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Abstract

Let G be a connected graph of order p > 2. The closed interval
I[z,y] consists of all vertices lying on some z-y geodesic of G. If
S is a set of vertices of G, then I[S] is the union of all sets I[z,y)
for z,y € S. The geodetic number g(G) is the minimum cardinality
among the subsets S of V(G) with I[S] = V. A geodetic set of
cardinality g(G) is called a g-set of G. For any vertex z in G, a set
Sz C V is an z-geodominating set of G if each vertex v € V lies on
an z-y geodesic for some element y in S;. The minimum cardinality
of an z-geodominating set of G is defined as the z-geodomination
number of G, denoted by g:(G) or simply g.. An z-geodominating
set Sz of cardinality g.(G) is called a g-set of G. If S, U{z} is a g-set
of G, then z is called a geo-vertex of G. The set of all geo-vertices
of G is called the geo-set of G and the number of geo-vertices of G is
called the geo-number of G and it is denoted by gn(G). For positive
integers r,d and n > 2 with » < d < 2r, there exists a connected
graph G of radius r, diameter d and gn{G) = n. Also, for each triple
p,dandnwith35d5p—1,2$n$p—2a.ndp—d—n+l20,
there exists a graph G of order p, diameter d and gn(G) = n. If
the z-geodomination number g.(G) is same for every vertex z in G,
then G is called a vertex geodomination regular graph or for short
VGR-graph. If S; U {z} is same for every vertex z in G, then G is
called a perfect vertex geodomination graph or for short PVG-graph.
We characterize a PVG-graph.
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1 Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and ¢
respectively. For basic graph theoretic terminology we refer to Harary [5].
For vertices z and y in a connected graph G, the distance d(z,v) is the
length of a shortest z-y path in G. An z-y path of length d(z,y) is called
an z-y geodesic. A vertex v is said to lie on an z-y geodesic P if v is a vertex
of P including the vertices z and y. The diameter diam G of a connected
graph G is the length of any longest geodesic. The neighborhood of a vertex
v is the set N(v) consisting of all vertices u which are adjacent with v. A
vertex v is a simplicial or eztreme vertez if the subgraph induced by its
neighbors is complete. A nonseparable graph is connected, nontrivial, and
has no cut vertices. A block of a graph is a maximal nonseparable subgraph.
A connected block graph is a connected graph in which each of its blocks is
complete. :

The closed interval I[z,y] consists of all vertices lying on some z-y
geodesic of G, while for S € V, I (S] = U Ilz,y]. A set S of vertices

z,y€S

is a geodetic set if I[S] = V, and the minimum cardinality of a geodetic set
is the geodetic number g(G). A geodetic set of cardinality g(G) is called a
g-set of G. The geodetic number of a graph was introduced in [1, 6] and
further studied in [3). It was shown in [6] that determining the geodetic
number of a graph is an NP-hard problem. Geodetic concepts were first
studied from the point of view of domination by Chartrand, Harary, Swart,
and Zhang in [2], where a pair z,y of vertices in a nontrivial connected
graph G is said to geodominate a vertez v of G if v € I[z,y), that is, v lies
on an z-y geodesic of G. In (2], geodetic sets and the geodetic number were
referred to as geodominating sets and geodomination number. For a con-
nected graph G and a set W C V(G), a tree T contained in G is a Steiner
tree with respect to W if T is a tree of minimum order with W C V(T).
The set S(W) consists of all vertices in G that lie on some Steiner tree with
respect to W. The set W is a Steiner set for G if S(W) = V(G). The
minimum cardinality among the Steiner sets of G is the Steiner number
s(G).

The concept of vertex geodomination number was introduced by San-
thakumaran and Titus [8] and further studied in [9]. A vertex y in a
connected graph G is said to z-geodominate a vertex u if » lies on an z-y
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geodesic. A set S of vertices of G is an z-geodominating set if each vertex
v € V(G) is z-geodominated by some element of S. The minimum car-
dinality of an z-geodominating set of G is defined as the z-geodomination
number of G, denoted by g.(G) or simply g,. An z-geodominating set of
cardinality g.(G) is called a g.-set.

Every vertex of an z-y geodesic is z-geodominated by the vertex y.
Since, by definition, a g,-set is minimum, the vertex z and also the internal
vertices of an z-y geodesic do not belong to a g,-set. For the graph G given
in Figure 1.1, gu(G) = 1, g,(G) = 2, gu(G) =2, g.(G) =2 and g,(G) =1
with minimum vertex geodominating sets {y}, {u, y}, {u, z}, {u, w} and {u}
respectively.

w
G

Figure 1.1

It is proved in [8] that for any vertex z in G, gy-set is unique and
1 £ 92(G) < p—1 for every vertex z in G. We characterized graphs which
realize the bounds. It is also proved that g(G) < g.(G) +1 for every vertex
z in G. An elaborate study of results in vertex geodomination with several
interesting applications is given in [8, 9]. The following theorems will be
used in the sequel.

Theorem 1.1. [1] Let G be a connected graph. Then g(G) = p if and
only if G = K,

Theorem 1.2. 1] No cut vertez of G belongs to any minimum geodetic
set of G.

Theorem 1.3. [2] Every geodominating set of a graph G contains every
simplicial verter of G. In particular, if the set W of simplicial vertices is a
geodominating set of G, then W is the unique g-set of G and so g(G) = |W/|.

Theorem 1.4. (3] For integers m,n > 2, g(Kpm ) = min{m,n,4}.

Theorem 1.5. (6] For the wheel Wy ,,, g(W1,,) = { [42] ff:-r:: : Z',
2 - .
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Result 1.6. [8] Every verter of an z-y geodesic is z-geodominated by the
vertez y. Since, by definition, a g-set is minimum, the vertez = and also
the internal vertices of an z-y geodesic do not belong to the g.-set.

Theorem 1.7. [8] Let G be a connected graph.

(i) Every simplicial vertez of G other than the vertez x (whether x is
simplicial or not) belongs to the g.-set for any verter x inG.

(ii) For any verter z, eccentric vertices of = belong to the g:-set.
(iii) No cut vertez of G belongs to any g-set.
Theorem 1.8. [8] For any vertez z in G, g(G) < g=(G) + 1.

Theorem 1.9. [8] Let T be a tree with number of pendent vertices k.
Then g-(T) > k — 1 or k according as T is a pendent or non-pendent
vertez.

Theorem 1.10. [8]

(i) For the wheel Wy n = K1+Cn(n 2 4), gz(Ws) =n or n—3 according
as ¢ is K1 or z is in Cy,.

(ii) Let Kpn(m.n > 2) be a complete bipartite graph with bipartition
(V1,Va). Then gz(Kmp) ism—1orn—1 according as z is in Vi or
z 18 in Va.

Throughout the following G denotes a connected graph with at least
two vertices.

2 The Geo-number of a Graph

Definition 2.1. Let G be a connected graph. Let z be any vertez of G
and S be the gz-set of G. If Sz U {z} is a g-set of G, then x is called o
geo-vertex of G. The set of all geo-vertices of G is called the geo-set of G
and the number of geo-vertices of G is called the geo-number of G and it is
denoted by gn(G).

Example 2.2.

(i) For the graph G given in Figure 2.1, Sy = {v1,vs,v7} and S2 =
{v1,vs,v7} are the only two g-sets. The various gz-sets of the graph
G are given in Table 2.1 and {v1,vs} is the geo-set of G so that
gn(G) = 2.
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(i) For the complete graph K,, g(Kp) = p by Theorem 1.1 and so V is
the g-set of K. For any vertez x in K, the g-set Sy equals V — {z}
and so S; U {z} = V. Thus every vertez of K, is a geo-vertez and
hence gn(K,) = p.

(iii) For the complete bipartite graph Km n(m,n 2> 5) with partition (V1, V),
9(Kmn) = 4 by Theorem 1.4. Let x be any vertez of Kyn n. But by
Theorem 1.10(ii), gz (Km,n) ism—1 orn—1 according as x is in V}
or z is in V. Thus S; U {z} is not a g-set of G and hence Ky, p has
no geo-vertex if m,n > 5. Thus gn(Ky ,) =0.

Vi
V2 1%}
Va V6 V7
Vs
G
Figure 2.1
Vertex z gr-sets
v {vs, v7}
U2 {‘Ul »Us, v7}
v3 {v1,v4,v5,v7}
Uq {'Ul )y U3, v-,}
Us {'Ul ’ 07}
Vs {‘U],‘U2,'U4, U?}
U7 {Ul » V2, 1J4}
Table 2.1

The following theorem is clear from the definition.
Theorem 2.3.  For any connected graph G, 0 < gn(G) < p.

Observation 2.4. If G is a connected graph, then no cut vertezx of G is
e geo-vertez of G.
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The following theorem is an immediate consequence of Observation 24.

Theorem 2.5. If k is the number of cut vertices of a connected graph
G, then gn(G) <p—k.

Remark 2.6.  The bound in Theorem 2.5 is sharp. For the graph G given
in Figure 2.2, p =5,k =1 and gn(G) =4 =p—k. For the graph G given
in Figure 2.1, p= T,k =1 and gn(G) =2 <p —k so that the inequality in
Theorem 2.5 can be strict.

G

Figure 2.2
The following example gives the geo-numbers of certain special classes
of graphs.
Example 2.7.

(i) If T is a non-trivial tree with number of end vertices k, then gn(T) =

(ii) If G is the complete graph K, or the cycle C;, then gn(G) =p.
(iii) If G is the n-cube Qn(n > 1), then gn(G) = 2".
(iv) If G is the complete bipartite graph Kpn(m < n), then

n fl=m<n
) m fl<m<nandm<A4
gn(G) = 2m fm=n<4
0 if m,n > 5.

The following observation is an casy consequence of some of the pre-
ceeding results.

Observation 2.8.  For a connected graph G,
(i) if g=(G) = 1 for some vertez z in G, then gn(G) = 2.
(ii) if g(G) = 2, then gn(G) = 2.
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(iii) if s(G) = 2, then gn(G) > 2.

(iv) if every vertezx of G is either a cut verter or a simplicial vertez, then
z is a geo-verter of G if and only if x is a simplicial vertez of G.

Since every vertex of a connected block graph is either a cut vertex or
a simplicial vertex, the following theorem follows from Observation 2.8(iv).

Theorem 2.9. IfG is a connected block graph with number of simplicial
vertices k, then gn(G) = k.

Remark 2.10. In general there is no relation between g(G) and gn(G).
For the graph G given in Figure 2.1, g(G) > gn(G). For the cycle Cp(p >
4), 9(Cp) < gn(Cp). For a non-trivial tree T, g(T') = gn(T).

However, we have the following result.

Theorem 2.11.  If G is a connected graph with unique g-set, then gn(G) <
9(G).

Proof. Let S, be the g,-set of G and let S be the unique g-set of G. If
G is the complete graph K, then by Example 2.2(ii) and Theorem 1.1,
gn(G) = g(G) = p. Now assume that G is not complete. Then by Theorem
1.1, S C V. For any vertex ¢ ¢ S, S;U{z} # S and so z is not a geo-vertex
of G. Hence gn(G) < ¢(G). a

Corollary 2.12. If G is a connected graph with unique g-set, then
9n(G) < 92(G) + 1 for any vertez z in G.

Proof.  This follows from Theorem 1.8 and Theorem 2.11. O

The following theorem gives a realization result for the geo-number of
a graph.

Theorem 2.13.  For any integer n such that 0 < n < p (p > 6), there is
a graph G of order p and gn(G) = n.

Proof. Let n = 0. For p = 6, consider the graph G given in Figure 2.3(i).
By Theorem 1.3, {i;,z3, 5} is the unique g-set of G and it is easily seen
that no vertex of G is a geo-vertex so that gn(G) = 0. For p > 7, let
G = Wjp1. Then by Theorem 1.5, g(G) = [%1] < p—4. Also, by
Theorem 1.10(i), g-(G) = p— 1 or p — 4 for any vertex = in G. Hence it
follows from the definition of a geo-vertex that no vertex of G is a geo-vertex
of G. Thus gn(G) = 0.

Let n = 1. For p = 6, consider the graph G given in Figure 2.3(ii).
By Theorem 1.3, {z;,z3, x5} is the unique g-set of G and it is easily seen
that z, is the unique geo-vertex of G so that gn(G) = 1. For p > 7, let
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Cs : v1,v2, V3,4, Vs, U] be a cycle of order 5, P : 1,72 be a path of length
one and Pp_5 : y1,¥2,...,Yp—5 be a path of length p — 6. Let G be the
graph obtained from Cs, P> and P,_5 by identifying v; in Cs and z; in P
and identifying vs in Cs and y; in P,_s. The graph G is given in Figure
2.3(iii).

X1 X2 X X2
X6 X3 X6 X3
X5 X4 X5 X4
G G
Figure 2.3(i) Figure 2.3(ii)
V3 V2 Y2 3 Yp-4 Yp-5
L 4 o cee —O————Q
V4
Vs Vi X2

G

Figure 2.3(iii)

Let S = {Z2,yp-s} be the set of end vertices of G. But I[S] =
SU {v1,v2,¥2,93, - - -, Yp-4a} # V(G). This implies that S is not a geodom-
inating set of G. Now by Theorem 1.3, g(G) > 2. On the other hand,
I[SU {v4}] = V(G). Hence T = S U {v4} is a geodominating set of G so
that g(G) = 3. Also it is clear that I[S U {z}] # V(G) for 2 € {vs,vs} and
hence T is the unique g-set of G. Thus by Theorem 2.11, gn(G) < 3. It is
easily checked that vy is the unique geo-vertex of G and so gn(G) = 1.

For 2 < n < p— 1, the tree T given in Figure 2.3(iv) has p = k +n
vertices and it follows from Example 2.7(i) that gn(T") = n. For n = p, the
theorem follows from Example 2.7(ii) by taking G = K. 0
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Vi V2 L&}

T
Figure 2.3(iv)

Remark 2.14. For 2 < p < 5, it is straight forward to verify that there
is no graph G of order p with gn(G) =0 or gn(G) = 1. Thus Theorem 2.13
does not hold for 2 < p < 5.

For every connected graph G,rad G < diam G < 2 rad G. Ostrand [7)
showed that every two positive integers a and b with a < b < 2a are real-
izable as the radius and diameter, respectively, of some connected graph.
Ostrand’s theorem can be extended so that the geo-number can be pre-
scribed when a < b < 2a.

Theorem 2.15.  For positive integers r,d and n > 2 with r < d < 2r,
there erists a connected graph G with rad G = r, diam G = d and gn(G) =
n.

Proof. If r =1, then d = 2. Let G = K, ,. Then by Example 2.7(i),
gn(G) = n. Now, let r > 2. We construct a graph G with the desired
properties as follows:

Let Cor : v1,v2,...,v2,,v1 be a cycle of order 2r and let Py_,4; :
ug,U1,...,Ud—r be a path of order d — r + 1. Let H be a graph obtained
from C,, and Py_,; by identifying v in Co, and up in Py_,4;.

Case 1. Supposen = 2. Let G =H. Now rad G =r, diam G =d and G
has one end-vertex ug_,. Clearly, S = {¢4-r,v,41} is the geodominating
set of G so that g(G) = 2. Also it is clear that I[{u4_,,v;}] # V(G) for
i # r+1 and hence S is the unique g-set of G. Then by Observation 2.8(ii)
and Theorem 2.11, gn(G) = 2.

Case 2. Suppose n > 3. Add n — 2 new vertices w;, ws, ..., wn_2 to H
and join each vertex w;(1 < i < n—2) to the vertex ug_,_; and obtain the
graph G of Figure 2.4.

Now rad G = r, diam G = d and G has n — 1 end vertices. Let
S = {ug—r, w1.w2,...,wn_2} be the set of end vertices of G. But I[S] =
SU{ug_r_1} # V(G). This implies that S is not a geodominating set of G.
Now by Theorem 1.3, g(G) > n — 1. On the other hand, I[SU {v,4,}] =
V(G). Hence, T = SU{v,41} is a geodominating set of G so that g(G) = n.
Also it is clear that I[S U {v;}] # V(G) for i # r + 1 and hence T is the
unique g-set of G. Thus by Theorem 2.11, gn(G) < n. Clearly, T - {z} is
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the gz-set of G for any vertex z in T' and so every vertex of T is a geo-vertex
of G. Thus gn(G) = n. O

Vrey u| 1773 Uge oy Wd- .
Vi

V2 wi oo Wn-2

G
Figure 2.4

The graph G of Figure 2.4 is the smallest graph with the properties
described in Theorem 2.15.

Remark 2.16. In the case of geo-number gn(G) of G there are graphs
for which gn(G) =p—d+1, gn(G) <p—-d+1and gn(G) >p—d+1.
For the complete graph K,,gn(K,) =p —d+ 1. For the complete bipartite
graph Ky n(m,n > 5), gn(Kmn) < p—d+1. For the cycle Co(p 2 4),
gn(Cp) >p—d+1.

In the following theorem we construct a graph of prescribed order, di-
ameter and geo-number under suitable conditions.

Theorem 2.17. If p,d and n are integers such that 3 < d < p—1,
2<n<p—-2andp—d—n+120, then there erists a graph G of order
p, diameter d and gn(G) = n.

Proof. Let Pyyp : uo,u1,u2,...,us be apath of length d and let Py gnt2:
W, Wy, Wa, . . - , Wp-d—n+1 be a path of length p—d—n+1. The graph H in
Figure 2.5(i) is obtained by identifying the vertex wo in Pp—4-n+2 and u
in Ps41 and joining the vertices wy,ws, ..., Wp—d—n+1 to both the vertices
Uugp and Uus.

Case 1. Suppose n = 2. Let G = H. Then G has order p and diameter
d. Moreover, the set § = {ug, uq} is the unique g-set of G and so g(G) = 2.
Then by Observation 2.8(ii) and Theorem 2.11, gn(G) = 2. Thus G has
the desired properties.
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Uo Uu) 17] U3 Ug_| Uqg
“es —O——@

Wp_d-n+l
H

Figure 2.5(i)

Case 2. Suppose 3 <n <p—2. Add n — 2 new vertices vy, v2,...,Vn_2
to H and join these to uy, there by producing the graph G of Figure 2.5(ii).
Then G has order p and diameter d. Let S = {ud,v1,v2,...,0n-2} be
the set of end vertices of G. But I[S] = S U {uz,us,...,ua—1} # V(G).
This implies that S is not a geodominating set of G. Now by Theorem
1.3, g(G) > n — 1. On the other hand, I[S U {up}] = V(G). Hence
T = SU {ug} is a geodominating set of G so that g(G) = n. Also it is
clear that I[SU {y}] # V(G) for y € {u1,w1,ws,...,Wp—d—n+1} and hence
T is the unique g-set of G. Thus by Theorem 2.11, gn(G) < n. Clearly,
T — {z} is the g,-set of G for any element z in T and so every vertex of T
is a geo-vertex of G. Thus gn(G) = n. (]

V2

Hg_ | itg
-—e

Wp-d-u+l

G

Figure 2.5(ii)
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3 VGR and PVG - Graphs

We now proceed to discuss graphs G for which the z-geodomination number
gz(G) is the same for every vertex z in G and also graphs G for which the
gz-set Sz of G together with z is the same for every vertex z in G.

Definition 3.1.  Let = be any vertez of a connected graph G. If the z-
geodomination number g;(G) is same for every vertez T in G, then G is
called a vertex geodomination regular graph or for short VGR-graph.

Example 3.2.

(i) For the complete graph K, g:(Kp) = p—1 for every vertez z in K.
For the cycle Cp, gz(Cp) = 1 or 2 for every vertez z in Cp according
as p is even or odd. Hence the graphs K, and Cp are VGR-graphs.

(ii) Let T be a tree with at least 3 vertices and let k be the number of
pendent vertices of T. Then by Theorem 1.9, g;(T) isk —1 or k
according as = is a pendent vertez or not, so that T is not a VGR-
graph.

(iii) The complete bipartite graph Kp,n is a VGR-graph if and only if

m=n.

(iv) For the graph G given in Figure 3.1, g:(G) = 2 for every vertez z in
G. Hence G is a VGR-graph.

G

Figure 3.1

Observation 8.3. If G is a connected graph such that gn(G) = p, then
G is a VGR-graph.
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Vio

4]

Vo

G

Figure 3.2

The converse of Observation 3.3 is false. For the Heawood graph G given
in Figure 3.2, S = {vp, v3,v7,v10} is a g-set so that g(G) = 4. Now S, =
{vs,v7,v9,v11} is the gy,-set of G so that g,,(G) = 4. It is easily checked
that g-(G) = g,(G) for any two vertices z and y. Thus g(G) = g-(G) = 4
for every vertex z in G so that G is a VGR-graph. Since g(G) = g-(G) for
every vertex = in G, no vertex of G is a geo-vertex and so gn(G) = 0.

Definition 3.4.  For any verter = in a connected graph G, let S, be the
gz-set of G. If Sy U {z} is same for every vertex z in G, then G is called
a perfect vertex geodomination graph or for short PVG-graph.

It is clear that every PVG-graph is a VGR-graph. In the following
theorem we characterize a PVG-graph.

Theorem 3.5. A graph G is a PVG-graph if and only if G is complete.

Proof. Let G be a PVG-graph. Suppose G is not complete. Then there
exist at least two vertices z and y in G such that d(z,y) > 2. Hence
there exists a shortest path z,uy,us, ..., un,y of length at least two joining
z and y. Let S, be the g,-set of G. By Result 1.6, the internal vertices
u;i(i = 1,2,...,n) of the z-y geodesic do not belong to S;. Hence S,U{z} #
Su; U {u;} for i =1,2,...,n so that G is not a PVG-graph.

Conversely, let G be the complete graph with vertex set V = {z,, z,,
..., Zp}. Since every vertex of G is a simplicial vertex, by Theorem 1.7(i),
Sz, = {z1,%2,...,Tic1, Tit1,...,Zp} for i =1,2,...,p is the g,,-set of G.
Thus S, U {z;} =V fori=1,2,...,p and so G is a PVG-graph. O

We leave the following problem as an open question.



Problem 3.6.
(i) Characterize graphs for which every veriex is a geo-vertex.
(ii) Characterize graphs for which no vertez is a geo-vertez.

(ili) Characterize VGR-grophs.
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