THE GEO-NUMBER OF A GRAPH

A.P. SANTHAKUMARAN

Department of Mathematics
St.Xavier's College (Autonomous)
Palayamkottai - 627 002, Tamil Nadu, India.

E-mail: apskumar1953@yahoo.co.in

and

P.TITUS

Department of Mathematics

St. Xavier's Catholic College of Engineering

Chunkankadai - 629 807, Tamil Nadu, India.

E-mail: titusvino@yahoo.com

Abstract

Let G be a connected graph of order $p \geq 2$. The closed interval I[x,y] consists of all vertices lying on some x-y geodesic of G. If S is a set of vertices of G, then I[S] is the union of all sets I[x,y]for $x, y \in S$. The geodetic number g(G) is the minimum cardinality among the subsets S of V(G) with I[S] = V. A geodetic set of cardinality g(G) is called a g-set of G. For any vertex x in G, a set $S_x \subseteq V$ is an x-geodominating set of G if each vertex $v \in V$ lies on an x-y geodesic for some element y in S_x . The minimum cardinality of an x-geodominating set of G is defined as the x-geodomination number of G, denoted by $g_x(G)$ or simply g_x . An x-geodominating set S_x of cardinality $g_x(G)$ is called a g_x -set of G. If $S_x \cup \{x\}$ is a g-set of G, then x is called a geo-vertex of G. The set of all geo-vertices of G is called the geo-set of G and the number of geo-vertices of G is called the geo-number of G and it is denoted by gn(G). For positive integers r, d and $n \geq 2$ with $r < d \leq 2r$, there exists a connected graph G of radius r, diameter d and gn(G) = n. Also, for each triple p, d and n with $3 \le d \le p-1$, $2 \le n \le p-2$ and $p-d-n+1 \ge 0$, there exists a graph G of order p, diameter d and gn(G) = n. If the x-geodomination number $g_x(G)$ is same for every vertex x in G, then G is called a vertex geodomination regular graph or for short VGR-graph. If $S_x \cup \{x\}$ is same for every vertex x in G, then G is called a perfect vertex geodomination graph or for short PVG-graph. We characterize a PVG-graph.

Key Words: geodesic, vertex geodomination number, geo-number,

VGR-graph, PVG-graph.

AMS Subject Classification: 05C12.

1 Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [5]. For vertices x and y in a connected graph G, the distance d(x,y) is the length of a shortest x-y path in G. An x-y path of length d(x,y) is called an x-y geodesic. A vertex v is said to lie on an x-y geodesic P if v is a vertex of P including the vertices x and y. The diameter diam G of a connected graph G is the length of any longest geodesic. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is a simplicial or extreme vertex if the subgraph induced by its neighbors is complete. A nonseparable graph is connected, nontrivial, and has no cut vertices. A block of a graph is a maximal nonseparable subgraph. A connected block graph is a connected graph in which each of its blocks is complete.

The closed interval I[x,y] consists of all vertices lying on some x-y geodesic of G, while for $S \subseteq V$, $I[S] = \bigcup_{x,y \in S} I[x,y]$. A set S of vertices

is a geodetic set if I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G) is called a g-set of G. The geodetic number of a graph was introduced in [1, 6] and further studied in [3]. It was shown in [6] that determining the geodetic number of a graph is an NP-hard problem. Geodetic concepts were first studied from the point of view of domination by Chartrand, Harary, Swart, and Zhang in [2], where a pair x, y of vertices in a nontrivial connected graph G is said to geodominate a vertex v of G if $v \in I[x, y]$, that is, v lies on an x-y geodesic of G. In [2], geodetic sets and the geodetic number were referred to as geodominating sets and geodomination number. For a connected graph G and a set $W \subseteq V(G)$, a tree T contained in G is a Steiner tree with respect to W if T is a tree of minimum order with $W \subseteq V(T)$. The set S(W) consists of all vertices in G that lie on some Steiner tree with respect to W. The set W is a Steiner set for G if S(W) = V(G). The minimum cardinality among the Steiner sets of G is the Steiner number s(G).

The concept of vertex geodomination number was introduced by Santhakumaran and Titus [8] and further studied in [9]. A vertex y in a connected graph G is said to x-geodominate a vertex u if u lies on an x-y

geodesic. A set S of vertices of G is an x-geodominating set if each vertex $v \in V(G)$ is x-geodominated by some element of S. The minimum cardinality of an x-geodominating set of G is defined as the x-geodomination number of G, denoted by $g_x(G)$ or simply g_x . An x-geodominating set of cardinality $g_x(G)$ is called a g_x -set.

Every vertex of an x-y geodesic is x-geodominated by the vertex y. Since, by definition, a g_x -set is minimum, the vertex x and also the internal vertices of an x-y geodesic do not belong to a g_x -set. For the graph G given in Figure 1.1, $g_u(G) = 1$, $g_v(G) = 2$, $g_w(G) = 2$, $g_x(G) = 2$ and $g_y(G) = 1$ with minimum vertex geodominating sets $\{y\}$, $\{u,y\}$, $\{u,x\}$, $\{u,w\}$ and $\{u\}$ respectively.

Figure 1.1

It is proved in [8] that for any vertex x in G, g_x -set is unique and $1 \le g_x(G) \le p-1$ for every vertex x in G. We characterized graphs which realize the bounds. It is also proved that $g(G) \le g_x(G) + 1$ for every vertex x in G. An elaborate study of results in vertex geodomination with several interesting applications is given in [8, 9]. The following theorems will be used in the sequel.

Theorem 1.1. [1] Let G be a connected graph. Then g(G) = p if and only if $G = K_p$.

Theorem 1.2. [1] No cut vertex of G belongs to any minimum geodetic set of G.

Theorem 1.3. [2] Every geodominating set of a graph G contains every simplicial vertex of G. In particular, if the set W of simplicial vertices is a geodominating set of G, then W is the unique g-set of G and so g(G) = |W|.

Theorem 1.4. [3] For integers $m, n \geq 2$, $g(K_{m,n}) = min\{m, n, 4\}$.

Theorem 1.5. [6] For the wheel $W_{1,n}$, $g(W_{1,n}) = \begin{cases} 4 & \text{for } n = 3, \\ \left\lceil \frac{n}{2} \right\rceil & \text{for } n \geq 4. \end{cases}$

Result 1.6. [8] Every vertex of an x-y geodesic is x-geodominated by the vertex y. Since, by definition, a g_x -set is minimum, the vertex x and also the internal vertices of an x-y geodesic do not belong to the g_x -set.

Theorem 1.7. [8] Let G be a connected graph.

- (i) Every simplicial vertex of G other than the vertex x (whether x is simplicial or not) belongs to the g_x -set for any vertex x in G.
- (ii) For any vertex x, eccentric vertices of x belong to the g_x -set.
- (iii) No cut vertex of G belongs to any g_x -set.

Theorem 1.8. [8] For any vertex x in G, $g(G) \leq g_x(G) + 1$.

Theorem 1.9. [8] Let T be a tree with number of pendent vertices k. Then $g_x(T) \ge k-1$ or k according as x is a pendent or non-pendent vertex.

Theorem 1.10. [8]

- (i) For the wheel $W_{1,n} = K_1 + C_n (n \ge 4)$, $g_x(W_n) = n$ or n-3 according as x is K_1 or x is in C_n .
- (ii) Let $K_{m,n}(m, n \geq 2)$ be a complete bipartite graph with bipartition (V_1, V_2) . Then $g_x(K_{m,n})$ is m-1 or n-1 according as x is in V_1 or x is in V_2 .

Throughout the following G denotes a connected graph with at least two vertices.

2 The Geo-number of a Graph

Definition 2.1. Let G be a connected graph. Let x be any vertex of G and S_x be the g_x -set of G. If $S_x \cup \{x\}$ is a g-set of G, then x is called a geo-vertex of G. The set of all geo-vertices of G is called the geo-set of G and the number of geo-vertices of G is called the geo-number of G and it is denoted by gn(G).

Example 2.2.

(i) For the graph G given in Figure 2.1, $S_1 = \{v_1, v_4, v_7\}$ and $S_2 = \{v_1, v_5, v_7\}$ are the only two g-sets. The various g_x -sets of the graph G are given in Table 2.1 and $\{v_1, v_5\}$ is the geo-set of G so that gn(G) = 2.

- (ii) For the complete graph K_p , $g(K_p) = p$ by Theorem 1.1 and so V is the g-set of K_p . For any vertex x in K_p , the g_x -set S_x equals $V \{x\}$ and so $S_x \cup \{x\} = V$. Thus every vertex of K_p is a geo-vertex and hence $gn(K_p) = p$.
- (iii) For the complete bipartite graph $K_{m,n}(m,n \geq 5)$ with partition (V_1,V_2) , $g(K_{m,n}) = 4$ by Theorem 1.4. Let x be any vertex of $K_{m,n}$. But by Theorem 1.10(ii), $g_x(K_{m,n})$ is m-1 or n-1 according as x is in V_1 or x is in V_2 . Thus $S_x \cup \{x\}$ is not a g-set of G and hence $K_{m,n}$ has no geo-vertex if $m, n \geq 5$. Thus $g_n(K_{m,n}) = 0$.

Figure 2.1

Vertex x	g_x -sets
v_1	$\{v_5,v_7\}$
v_2	$\{v_1,v_5,v_7\}$
v_3	$\{v_1, v_4, v_5, v_7\}$
v_4	$\{v_1,v_3,v_7\}$
v_5	$\{v_1,v_7\}$
v_6	$\{v_1, v_2, v_4, v_7\}$
v_7	$\{v_1,v_2,v_4\}$

Table 2.1

The following theorem is clear from the definition.

Theorem 2.3. For any connected graph G, $0 \le gn(G) \le p$.

Observation 2.4. If G is a connected graph, then no cut vertex of G is a geo-vertex of G.

The following theorem is an immediate consequence of Observation 2.4.

Theorem 2.5. If k is the number of cut vertices of a connected graph G, then $gn(G) \leq p - k$.

Remark 2.6. The bound in Theorem 2.5 is sharp. For the graph G given in Figure 2.2, p = 5, k = 1 and gn(G) = 4 = p - k. For the graph G given in Figure 2.1, p = 7, k = 1 and gn(G) = 2 so that the inequality in Theorem 2.5 can be strict.

Figure 2.2

The following example gives the geo-numbers of certain special classes of graphs.

Example 2.7.

- (i) If T is a non-trivial tree with number of end vertices k, then gn(T) = k.
- (ii) If G is the complete graph K_p or the cycle C_p , then gn(G) = p.
- (iii) If G is the n-cube $Q_n(n \ge 1)$, then $gn(G) = 2^n$.
- (iv) If G is the complete bipartite graph $K_{m,n} (m \leq n)$, then

$$gn(G) = \begin{cases} n & \text{if } 1 = m < n \\ m & \text{if } 1 < m < n \text{ and } m \le 4 \\ 2m & \text{if } m = n \le 4 \\ 0 & \text{if } m, n \ge 5. \end{cases}$$

The following observation is an easy consequence of some of the preceeding results.

Observation 2.8. For a connected graph G,

- (i) if $g_x(G) = 1$ for some vertex x in G, then $g_n(G) \ge 2$.
- (ii) if g(G) = 2, then $gn(G) \ge 2$.

- (iii) if s(G) = 2, then $gn(G) \ge 2$.
- (iv) if every vertex of G is either a cut vertex or a simplicial vertex, then x is a geo-vertex of G if and only if x is a simplicial vertex of G.

Since every vertex of a connected block graph is either a cut vertex or a simplicial vertex, the following theorem follows from Observation 2.8(iv).

Theorem 2.9. If G is a connected block graph with number of simplicial vertices k, then gn(G) = k.

Remark 2.10. In general there is no relation between g(G) and gn(G). For the graph G given in Figure 2.1, g(G) > gn(G). For the cycle $C_p(p \ge 4)$, $g(C_p) < gn(C_p)$. For a non-trivial tree T, g(T) = gn(T).

However, we have the following result.

Theorem 2.11. If G is a connected graph with unique g-set, then $gn(G) \leq g(G)$.

Proof. Let S_x be the g_x -set of G and let S be the unique g-set of G. If G is the complete graph K_p , then by Example 2.2(ii) and Theorem 1.1, gn(G) = g(G) = p. Now assume that G is not complete. Then by Theorem 1.1, $S \subset V$. For any vertex $x \notin S$, $S_x \cup \{x\} \neq S$ and so x is not a geo-vertex of G. Hence $gn(G) \leq g(G)$.

Corollary 2.12. If G is a connected graph with unique g-set, then $gn(G) \leq g_x(G) + 1$ for any vertex x in G.

Proof. This follows from Theorem 1.8 and Theorem 2.11. \Box

The following theorem gives a realization result for the geo-number of a graph.

Theorem 2.13. For any integer n such that $0 \le n \le p$ $(p \ge 6)$, there is a graph G of order p and gn(G) = n.

Proof. Let n=0. For p=6, consider the graph G given in Figure 2.3(i). By Theorem 1.3, $\{x_1,x_3,x_5\}$ is the unique g-set of G and it is easily seen that no vertex of G is a geo-vertex so that gn(G)=0. For $p\geq 7$, let $G=W_{1,p-1}$. Then by Theorem 1.5, $g(G)=\left\lceil\frac{p-1}{2}\right\rceil\leq p-4$. Also, by Theorem 1.10(i), $g_x(G)=p-1$ or p-4 for any vertex x in G. Hence it follows from the definition of a geo-vertex that no vertex of G is a geo-vertex of G. Thus gn(G)=0.

Let n = 1. For p = 6, consider the graph G given in Figure 2.3(ii). By Theorem 1.3, $\{x_1, x_3, x_5\}$ is the unique g-set of G and it is easily seen that x_1 is the unique geo-vertex of G so that gn(G) = 1. For p > 7, let

 $C_5: v_1, v_2, v_3, v_4, v_5, v_1$ be a cycle of order 5, $P_2: x_1, x_2$ be a path of length one and $P_{p-5}: y_1, y_2, \ldots, y_{p-5}$ be a path of length p-6. Let G be the graph obtained from C_5, P_2 and P_{p-5} by identifying v_1 in C_5 and x_1 in P_2 and identifying v_2 in C_5 and y_1 in P_{p-5} . The graph G is given in Figure 2.3(iii).

Figure 2.3(iii)

Let $S = \{x_2, y_{p-5}\}$ be the set of end vertices of G. But $I[S] = S \cup \{v_1, v_2, y_2, y_3, \dots, y_{p-4}\} \neq V(G)$. This implies that S is not a geodominating set of G. Now by Theorem 1.3, g(G) > 2. On the other hand, $I[S \cup \{v_4\}] = V(G)$. Hence $T = S \cup \{v_4\}$ is a geodominating set of G so that g(G) = 3. Also it is clear that $I[S \cup \{z\}] \neq V(G)$ for $z \in \{v_3, v_5\}$ and hence T is the unique g-set of G. Thus by Theorem 2.11, $gn(G) \leq 3$. It is easily checked that v_4 is the unique geo-vertex of G and so gn(G) = 1.

For $2 \le n \le p-1$, the tree T given in Figure 2.3(iv) has p=k+n vertices and it follows from Example 2.7(i) that gn(T)=n. For n=p, the theorem follows from Example 2.7(ii) by taking $G=K_p$.

Figure 2.3(iv)

Remark 2.14. For $2 \le p \le 5$, it is straight forward to verify that there is no graph G of order p with gn(G) = 0 or gn(G) = 1. Thus Theorem 2.13 does not hold for $2 \le p \le 5$.

For every connected graph G, $rad\ G \le diam\ G \le 2\ rad\ G$. Ostrand [7] showed that every two positive integers a and b with $a \le b \le 2a$ are realizable as the radius and diameter, respectively, of some connected graph. Ostrand's theorem can be extended so that the geo-number can be prescribed when $a < b \le 2a$.

Theorem 2.15. For positive integers r, d and $n \ge 2$ with $r < d \le 2r$, there exists a connected graph G with rad G = r, diam G = d and gn(G) = n.

Proof. If r = 1, then d = 2. Let $G = K_{1,n}$. Then by Example 2.7(i), gn(G) = n. Now, let $r \geq 2$. We construct a graph G with the desired properties as follows:

Let $C_{2r}: v_1, v_2, \ldots, v_{2r}, v_1$ be a cycle of order 2r and let $P_{d-r+1}: u_0, u_1, \ldots, u_{d-r}$ be a path of order d-r+1. Let H be a graph obtained from C_{2r} and P_{d-r+1} by identifying v_1 in C_{2r} and u_0 in P_{d-r+1} .

Case 1. Suppose n=2. Let G=H. Now $rad\ G=r$, $diam\ G=d$ and G has one end-vertex u_{d-r} . Clearly, $S=\{u_{d-r},v_{r+1}\}$ is the geodominating set of G so that g(G)=2. Also it is clear that $I[\{u_{d-r},v_i\}]\neq V(G)$ for $i\neq r+1$ and hence S is the unique g-set of G. Then by Observation 2.8(ii) and Theorem 2.11, gn(G)=2.

Case 2. Suppose $n \geq 3$. Add n-2 new vertices $w_1, w_2, \ldots, w_{n-2}$ to H and join each vertex $w_i (1 \leq i \leq n-2)$ to the vertex u_{d-r-1} and obtain the graph G of Figure 2.4.

Now rad G=r, diam G=d and G has n-1 end vertices. Let $S=\{u_{d-r},w_1,w_2,\ldots,w_{n-2}\}$ be the set of end vertices of G. But $I[S]=S\cup\{u_{d-r-1}\}\neq V(G)$. This implies that S is not a geodominating set of G. Now by Theorem 1.3, g(G)>n-1. On the other hand, $I[S\cup\{v_{r+1}\}]=V(G)$. Hence, $T=S\cup\{v_{r+1}\}$ is a geodominating set of G so that g(G)=n. Also it is clear that $I[S\cup\{v_i\}]\neq V(G)$ for $i\neq r+1$ and hence T is the unique g-set of G. Thus by Theorem 2.11, $gn(G)\leq n$. Clearly, $T-\{x\}$ is

the g_x -set of G for any vertex x in T and so every vertex of T is a geo-vertex of G. Thus gn(G) = n.

Figure 2.4

The graph G of Figure 2.4 is the smallest graph with the properties described in Theorem 2.15.

Remark 2.16. In the case of geo-number gn(G) of G there are graphs for which gn(G) = p - d + 1, gn(G) and <math>gn(G) > p - d + 1. For the complete graph K_p , $gn(K_p) = p - d + 1$. For the complete bipartite graph $K_{m,n}(m,n \geq 5)$, $gn(K_{m,n}) . For the cycle <math>C_p(p \geq 4)$, $gn(C_p) > p - d + 1$.

In the following theorem we construct a graph of prescribed order, diameter and geo-number under suitable conditions.

Theorem 2.17. If p, d and n are integers such that $3 \le d \le p-1$, $2 \le n \le p-2$ and $p-d-n+1 \ge 0$, then there exists a graph G of order p, diameter d and gn(G) = n.

Proof. Let $P_{d+1}: u_0, u_1, u_2, \ldots, u_d$ be a path of length d and let $P_{p-d-n+2}: w_0, w_1, w_2, \ldots, w_{p-d-n+1}$ be a path of length p-d-n+1. The graph H in Figure 2.5(i) is obtained by identifying the vertex w_0 in $P_{p-d-n+2}$ and u_1 in P_{d+1} and joining the vertices $w_1, w_2, \ldots, w_{p-d-n+1}$ to both the vertices u_0 and u_2 .

Case 1. Suppose n=2. Let G=H. Then G has order p and diameter d. Moreover, the set $S=\{u_0,u_d\}$ is the unique g-set of G and so g(G)=2. Then by Observation 2.8(ii) and Theorem 2.11, gn(G)=2. Thus G has the desired properties.

Figure 2.5(i)

Case 2. Suppose $3 \le n \le p-2$. Add n-2 new vertices $v_1, v_2, \ldots, v_{n-2}$ to H and join these to u_2 , there by producing the graph G of Figure 2.5(ii). Then G has order p and diameter d. Let $S = \{u_d, v_1, v_2, \ldots, v_{n-2}\}$ be the set of end vertices of G. But $I[S] = S \cup \{u_2, u_3, \ldots, u_{d-1}\} \ne V(G)$. This implies that S is not a geodominating set of G. Now by Theorem 1.3, g(G) > n-1. On the other hand, $I[S \cup \{u_0\}] = V(G)$. Hence $T = S \cup \{u_0\}$ is a geodominating set of G so that g(G) = n. Also it is clear that $I[S \cup \{y\}] \ne V(G)$ for $y \in \{u_1, w_1, w_2, \ldots, w_{p-d-n+1}\}$ and hence T is the unique g-set of G. Thus by Theorem 2.11, $gn(G) \le n$. Clearly, $T - \{x\}$ is the g_x -set of G for any element x in T and so every vertex of T is a geo-vertex of G. Thus gn(G) = n.

G

Figure 2.5(ii)

3 VGR and PVG - Graphs

We now proceed to discuss graphs G for which the x-geodomination number $g_x(G)$ is the same for every vertex x in G and also graphs G for which the g_x -set S_x of G together with x is the same for every vertex x in G.

Definition 3.1. Let x be any vertex of a connected graph G. If the x-geodomination number $g_x(G)$ is same for every vertex x in G, then G is called a vertex geodomination regular graph or for short VGR-graph.

Example 3.2.

- (i) For the complete graph K_p , $g_x(K_p) = p 1$ for every vertex x in K_p . For the cycle C_p , $g_x(C_p) = 1$ or 2 for every vertex x in C_p according as p is even or odd. Hence the graphs K_p and C_p are VGR-graphs.
- (ii) Let T be a tree with at least 3 vertices and let k be the number of pendent vertices of T. Then by Theorem 1.9, $g_x(T)$ is k-1 or k according as x is a pendent vertex or not, so that T is not a VGR-graph.
- (iii) The complete bipartite graph $K_{m,n}$ is a VGR-graph if and only if m = n.
- (iv) For the graph G given in Figure 3.1, $g_x(G) = 2$ for every vertex x in G. Hence G is a VGR-graph.

Figure 3.1

Observation 3.3. If G is a connected graph such that gn(G) = p, then G is a VGR-graph.

Figure 3.2

The converse of Observation 3.3 is false. For the Heawood graph G given in Figure 3.2, $S = \{v_0, v_3, v_7, v_{10}\}$ is a g-set so that g(G) = 4. Now $S_{v_0} = \{v_3, v_7, v_9, v_{11}\}$ is the g_{v_0} -set of G so that $g_{v_0}(G) = 4$. It is easily checked that $g_x(G) = g_y(G)$ for any two vertices x and y. Thus $g(G) = g_x(G) = 4$ for every vertex x in G so that G is a VGR-graph. Since $g(G) = g_x(G)$ for every vertex x in G, no vertex of G is a geo-vertex and so $g_n(G) = 0$.

Definition 3.4. For any vertex x in a connected graph G, let S_x be the g_x -set of G. If $S_x \cup \{x\}$ is same for every vertex x in G, then G is called a perfect vertex geodomination graph or for short PVG-graph.

It is clear that every PVG-graph is a VGR-graph. In the following theorem we characterize a PVG-graph.

Theorem 3.5. A graph G is a PVG-graph if and only if G is complete.

Proof. Let G be a PVG-graph. Suppose G is not complete. Then there exist at least two vertices x and y in G such that $d(x,y) \geq 2$. Hence there exists a shortest path $x, u_1, u_2, \ldots, u_n, y$ of length at least two joining x and y. Let S_x be the g_x -set of G. By Result 1.6, the internal vertices $u_i (i = 1, 2, \ldots, n)$ of the x-y geodesic do not belong to S_x . Hence $S_x \cup \{x\} \neq S_{u_i} \cup \{u_i\}$ for $i = 1, 2, \ldots, n$ so that G is not a PVG-graph.

Conversely, let G be the complete graph with vertex set $V = \{x_1, x_2, \ldots, x_p\}$. Since every vertex of G is a simplicial vertex, by Theorem 1.7(i), $S_{x_i} = \{x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_p\}$ for $i = 1, 2, \ldots, p$ is the g_{x_i} -set of G. Thus $S_{x_i} \cup \{x_i\} = V$ for $i = 1, 2, \ldots, p$ and so G is a PVG-graph. \square

We leave the following problem as an open question.

Problem 3.6.

- (i) Characterize graphs for which every vertex is a geo-vertex.
- (ii) Characterize graphs for which no vertex is a geo-vertex.
- (iii) Characterize VGR-graphs.

4 Acknowledgement

The authors are thankful to the referee for the valuable suggestions.

References

- [1] F. Buckley, F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA(1990).
- [2] G. Chartrand, F. Harary, H. Swart, and P. Zhang, Geodomination in graphs, Bull. Inst. Appl., 31 (2001), 51 - 59.
- [3] G. Chartrand, F. Harary, P. Zhang, On the geodetic number of a graph, *Networks*, **39** (2002), 1 6.
- [4] G. Chartrand, P. Zhang, The Steiner Number of a graph, Discrete Math., 242(2002), 41 54.
- [5] F.Harary, Graph Theory, Addison-Wesley, 1969.
- [6] F. Harary, E. Loukakis, C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling, 17(11)(1993), 89 - 95.
- [7] P. A. Ostrand, Graphs with specified radius and diameter, Discrete Math., 4(1973), 71 - 75.
- [8] A. P. Santhakumaran, P. Titus, Vertex Geodomination in Graphs, Bulletin of Kerala Mathematics Association, 2(2) (2005), 45 - 57.
- [9] A. P. Santhakumaran, P. Titus, On the Vertex Geodomination Number of a Graph, Ars Combin., (To appear).