_r, C_1^1, ..., C_t^1$ are distinct (see fig.1). It is clear that $$|E_1| = \sum_{i=1}^{t} m_i + r + s$$ (4) and $$p' = p + t + r + s - 1. (5)$$ On the other hand, for any two vertices z_p^i and z_q^i in the same subset X_i there exists a path $P_{p,q}^i$ joining them in the component C_i^1 of H'. By the linearity of H' these paths must be distinct for $1 \leq p < q \leq m_i$. These paths in H' together the edge E_1 generate distinct cycles in H. It follows that $$k \ge k' + \sum_{i=1}^{t} {m_i \choose 2} \ge k' + \sum_{i=1}^{t} (m_i - 1) = k' + \sum_{i=1}^{t} m_i - t$$ $$\geq \sum_{E \in \mathbb{E}(H)} |E| - |E_1| - n - m + 1 + p' + \sum_{i=1}^{t} m_i - t$$ by (3) Now (2) follows since $\mid E_1 \mid$ and p' are given by (4) and (5). \square The inequality (2) is an equality for example for acyclic linear hypergraphs by Lemma 1.1. Also (2) becomes an equality if linear hypergraph H has only three edges. By considering all the cases for these edges (pairwise disjoint, inducing a star, a path of length three, a path of length two and a path of length one or a cycle), it is easy to see that $k = \mu(H) \in \{0, 1\}$. But if H has m = 4 edges then the inequality (2) may be strict. #### Acknowledgement The authors are indebted to the referee for the valuable comments that improved the original version of this paper. #### REFERENCES - [1] B. D. Acharya, On the cyclomatic number of a hypergraph, *Discrete Math.* 2(27) (1979), 111-116. - [2] B. D. Acharya, M. Las Vergnas, Hypergraphs with cyclomatic number zero, triangulated graphs, and an inequality, J. Combin. Theory B, 1(33) (1982), 52-56. - [3] C. Berge, Hypergraphes, Bordas, Paris, 1987. - [4] N. Biggs, Algebraic Graph Theory, Cambridge University Press, (1974). - [5] M. Lewin, On intersection multigraphs of hypergraphs, J. Combin. Theory B, 2(34)(1983), 228-232. - [6] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory B, 2(72) (1998), 229-235. ## **Author Index** | An Anniad Total edge irregularity strength of strong product of two | | |--|--------| | paths | 449 | | Muhammad Akram Intuitionistic Fuzzy Subcoalgebras of Coalgebras | 423 | | Martin Baca On connection between α -labelings and edge-antimagic | | | labelings of diconnected graphs | 321 | | Martin Baca Total edge irregularity strength of strong product of two | | | paths | 449 | | Yasir Bashir Total edge irregularity strength of strong product of two | | | paths | 449 | | Milan Basic On the diameter of integral circulant graphs | 495 | | Shahzad Basiri On Strong Biclique Covering | 97 | | Benyi Beata Bijective proofs of the hook formula for rooted trees | 483 | | Akhlaq Ahmad Bhatti On The Cyclomatic Number Of Linear | | | Hypergraphs | 527 | | Aubrey Blecher Compositions Of Positive Integers n Viewed As | | | Alternating Sequences Of Increasing/Decreasing Partitions | 213 | | Qin Chen $L(j,k)$ -Labelings and $L(j,k)$ -Edge-Labelings of Graphs | 161 | | Shangdi Chen Three Constructions of Authentication Codes from | | | Power Function over Finite Fields with Perfect Secrecy | 225 | | Chen Shang-di A New Construction of Multisender Authentication | | | Codes from Symplectic Geometry over Finite Fields | 353 | | Wenjuan Chen Intuitionistic Fuzzy Subcoalgebras of Coalgebras | 423 | | Ya-Hong Chen The Wiener Index of Unicyclic Graphs with Girth and | | | Matching Number | 115 | | Tristan Denley A few remarks on avoiding partial Latin squares | 313 | | Adel T. Diab On Cordial Labelings of Fans with Other Graphs | 263 | | A. Dramalidis Transposition H_{ν} -Groups | 143 | | Yonghui Fan A Cube-covering Problem | 257 | | Washiela Fish Codes from embeddings of the strong product of | | | triangular graphs and K2 and certain induced subgraphs | 79 | | Hung-Lin Fu On the Diameter of the Generalized Undirected De Bruijn | | | Graphs | 395 | | Hortensia Galeana-Sanchez Kernels By Monochromatic Directed | 393 | | Paths In m-Colored Digraphs With Quasi-Transitive Chromatic | | | Classes | 461 | | Yanyong Guan Intuitionistic Fuzzy Subcoalgebras of Coalgebras | 423 | | Shu-Guang Guo On the Laplacian Spectral Radius of Unicyclic Graphs | TAJ | | with Fixed Diameter | 47 | | Victor J.W. Guo Bijective proofs of Gould-Mohanty's and | ·· F / | | Raney-Mohanty's identities | 297 | | • · · · · · · · · · · · · · · · · · · · | | | Jianxiu Hao PI Index of Extremal Simple Pericondensed Hexagonal | | |---|-----| | Systems | 33 | | Jianxiu Hao Theorems About PI Indices | 521 | | Rongxia Hao Orientable Embedding Distributions by Genus of | | | Crossing-Digraph | 417 | | LiLi He PI Index of Extremal Simple Pericondensed Hexagonal Systems | 33 | | Premysl Holub The edge-closure of a claw-free graph is the line graph | | | of a multigraph | 289 | | Lih-Hsing Hsu Mutually Independent Hamiltonian Cycles in Some | | | Graphs | 137 | | Mingjun Hu Wiener index of a type of composite graph | 59 | | Min Huang PI Index of Extremal Simple Pericondensed Hexagonal | | | Systems | 33 | | S.S. Hussien L-Presheaves and Their Stalks | 105 | | Huixian Jia Packings and coverings for four particular graphs each with | | | six vertices and nine edges $(\lambda = 1)$ | 11 | | Jiashang Jiang A New Sufficient Condition for Graphs to Have | | | (g,f)-Factors | 3 | | Qingde Kang Packings and coverings for four particular graphs each wit | h | | six vertices and nine edges ($\lambda = 1$) | 11 | | Adel P. Kazemi Roman domination and Mycieleki's structure in graphs | 277 | | Dae Kyu Kim Type I Codes over GF(4) | 173 | | Hyun Kwang Kim Type I Codes over GF(4) | 173 | | Jon-Lark Kim Type I Codes over GF(4) | 173 | | Danilo Korze A note on the independence number of strong products of | | | odd cycles | 473 | | Selda Kucukcifci The full metamorphosis of λ -fold block designs with | l | | block size four into λ-fold triple systems | 337 | | Jaromy Scott Kuhl A few remarks on avoiding partial Latin squares | 313 | | Khumbo Kumwenda Codes from embeddings of the strong product of | | | triangular graphs and K2 and certain induced subgraphs | 79 | | Jyhmin Kuo On the Diameter of the Generalized Undirected De Bruijn | | | Graphs | 395 | | Hong-jian Lai Spanning Eulerian Subgraphs in Generalized Prisms | 305 | | Marcela Lascsakova On connection between α-labelings and | | | edge-antimagic labelings of diconnected graphs | 321 | | Chuantao Li New results on sum graph theory | 509 | | Dengxin Li Spanning Eulerian Subgraphs in Generalized Prisms | 305 | | Xingkuo Li Orientable Embedding Distributions by Genus of | | | Crossing-Digraph | 417 | | Xiaomin Li Spanning Eulerian Subgraphs in Generalized Prisms | 305 | | Cheng-Kuan Lin Mutually Independent Hamiltonian Cycles in Some | | | Graphs | 137 | | Graphin Graphin | | | Liang Lin On the zeroth-order general Randic index of cacti | 38 | |---|-----| | Wensong Lin $L(j,k)$ -Labelings and $L(j,k)$ -Edge-Labelings of Graphs | 16 | | Xiaoshan Liu Packings and coverings for four particular graphs each | | | with six vertices and nine edges $(\lambda = 1)$ | 1 | | Curt Lindner The full metamorphosis of λ -fold block designs with | | | block size four into λ-fold triple systems | 337 | | Bernardo Llano Kernels By Monochromatic Directed Paths In | | | m-Colored Digraphs With Quasi-Transitive Chromatic Classes | 46 | | Hui-Chuan Lu On the Constructions of New Families of Graceful | | | Graphs | 235 | | Mei Lu On the zeroth-order general Randic index of cacti | 381 | | Ch. G. Massouros Transposition H_{ν} -Groups | 143 | | Flavio K. Miyazawa A Cube-covering Problem | 257 | | Sayed Anwar Elsaid Mohammed On Cordial Labelings of Fans | | | with Other Graphs | 263 | | Juan Jose Montellano-Ballesteros Kernels By Monochromatic | | | Directed Paths In m-Colored Digraphs With Quasi-Transitive | | | Chromatic Classes | 461 | | Eric Mwambene Codes from embeddings of the strong product of | | | triangular graphs and K2 and certain induced subgraphs | 79 | | Esamel M. Paluga On the m-Hull Number of the Join and | | | Composition of Graphs | 409 | | Marko Petkovic On the diameter of integral circulant graphs | 495 | | James Preen A Census of all 5-regular planar graphs with diameter 3 | 129 | | A.E. Radwan L-Presheaves and Their Stalks | 105 | | A.P. Santhakumaran The Geo-Number Of A Graph | 65 | | Andrea Semanicova On connection between α-labelings and | 0.0 | | edge-antimagic labelings of diconnected graphs | 321 | | Yuan-Kang Shih Mutually Independent Hamiltonian Cycles in Some | | | Graphs | 137 | | Muhammad Kamran Siddiqui Total edge irregularity strength of | | | strong product of two paths | 449 | | Dragan Stevanovic On the diameter of integral circulant graphs | 495 | | Jimmy J.M. Tan Mutually Independent Hamiltonian Cycles in Some | | | Graphs | 137 | | Siping Tang Independence number and [a,b]-factors of graphs | 247 | | Jim Tao Maximal Separation On 2-D Arrays | 435 | | P. Titus The Geo-Number Of A Graph | 65 | | Ioan Tomescu On The Cyclomatic Number Of Linear Hypergraphs | 527 | | Aleksander Vesel A note on the independence number of strong | | | products of odd cycles | 473 | | Changping Wang The Signed k-Domination Numbers In Graphs | 205 | | Haiying Wang New results on sum graph theory | 509 |