Wiener index of a type of composite graph *

Mingjun Hu[†]

Department of Mathematics and Physics, Anhui University of Architecture Hefei, Anhui 230601, P. R. China

Abstract

Wiener index, one of the oldest molecular topological descriptors used in mathematical chemistry, was well-studied during the past decades. For a graph G, its Wiener index is defined as $W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u,v)$, where $d_G(u,v)$ is the distance between two vertices u and v in G. In this paper, we study Wiener index of a class of composite graph, namely, double graph. We reveal the relation between the Wiener index of a given graph and the one of its double graph as well as the relation between Wiener index of a given graph and the one of its k-iterated double graph. As a consequence, we determine the graphs with the maximum and minimum Wiener index among all double graphs and k-iterated double graphs of connected graphs of same order, respectively.

Keywords: Distance in graphs; Wiener index; double graph; extremal graphs.

1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). For a graph G, we let $d_G(v)$ be the degree of a vertex v in G and $d_G(u, v)$ be the distance between two vertices u and v in G.

^{*}Supported by SRF of Anhui Province Educational Department under the grant: KJ2011B052.

[†]E-mail address: mjhu_123@126.com.

One of the oldest and well-studied distance-based graph invariants associated with a connected graph G is the Wiener number W(G), also termed as Wiener index in chemical or mathematical chemistry literature, which is defined [11] as the sum of distances over all unordered vertex pairs in G, namely,

$$W(G) = \sum_{\{u, v\} \subseteq V(G)} d_G(u, v).$$

Up to now, there are a lot of mathematical and chemical literatures dealing with Wiener index; many results were achieved (see the recent papers [2, 3, 4, 5, 6, 9, 10, 12] and the references quoted therein). Despite of the results obtained above, there are few results dealing with Wiener index of composite graphs (see [7, 8, 13]).

In this paper, we study Wiener index of a class of composite graph, namely, double graph. We reveal the relation between the Wiener index of a given graph and the one of its double graph as well as the relation between Wiener index of a given graph and the one of its k-iterated double graph. As a consequence, we determine the graphs with the maximum and minimum Wiener index among all double graphs and k-iterated double graphs of connected graphs of same order, respectively.

Before proceeding, we introduce some further notation and terminology.

The diameter of a connected graph is the greatest distance between any pair of vertices in this graph. The eccentricity of a vertex v in a graph G is defined to be $ec_G(v) = \max\{d_G(u, v)|u \in V(G)\}$. Denoted by P_n and K_n the path and complete graph on n vertices, respectively. Other notation and terminology not defined here will conform to those in [1].

For a fixed vertex v, let $n_v(k)$ denote the number of vertices in G at distance k from v. Then we can rewrite the Wiener index as

$$W(G) = \frac{1}{2} \sum_{v \in V(G)} \sum_{k=1}^{ec_G(v)} k n_v(k), \tag{1}$$

where $ec_G(v)$ is the eccentricity of vertex v and $\sum_{k=1}^{ec_G(v)} n_v(k) = n-1$.

2 Wiener index of double graph and k-th iterated double graph

The double graph G^* of a given graph G is constructed by making two copies of (including the initial edge set of each) and adding edges u_1v_2 and u_2v_1 for every edge uv of G.

For each vertex u in G, we call the corresponding vertices u_1 and u_2 , in G^* , the *clone vertices* of u.

Theorem 1. Let G be a nontrivial connected graph of order n and G^* its double graph. Then

$$W(G^*) = 4W(G) + 2n.$$

Proof. For the sake of convenience, we label vertices of G as $\{v_1, \ldots, v_n\}$. Suppose that x_i and y_i are the corresponding clone vertices, in G^* , of v_i for each $i=1,\ldots,n$. Given a vertex v_i in G. According to the definition of double graph, for any vertex v_j , different from v_i , in G, we have $d_{G^*}(x_i, x_j) = d_{G^*}(x_i, y_j) = d_{G^*}(y_i, x_j) = d_{G^*}(y_i, y_j) = d_{G}(v_i, v_j)$. So $ec_{G^*}(x_i) = ec_{G^*}(y_i) = ec_{G}(v_i)$.

For a given vertex v_i in G, let $n_{v_i}(k)$ denote the number of k-paths starting from v_i $(k = 1, ..., ec_G(v_i))$. Then the number of k-paths starting from x_i (or y_i) in G^* is just $2n_{v_i}(k)$ for $k \neq 2$ and the number of 2-paths starting from x_i (or y_i) in G^* is just $2n_{v_i}(2) + 1$. By symmetry and the equation (1), we have

$$W(G^*) = \sum_{\{u,v\}\subseteq V(G^*)} d_{G^*}(u,v)$$

$$= \frac{1}{2} \left(2 \sum_{i=1}^n \sum_{v \in V(G^*)} d_{G^*}(x_i,v) \right)$$

$$= \sum_{i=1}^n \sum_{v \in V(G^*)} d_{G^*}(x_i,v)$$

$$= \sum_{i=1}^n \left[\sum_{k=1, k \neq 2}^{ec_{G^*}(x_i)} k \cdot 2n_{v_i}(k) + 2 \cdot (2n_{v_i}(2) + 1) \right]$$

$$= 2 \sum_{i=1}^n \sum_{k=1}^{ec_{G}(v_i)} kn_{v_i}(k) + 2n$$

$$= 4W(G) + 2n,$$

as expected.

Example 1. Consider Wiener index of H_{2n} , obtained from the complete graph K_{2n} by removing an n-matching. It is obvious that H_{2n} can be viewed as the double graph of K_n . Then by Theorem 1, we have

$$W(H_{2n}) = 4W(K_n) + 2n = 4 \cdot \frac{n(n-1)}{2} + 2n = 2n^2.$$

For a graph G, its k-th iterated double graph G^{k*} , is defined as

$$G^{1*} = G^*$$
 and $G^{k*} = (G^{(k-1)*})^*$ for $k \ge 2$.

For consistence, we let $G^{0*} = G$.

Theorem 2. Let G be a nontrivial connected graph of order n and G^{k*} its k-th iterated double graph. Then

$$W(G^{k*}) = 4^k W(G) + 2^k (2^k - 1)n.$$

Proof. Note that G^{k*} has $2^k n$ vertices. By Theorem 1 and the definition of k-th iterated double graph, for $k \geq 1$, we have the following recursive relation:

$$W(G^{k*}) = 4W(G^{(k-1)*}) + 2 \cdot 2^{k-1}n = 4W(G^{(k-1)*}) + 2^kn.$$

By the recursive relations above, we thus have

$$\begin{split} W(G^{k*}) &= 4W(G^{(k-1)*}) + 2^k n \\ &= 4(4W(G^{(k-2)*}) + 2^{k-1}n) + 2^k n \\ &= 4^2W(G^{(k-2)*}) + 2^{k+1}n + 2^k n \\ &= 4^3W(G^{(k-3)*}) + 2^{k+2}n + 2^{k+1}n + 2^k n \\ &= \dots \\ &= 4^kW(G^{0*}) + 2^{2k-1}n + \dots + 2^{k+2}n + 2^{k+1}n + 2^k n \\ &= 4^kW(G) + 2^{2k-1}n + \dots + 2^{k+2}n + 2^{k+1}n + 2^k n \\ &= 4^kW(G) + 2^k(2^k - 1)n. \end{split}$$

Recall that among all connected graphs of order n, K_n has the minimum Wiener index, while P_n has the maximum Wiener index. By means of Theorems 1 and 2, we thus have

Corollary 1. Among all double graphs of connected graphs of order n, the double graph of K_n has the minimum Wiener index, while the double graph of P_n has the maximum Wiener index.

Corollary 2. Among all k-th iterated double graphs of connected graphs of order n, the k-th iterated double graph of K_n has the minimum Wiener index, while the k-th iterated double graph of P_n has the maximum Wiener index.

References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.
- [2] N. Cohen, D. Dimitrov, R. Krakovski, R. Skrekovski, V. Vukasinovic, On Wiener index of graphs and their line graphs, MATCH Commun. Math. Comput. Chem., 64 (2010) 683-698.

- [3] K. C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices, number of edges, and diameter, MATCH Commun. Math. Comput. Chem., 64 (2010) 647-660.
- [4] A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001) 211-249.
- [5] A. A. Dobrynin, On the Wiener index of fibonacenes, MATCH Commun. Math. Comput. Chem., 64 (2010) 707-726.
- [6] A. Graovac, T. Pisanski, On the Wiener index of a graph, J. Math. Chem., 8 (1991) 53-62.
- [7] I. Gutman, On the distance of some compound graphs, Publ. Elektrotehn. Fak. Beograd Ser. Mat., 5 (1994) 29-34.
- [8] I. Gutman, Hosoya polynomial and the distance of the total graph of a tree, Publ. Elektrotehn. Fak. Beograd Ser. Mat., 10 (1999) 53-58.
- [9] I. Pesek, M. Rotovnik, D. Vukicevic, J. Zerovnik, Wiener number of directed graphs and its relation to the oriented network design problem, MATCH Commun. Math. Comput. Chem., 64 (2010) 727-742.
- [10] S. Wagner, A note on the inverse problem for the Wiener index, MATCH Commun. Math. Comput. Chem., 64 (2010) 639-646.
- [11] H. Wiener, Structural determination of paraffin boiling point, J. Amer. Chem. Soc., 69 (1947) 17-20.
- [12] B. Wu, Wiener index of line graphs, MATCH Commun. Math. Comput. Chem., 64 (2010) 699-706.
- [13] Y. N. Yeh, I. Gutman, On the sum of all distances in composite graphs, Discr. Math., 135 (1994) 359-365.