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ABSTRACT. In this note it is shown that the number of
cycles of a linear hypergraph is bounded below by its cy-
clomatic number.
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1. Notation and preliminary results

A simple hypergraph H = (X,E), with order |X| and size
m = [E|, consists of a vertez-set V(H) = X and an edge-set
E(H) = E, where £ C X and |E| > 2 for each E in E. H is
h-uniform, or is an h-hypergraph, if |E| = h for each E in E and
H is linear if no two edges intersect in more than one vertex.
‘The number of edges containing a vertex z is its degree dy (z).
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A path of length k joining vertices u and v in H is a subhy-

pergraph consisting of k distinct vertices zo = u, Z1,...,Tk =V
and k distinct edges Ej, ..., Ex of H such that z;_,;,z; € E; for
each i (1 <i < k).
Similarly, a cycle C of length k in H (3] is & subhypergraph
comprising k distinct vertices z1,...,%x and k distinct edges
E,, ..., Ey of H such that z;,z;41 € E;foreachi, 1<i<k-1
and z,,z; € E;. Two vertices u, v of H are in the same compo-
nent, if there is a path joining them. If H has only one compo-
nent then it is connected; otherwise it has p > 2 connected com-
ponents. An hypertree is a connected linear hypergraph without
cycles.

Lemma 1.1. Let H be a linear hypergraph without cycles
and with order n, size m and p components. Then

n= Y |El-m+p
E€E(H)

Proof. This property follows from the fact that an hypertree
with m edges has order

Z |E| —m+ 1.

EcE(H)
O

If H is an h-uniform hypertree then n = m(h — 1) +p [6].
The cyclomatic number of a graph G(also called co-rank of G)
[4] is denoted by u(G) and it is equal to m —n + p, where m, n
and p are the number of edges, vertices and components of G,
respectively. If G is cycle-free, i.e., G is forest, then w(G) = 0.

Acharya and Las Vergnas defined a parameter denoted by u(H)
for an hypergraph H and also called the cyclomatic number
of H so that if H is simple graph, u(H) is a generalization
of this concept. In order to define this notion (see (3]), let
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H be an hypergraph such that E(H) = {Ey, E,, ..., E,,} and
V(H) = U2, E;. The intersection multigraph L(H) associated
with the hypergraph H is valuated by associating to each edge
u = e;e; the weight w(u) =| E; N E; |. IF F is a spanning for-
est of L(H), its weight is w(F) = 3 .pw(u). The cyclomatic
number of an hypergraph H without isolated vertices (i.e., such
that V(H) = UR, E;) is defined as follows:

m

pH) =Y | E|-|X|—wn,

i=1
where wy is the maximum weight of a spanning forest F' C
L(H).

If H has a single edge E;, we have u(H) =| E) | — | E} |= 0; the
same situation holds if H has only two edges E;, and F, since
thiSC&SCﬂ(H) =| E, I +lE2 I —IE1UE2 | —,ElnEg |=0.
In these two cases H cannot contain any cycle. In general we
have u(H) > 0 [3).

Acharya [1] established sharp bounds for the cyclomatic number
u(H) and Acharya and Las Vergnas [2] showed that if u(H) = 0
then the maximal edges of H with respect to inclusion are the
cliques of a traingulated graph. By computing in two differ-
ent ways the sum of cardinalities of all the edges of a hyper-
graph, Lewin [5] proved that u(H) = 0 if and only if some
maximum forest of the weighted intersection multigraph L(H)
has the property that for every vertex of H the subgraph of
the forest induced by these edges containing that vertex is con-
nected.

If H is a linear hypergraph without isolated vertices, having
order n, size m and p components, a maximum spanning for-
est F' of L(H) has cyclomatic number u(F) = 0. It follows that
m(F)—n(F)+p(F) = 0, where m(F),n(F) and p(F) denote the
number of edges, vertices and components of F, respectively.
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But n(F) = m and p(F) = p, which implies m(F) = m —p.
By the linearity of H each edge of L(H) has weight 1, hence
w(F) = m(F) =m — p. In this case

wH= 3 |Bl-n-—m+p. (1)
EcE(H)

Note that for linear hypergraphs H the condition that H does
not contain isolated vertices is immeterial. Indeed, let H; be a
hypergraph deduced from the linear hypergraph H by adding
new s isolated vertices. In this case

Z | E |=- Z |E|,ni=n+s,m=mandpr=p+s.
EecE(H,) EeE(H)

By (1) we deduce that p(H) = u(H).

In particular, if H is a simple graph (with or without isolated
vertices), then pu(H) = 2m —n—-m+p=m-—n+pis the
cyclomatic number of H.

It is well known that the cyclomatic number of any graph G
is a lower bound for the number of all cycles of G. In the next
section we shahh prove this property also holds for linear hyper-
graphs.

2. Main Result

Theorem 2.1: Let H be a linear hypergraph of order n, size
m, having k cycles and p connected components. Then

k2pH)= ) |El-n-—m+p. (2)
EcE(H)

Proof: We shall apply induction on the number of edges. If
m = 0, then H is cycle-free, n = p, k = u(H) = 0 and (2) is
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an equality. Let m > 1 and suppose (2) is valid for any linear
hypergraph of order n and size at most m — 1. If we delete
an edge E from an hypergraph H the resulting hypergraph,
denoted by H — E, has by definition V(H — E) = V(H) and
E(H — E) = E(H)\{E}. By deleting one edge, say E, from H
we get a linear hypergraph H' = H — E, having order n, size
m — 1, k" cycles and p’ components for which (2) holds, i.e.

K2wH)= > |El-n—-m+1+p. (3)
EcE(H')

Suppose that F; includes s > 0 vertices of degree one. Vertices

of degree greater than or equal to two of E; can be partitioned
into two groups:

One group consists of r > 0 vertices 2y, ..., z- which belong to

r distinct components Ci,...,C, in H such that z; € C; for

1 <7 < r; the other group includes ¢ disjoint subsets of vertices
Xi=A{zl, 25,z L Xa={2},23,.., 22} ..., Xo = {28, 2, .., 2, }
such that all vertices of X; belong to a component C} in H' for

1 £ i <t and all components Cy, ...,C,, C},...,C} are distinct
(see fig.1). It is clear that

FIGURE 1

t
|E1|=Zm,-+r+s (4)

i=1
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and

: p=p+t+r+s—1 5)
On the other hand, for any two vertices z;; and z}; in the same
subset X; there exists a path P;,q joining them in the component
Clof H '. By the linearity of H " these paths must be distinct
for 1 < p < q < m;. These paths in H' together the edge E;
generate distinct cycles in H. It follows that

t t t
kzk'+2(";‘)zk’+2(mi—1)=k’+zm,-—t
i=1 i=1

i=1

‘ t
> ¥ |E|—-|E|-n-m+l+p+Y, mi—t by (3).
E€E(H) i=1

Now (2) follows since | E; | and p are given by (4) and (5). O

The inequality (2) is an equality for example for acyclic lin-
ear hypergraphs by Lemma 1.1. Also (2) becomes an equality
if linear hypergraph H has only three edges. By considering all
the cases for these edges (pairwise disjoint, inducing a star, a
path of length three, a path of length two and a path of length
one or a cycle), it is easy to see that k£ = u(H) € {0,1}. But if
H has m = 4 edges then the inequality (2) may be strict.
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