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Abstract

We introduce vertex-transitive graphs Iy, that are also embeddings of the
strong product of triangular graphs L(K,) and the complete graph K. For
any prime p, linear codes obtained from the row span of incidence matrices of
the graphs over IF;, are considered; their main parameters (length, dimension
and minimum distance) and automorphism groups are determined. Unlike
most codes that have been obtained from incidence and adjacency matrices
of regular graphs by others, binary codes from the row span of incidence ma-
trices of I, have other minimum words apart from the rows of the matrices.
Using a specific information set, PD-sets for full permutation decoding of the
codes are exhibited.
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1 Introduction

Considerable effort, with significant success, has been directed towards the de-
scription of properties of linear codes generated by adjacency and incidence ma-
trices of various regular graphs. Graphs that have been studied include complete
graphs [14], triangular graphs and their complements [5, 6, 15, 19], Hamming
graphs and their line graphs [7, 8], the Johnson graphs and the Odd graphs (5].
What has been appealing in all this is that some codes obtained so far are amenable
to permutation decoding. In this paper, we employ this philosophy on embeddings

ARS COMBINATORIA 106(2012), pp. 79-95



T, of the strong product of triangular graphs LK) and K,. Some properties
of the graphs including their automorphisms are determined. These graphs are
serendipity by-products of our study of codes from the row span of incidence
matrices of the iterated line graphs L?(K,+1). Complements of the graphs and
corresponding codes have been studied in [16].

The codes from Iy, have some properties similar to those shown by codes from
incidence matrices of complete graphs [14]. For instance, automorphisms of the
codes are isomorphic to those of the graphs and their minimum words include
scalar multiples of the rows of the matrices. However, unlike codes from the
various graphs mentioned above, the binary codes from incidence matrices of I',,
have other minimum words apart from the rows of the matrices. These minimum
words have been established in Proposition 3(b).

Further, we consider complete porcupines (see [9] and Definition 2), graphs
that are induced subgraphs of I',, and offer some interesting codes in their own
right. Codes from incidence matrices of complete porcupines are therefore con-
sidered first. These codes have minimum weight one in as much as they are not
full spaces.

The graphs I',, are given in Definition 1. Our main results are summarised in
Theorem 1. Note that a vertex ({a, b}, {a}) of I, is written as (ab, a) for short.
[u, v] denotes an edge between vertices u and v and it also represents a coordinate
position of the code indexed by the edge.

Theorem 1. For any prime p and n > 4, let Cp(Gy) be the p-ary code ob-

tained from the span over Fp of the rows of Gn, an incidence matrix of Ty,
the graph presented in Definition 1. Let A; = {[(an,a), (az,a)]|lz # a,n},
Ag = {[(bn,n), (bn,b)]|b # n} and A3 = {[((n—1)n,n), (cn,n)]|lc # n—1,n}.
(a) Ifpisoddthen Cy(Gr)isan [(n—1)(3),2(3).,n — 1]lp code. Its minimum
words are scalar multiples of the rows of Gy,.
(b) Ca(Gn)isan [(n-1)(3),2(3) — 1,n — 1], code. Its minimum words are
the rows of G, and the n.codewords of the form 3., , v(*=*) where v(2=)
is the row of Gy, indexed by the vertex (az, a).
© Aut(Cp(Gn)) = Aut(l'y) = Si.

@7z, = U?=1 A; is an information set for C2(G,). If p is odd then I, U
{[((n = 3)n,n), ((n — 2)n,n)]} is an information set for Cp(Gn).

) Ifp=2thentheset S = {(1),(n —L,y)(n,2)|[1 <z, y <n-—1l,x#y}
of n+(n—2)2 elements of Sy is a PD-set for C2(Gy,) with I, as information
set.

Ifpis oddthen SU{(n — 2,y)(n,z) : 2,y € 2\ {n},y <n —4}isa PD-
set with T, U {[((n — 3)n,n), ((n — 2)n, n)]} as information set.
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The proof of Theorem 1 follows from a series of lemmas and propositions in
the sections below. The rest of the paper is organised as follows. In Section 2 we
define terminology and give an overview of results that will be used. In Section 3
we consider some properties of I',, including automorphism groups. Codes from
incidence matrices of complete porcupines and I',, are discussed in Section 4. In
Section 6 we consider automorphism groups of codes from incidence matrices of
I', and exhibit their PD-sets using specific information sets.

2 Preliminaries

Codes considered in this paper are linear and the graphs are finite, connected
and undirected having no loops nor multiple edges. Coding theory, graph theory
and design theory terminology not defined in this section is used in the sense of
MacWilliams and Sloane [17], Bondy and Murty [3] and Assmus and Key [2],
respectively.

A g-ary linear code C of length n, dimension k£ and minimum distance d will
be denoted [n, k, d],. The permutation automorphism group of C is the set of
coordinate permutations that map C to itself. It will be denoted Aut(C).

Permutation decoding is a method due to MacWilliams [18] and has also
been described in [17, 11]. It has been used to decode, among others, linear
codes generated by incidence and adjacency matrices of various regular graphs
(see [5, 14, 15, 7, 8, 16, 12] for specific examples). The method uses a subset
S of Aut(C) called a PD-set. If C is a t-error-correcting-code then S has the
property that every vector of weight at most ¢ is mapped by at least one member
of S to a vector where errors occur only in check positions. The minimum size of
S is given by the Gordon bound [10] (see also [11, Theorem 10.2.2, p. 404]). An
algorithm for the method is given in [1 1, p. 403-404].

A graph is a pair I’ = (V, E) of sets satisfying E C V {2}, j.e., the pairs of E
are 2-element subsets of V. A complete subgraph of I is called a clique. A clique
is maximal if it is not contained in a larger clique, i.e., if u is any vertex not in the
clique then there exists a vertex v in the clique such that u and v are not adjacent.
The largest clique in-a graph is a maximum clique. Let P = {V; : i € I} bea
partition of V'(I'). The quotient graph of I" modulo P, written '/ P, is defined by
V(['/P) = Pand [V;,V;] € E(T'/P)if there existuin V; and vin V}, i # j, such
that [u,v] € E(T'). The strong product of two graphs I and H, written I' ® H,
is defined by V(I'® H) = V(T') x V(H) and [(u,v), (v',v')] € E(T' R H) if
u = u’ and [v,v'] € E(H); or [u,u'] € E(T') and v = v'; or [u,u'] € E(T") and
[v,v'] € E(H).

If ' and H are graphs, a homomorphism from I to H is a mapping o :
V(T') — V(H) such that [a(u), a(v)] € E(H) if and only if [u,v] € E(T). A
homomorphism « is an embedding if it is also injective. If « is bijective and o1
is also a homomorphism then « is said to be an isomorphism. If I' = H and o
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is bijective, then « is an automorphism of I'. The automorphism group of I will
be written as Aut(T"). I is vertex-transitive if for every pair of vertices u and v,
there is an automorphism a in Aut(T") such that a(u) = v.

At — (v, k, ) design D = (P, B, T) with point set P, block set B and inci-
dence Z is a finite incidence structure such that P has v points, every block B in
B has k points and every size-t subset of P is incident on exactly A blocks. An
incidence matrix of D is a |B| x |P| matrix G such that g;; = 1if (p;, B;) € I
and g;; = 0 otherwise. The incidence vector vP of any subset P of P is the char-
acteristic vector of P, i.e., the vector such that vP (i) = 1if i € Pand v"(i) =0
otherwise. The rows of G are incidence vectors of the blocks of D. The g-ary
linear code of the design is the space spanned over IF, by the incidence vectors
where ¢ = p*, paprime and t € N. The incidence design of a k-regular graph
I with m edges is the 1 — (m, k,2) design formed by taking points to be edges
of the graph and blocks to be sets of edges incident on a given vertex, for each
vertex. Its incidence matrix G is the same as that of I.

Let Cp(G) be the linear code obtained from the row span of G over [, where
p is a prime. One is often interested in determining the existence of the all-one
vector 7 in a given code or its dual. If p = 2 then it is clear that 5 € Co(G)* if
C2(G) is even. If pis odd then 7 € Cp(G) since the sum of all rows of G is equal
to 23.

We also note that for any p, C,(G) is not self-orthogonal. This is because the
inner product of any pair of rows indexed by adjacent vertices of the corresponding
graphis 1.

3 ThegraphsI',

The graphs I, that we have been alluding to are defined as follows.

Definition 1. Forn > 3,let @ = {1,---,n}. Let Q{*} be the set of subsets of
 of size k. Consider the cartesian product X = Q{2} x Q{1}, The graph 'y, is
defined by

V([n) ={(A,B)e X: AD B};
[(4,B),(A',B) € ETy) <= A=A"or B=B'.
Observe that T', has 2(3) vertices. The neighbourhood of each vertex (ab, a)
is the set N = {(ab, b)} U {(az,a) : = # a}. Hence 'y is (n — 1)-regular. T’y is
illustrated in Figure 1.

Identifying V (L(K,)) with Q{2} and V(K_) with {0, 1}, we have the follow-
ing.

Lemma 1. T, is an embedding of L(K,) & K.
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Figure 1: T'4 (iji denotes the vertex (37, 1))

Proof. Defineamap ¢ : V(I',) = V (L(K,) B K>) by

5,0), ifa<b
¢((ab,a))={ &, 1), olthen<vise '

Defined this way, ¢ is easily seen to be an injective homomorphism. a

We now consider automorphisms of I'n. Let @ € S,. Define a map o, :
V(['n) = V(I's) by 0a((ab, a)) = (a(a)a(b), x(a)).

Claim. o, € Aut(l,).

Proof. Since o4 is clearly one-to-one and hence onto, it remains to show that
it preserves adjacency in the graph. There are two cases to consider. Any vertex
u = (ab, a) is adjacent to v = (ab, b) and to n—2 vertices of the form w = (az, a)
where = # a,b. We see that o, (u) is adjacent to g4 (v) and to o,(w). Hence
oo € Aut(l,). (W]

Remark. The graphs I, are vertex-transitive. To see this, consider any two dis-
tinct vertices (ab, a) and (a’b’, a’) of I'y.. Itis always possible to find a permutation
a € Sy such that a(a) = o’ and a(b) = b'. Hence a induces an automorphism
0o € Aut(I'y) such that o, ((ab, a)) = (a't',a’).

Let X, = {(az,a) : x # a}. There are n such sets and they partition V'(T,,).
Also note that if P = {X, : a € } then the quotient graph I, / P is isomorphic
to the complete graph K,.

Lemma 2. X, is a maximum clique.

Proof. That X, is a clique follows from the definition of adjacency in I',. We

need to show that the clique is maximum.
Consider the closed neighbourhood N(v] = {(ab,b)} U {(az,a) : = # a} of
a vertex v = (ab,a) € X,. Since I';, is regular and vertex-transitive, to show that
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X, is maximum it is sufficient to show that X, is the largest clique containing v
in N[v]. '

This is easily seen to hold because in N[v], the vertex (ab, b) is adjacent only
to v. The remaining vertices in N[v] \ {(ab,b)} = X, are pairwise adjacent.
Hence X, is the largest clique in N[v]. a

Corollary 1. T, has cliqgue number n — 1 and it has n maximum cliques.
Proposition 1. Aut([';) = S,..

Proof. Let & € Sy,. Since a induces a permutation o of V(I'n), define a map
f: Sn = Aut(Ty) by f(a) = 0q. Then f is a homomorphism. It remains to
show that f is also bijective.

Let o and 8 be distinct permutations in S,. Then there exists an element a in
Q such that a(a) # B(a). Letu = (ab,a) € V(T',). Since ga(u) # op(u), fis
injective.

Let ¢ € Aut(T',). By definition, ¢ preserves maximum cliques of L,,ie.,
é : Xo — X, for some a,b € Q. Since every maximum clique corresponds to
an element of €, ¢ induces a permutation & € Sy, defined by ¢(Xa) = Xa(a)-
Hence f is onto. O

4 Codes from incidence matrices of I',,

For any prime p, we now consider the p-ary codes Cp(G) obtained from the row
span over IF,, of incidence matrices G,, of the graphs T'n. Since G, contains an
incidence matrix M,,—, of H,_1, a complete porcupine, we first study the codes
Cp(M,,) in Proposition 2 before describing the codes C,(Gr) in Proposition 3.

In the following let V; = {(ab,a), (ab,b) : a,b € {1,2,3},a < b}.For4 <
i < n, let Vi_g = {(ai,a),(ai,i):4 <i<n,a<i}. Write G, as follows.
Order the rows of G, so that for given values of a and i, a row correspond-
ing to the vertex (ai, a) is followed by a row corresponding to the vertex (ai, ).
Columns are ordered by first constructing edges between vertices in U;‘___'la V;, then
edges between vertices in U::ls V; and V,,_3 and, lastly, edges between vertices
in V;,_2. The resulting matrix is a 2(3) x (n — 1)(3) matrix of the form

[ Gaa |I| O
=[5 7]

)

where:
(@) Gn_1 is an incidence matrix of I'n—1;

(b) I is the identity matrix of size (n — 1)(n — 2);
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(¢) Jisa2(n —1) x (n — 1)(n — 2) matrix where every column has weight
1. For a < n, each of the n — 1 rows corresponding to vertices of the
form (an, a) has weight n — 2. The remaining n — 1 rows corresponding to
vertices of the form (an, n) are zero vectors;

(d) M1 is an incidence matrix of the complete porcupine H,_;. These
graphs are given in Definition 2.

Example 1. The 12 vertices of I'y are ordered as follows: (12,1), (12,2), (13,1),
(13,3), (23,2), (23,3), (14,1), (14,4), (24,2), (24,4), (34,3), (34, 4). Its inci-
dence matrix is

110000 | 100000 | 000000
101000 | 010000 | 000000
010100 | 601000 | 000000
000110 | 600100 | 000000
001001 { 000010 | 000000
000011 | 000001 | GC0O000
000000 | 101000 { 100000
000000 | 000000 | 111000
000000 | 010010 | 000100
000000 | 600000 | 010110
000000 | 000101 | 600001
000000 | C00000 | 001011 J

]

)

We now define complete porcupines. As in Definition 1,  denotes the set
{1, cee, n}.

Definition 2. Let A = {(a,0) : a € Q} and B = {(b,1) : b € Q}. Denote by K 4
the complete graph with vertex set A. The complete porcupine H, is defined by
V(Hp) = AUBand E(H,) = E(Ka) U Eq where Eg = {[(a,0), (a,1)]|a €
Q} is the set of quills.

These are also the graphs simply defined as porcupines in [9). Denote by M,
an incidence matrix of H,,. Write M, as follows. Order its rows by first listing
vertices in A followed by vertices in B. Order columns of the matrix by first
obtaining edges between vertices in A followed by edges corresponding to the
quills of the graph. This way, M,, takes the form

54

where L, is an incidence matrix of K 4. Codes generated by L., have been con-
sidered in [14].
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Proposition 2. For n > 3, let Cﬁ’(M") denote the p-ary code from the row span
of My. Then Ca(Ms,) is a [("3'),2n — 1,1], code and, if p is any odd prime,
Cp(My) isan [("31),2n, l]p code.

Proof. The length of the code is the order of E(H,) = E(Ka)U Eq. Since the
minimum weight is easy to see, we only check the dimension of the codes.

H,, is connected and hence by [1, Theorem 10, p. 140], M,, has dimension
2n — 1 over 2. Since the graph is not bipartite (having even cycles in K 4), it
follows from Result 2 in [13] that its incidence matrix M, has full rank over IF,, if
pis odd. (]

Notice that the codes Cp(Mp) are not full spaces despite having codewords of
weight one. The following corollary is useful.

Corollary 2. For any prime p, let Cp(My) denote the subcode of Cp(Mn) ob-
tained from the row span over Fp of the submatrix [Ly|I| of My, in Equation (3).
Then Cp(My) isan [("31),n, n), code.

Proof. The length and dimension are clear. For the minimum weight, letc €
Cp(M.,). Then c can be written as a concatenation of two vectors, c1 and ¢z, from
the two column blocks in [Ly|I]. By Theorem 1 of [14], we know that wt(c1) >
n — 1. Since wt(cz) > 1, we have the result. O

We note the following in relation to incidence designs of the graphs I';,. The
block corresponding to a vertex v = (ab, b) is the set

(ab,b) = {[(ab,b), (ab, a)]} U {[(ab, }), (bz,})] : = # @, b}
and it has incidence vector

,U(ab,b) = v[(cb,b),(ab,a)] + Z v[(ab,b),(b::,b)].
z#a,b

These vectors have Hamming weight n — 1.

We now turn to the main issue at hand, namely, the description and permuta-
tion decoding of the codes Cp(Gr) from the span over Fp, p any prime, of these
incidence vectors. The case of n = 3 is less interesting; I's being a 6-cycle. It is
stated in the lemma below.

Lemma 3. Let G5 be an incidence matrix of the 6-cycle I's and let C;,(G3) be the
p-ary code from the row span of G over F, where p is any prime. Then Cp(G3)
isa[6,5,2]p code.

Proof. The dimension of the binary codes is obtained from [1, Theorem 10, p. 140]
since the 6-cycle is connected. Since the 6-cycle is also bipartite, G3 has dimen-
sion 5 over [, p odd, by Result 2 in [13].
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Since Cp(Gs) is spanned by weight-2 vectors, the binary code is even hence it
does not have unit codewords. We need to check the minimum weight of C,(G3)
if p is odd.

Write G3 as the left uppermost submatrix of G4 in Equation (2). Partition the
rows of the matrix as follows. Let R; be the block of the first three rows of Gs
and Ry the remaining three rows of the matrix. Partition the columns into two
blocks, the first comprising the first three columns.

Let ¢ € Cy(G3). Then cis a concatenation of two vectors, c1,¢2 € IFf,, from
the two column blocks of G3. Observe that each of the four submatrices of G3
obtained from the partition described above has a unit vector. Thus if all possible
linear combinations of the rows of G3 are considered, one obtains wt(c;) > 1and
wt(cz) > 1. Hence wt(c) > 2. This completes the proof of the lemma. o

Other minimum words of Cp(G3) are scalar multiples of codewords of the
form v™ — v™ where v and w are any adjacent vertices of I's. The following
codewords also have minimum weight:

L(@00) _ L@

(a'b’ b’ YEN((a,b,b))

Proposition 3. For n > 4 let G, be an incidence matrix of T,. Let Cp(Gn) be
the p-ary code from the row span of G, over F p Where p is any prime.

(@) Ifpis odd then Cp(Gp) isan [(n —1)(3),2(3),n - l]P code and its min-
imum words are scalar multiples of the rows of Gy,.

(b) C2(Gr)isa[(n—1) (2.2(3) -1,n- l]2 code and its minimum words
are the rows of G, and the n vectors of the form 2 zsta vleze),

Proof. Recall that the complete porcupine H,_; is an induced subgraph of I',,.
Since H,_, contains the complete graph, it has odd cycles. Hence Iy, is not
bipartite. By Result 2 of [13], G,, has full rank over Fp. On the other hand, the
binary codes have dimension 2(3) — 1 [1, Theorem 10, p. 140].

We use induction to prove the assertion about the minimum weight of the
codes noting that it holds for n = 3 in Lemma 3. Suppose the result holds for
n — 1 where n > 4. Suppose the result holds for n — 1. Write G, as in Equation
(1). Label the first (n — 1)(n — 2) rows of Gy, by R, and the remaining 2(n—1)
rows by Ry, i.e., Ry = [Gn-1|I|0] and Ry = [0|J|M,,_,].

Let ¢ € Cp(Gr). Then c is a concatenation of three vectors, ¢y, ¢z and cs,
from the three column blocks of G, where ¢; € Fi, ky = (n — 2)(";%), ko =
(n—1)(n—2)and ks = ().

Let ¢ € Cp(Gr). Suppose c is obtained from a linear combination of r of
the first (n — 1)(n — 2) rows. Then c is a concatenation of three vectors, c;, c2
and c3, from the three column blocks in the submatrix [G,,_1|I|0] of G,. Hence
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a1 =Y aigiandcy = Y o where o; € Fj, and g; is the ith row of Grn—_1. Since
wt(c;) > n — 2 and wt(ce) =7, we see that wt(c) 2 n—2+r. wt(c) =n —1
if ¢ is a constant multiple of a row of G,

(a) Suppose c is a linear combination of 7, rows of R;. Thenc; = 3 oig:
and c; = Y oI where a; € F; and g; is the ith row of Gp-1. By assumption,
wt(e1) > n — 2. Since wt(c) = 71, we have wt(c) 2 n—2+71 > n—1. From
the form of Gy,, it is clear that wt(c) = n — 1 if c is a constant multiple of a row
of Rl.

Suppose c is a linear combination of r2 rows of Ry. Then co = ) aiji
and c3 = Y a;m; where ; € Fp, and j; and m; are ith rows of Jand M, _,,
respectively. If j; # O for any i then wt(cz) > n — 2 since no pair of rows of J
is commonly incident. Equality occurs if c is a non-zero row of J in which case
wt(cz) = 1. Hence wt(c) > n — 1 with equality if c is a constant multiple ofa
row of R,. If c is a linear combination of rows corresponding to vertices of the
form (an, n) then c; = 0. By Corollary 2, wt(c) = wt(c3) = n — 1 with equality
if c is a multiple of an (an, n)-indexed row of Gy.

Finally, suppose c is a linear combination of r rows of R; and r rows of R,.
By assumption, wt(c;) > n — 2. By Proposition 2, wt(cs) > 1. If wt(cz) =1
then it is clear that ¢z # 0. Hence wt(c) > (n — 1) + wt(cz) > n—1.

(b) Let ¢ € C3(Gy). Suppose c is a sum of all rows of Ry. Thenc; = e
where e; is the ith row of the identity matrix I. Since I has rank (n — 1)(n — 2),
we have wt(c) = wt(cz) = (n—1)(n—2) >n—1. .

Suppose c is a sum of all rows of Ra. Then cz = 3, ji where j; is the ith row
of J. Since no pair of rows of J is commonly incident and the n — 1 non-zero
rows have weight n — 2, we have wt(c) = wt(cz) = (n —1)(n—2) >n— 1L

Suppose c is a sum of 7y rows of Ry and r; rows of Rp. There are two possible
cases to consider in addition to those examined in (a).

Case (i) 7, = (n — 1)(n — 2) and 3 < 2(n — 1).

If 75 of the 5 rows of J are non-zero then wt(cz) = (n—1)(n—2) —ra(n—2)
and wt(cg) > 1. If r, = n — 1 then all non-zero rows of J are added. Hence
wt(cz) = 0 and c3 is a sum of n — 1 unit vectors. We have wt(c) = wt(es) =
n — 1. In this case, c has support

{[(an,a), (an,n)] : @ < n} = Supp (z .,,(a_n?ﬁ) _
a<n
Hencec= Y vlenm),

a<ln
If , < n — 1 then at least one (an,a)-indexed row of J is not used in the
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sum. Hence wt(cz) > n — 2, wt(cs) > 1 and wt(c) > n — 1. Equality occurs if
T5 =72 = n — 2and cis the (an, a)-indexed row of J that is not in the sum.

Case (i) < (n—1)(n—2)and 7y = 2(n — 1).

This case gives wt(c;) > n — 2, wt(cz) > land c3 = 0. wt(cz) = 1if
r1 = (n — 1)(n ~ 2) — 1 in which case c; is a row of I. Hence wt(c) = n — 1 if
cis the row of G, that is not added.

As seen from observations above, C2(G;,) has other minimum words besides
the rows of G,. Since the n — 1 vertices in X, form a complete graph for each
a € £, the n — 1 incidence vectors v(**%), where (az,a) € X,, are pairwise
commonly incident at exactly (";‘) coordinate positions. Therefore the codeword
2 esa v@™®) has weight (n — 1)2 — 2(";') = n — 1. This way, we determine n
more minimum words. 0

5 The duals C,(G,)*

We now present some results on the duals C,(G,)* where p is any prime and
n > 3.
A generalisation of Lemma 3 of [8] shows that if a regular graph has an m-

cycle (uq, -+ ,um—1) where m > 4 is even then the dual of the code generated
by its incidence matrix has codewords of the form
v[uOrul] — v[ul |u2] + e e - v[um—huo]. (4)

Recall that I'; is the 6-cycle. Hence for any prime p, Cp(G3)L has a weight-6
codeword. In fact, Cp(G3)* = [6, 1, 6],

As seen in Figure 1, I'y has four 6-cycles. Thus if p is odd then Cp(G,4)
has weight-6 codewords. Computations using Magma [4] for small values of p
suggest that C,(G4) = [18, 6, 6],.

If n > 5 then T',, has 4-cycles in the maximum cliques X,. Hence if p is odd
then Cp(Gn)* has weight-4 codewords of the form

v[(ab,a),(ac,a)] — v[(ac,a),(ad,a)] + vl(“dta)r(ae9a)] —_ v[(aef"')‘(nb»“)) (5)
where a, b, ¢, d, e are distinct elements of §2.
Over [F2, the vectors in Equation (4) are in Co(G,)L if m > 3. If n > 4

then I', has 3-cycles in the maximum cliques. So C2(G,)* contains weight-3
codewords of the form

v[(abya)v(acva)] + U[(“cva)l(adva)] + v[(udla)r(abva)]' (6)

We have the following result.
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Proposition 4. For any prime p, let Cy(Gn)' be the dual of the p-ary linear code
from the row span of an incidence matrix G, of the graph I'n. Then

(@) Ifn > 4dthen Cy(Gy)* isan[(n —1)(3), (n — 3)(3) + 1,3]2 code.
(b) Ifn > 5 and p is odd then Cp(Gr)* isan [(n—1)(3), (n—3)(3), 4], code.

Proof. We show that the minimum weight cannot be smaller. It is clear that the
dual has no unit vectors.

(a) Let w be a weight-2 vector in F§ where k = (n — 1)(3). Then w has
the form v[®¥ 4+ [='¥'] where z,y, =’ and ¥’ are distinct vertices of ';,. Let v*
be the incidence vector of the block Z in the incidence design of I'n. If [z,
and [z’,v'] are not adjacent then (w,v*) = 1. Suppose [z,y] and [z’,y'] are
adjacent. Without loss of generality, let z’ = y. Then again (w,v%) = 1. Hence
w ¢ Cy(Gyr)t. Since C3(Gr)*t contains the weight-3 codewords in Equation
(6), it has minimum weight 3.

(b) A similar argument holds for C,(G,)* if pis odd. Hence we only need to
show that Cp(Gn)* has no weight-3 codewords.

Let w be a weight-3 vector in FX where k = (n — 1)(3) and p is odd. Then
either w has the form a;vi=¥ + agvl®'¥'1 4 azul=” ¥l or aqvl=¥l + agvl®®l 4
asv[“”’y”] or alv[xry] + azv[-"'x'] + aslel-yul or alv[-"-!l] + a2v[¢n~""'] + asv[:-y'l
or ayvl®¥ + il + agu®®’l where o; € F;, z, y, ', y', " and y" are
distinct vertices of I',.

In the first four cases, we have (w,v¥) = oy. In the last case, (w,v%) =
o1 + a2. If ap = —ay then (w,v¥) = a1 + as. If we further have a3 = —a
then (w,v*) = —2a; # 0. Hence in all cases there exists an incidence vector u
such that (u,w) # 0, i.e., w ¢ Cp(Ga)™t. Since Cp(Gn)* contains the weight-4
codewords in Equation (5), it has minimum weight 4. 0

6 Permutation decoding

For any prime p, we first determine automorphisms of Cy(Gr). Information sets
and corresponding PD-sets for the codes are given in Proposition 6.

Proposition 5. For any prime p and n > 4, let Cp(Gy) be the p-ary code from
the row span of Gn, an incidence matrix of the graph T's,. Let D be the incidence
design of T',. Then Aut(Cp(Gr)) = Aut(D) = Sq.

Proof. By Lemma 1 of [8], we have Aut(l'z) = Aut(D). Because Aut(D) C
Aut(Cp(Ghr)), we only need to show that Aut(Cp(Gn)) C Aut(D).

Case (i) p odd.
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By Proposition 3, if p is odd then minimum words of Cp(Gr) are scalar mul-
tiples of the incidence vectors of blocks of D. Let p € Aut(Cy(Gr)). Since
p preserves weight classes of the code, it permutes the minimum words. For
each incidence vector v(3%) there exists an incidence vector ¥(%+%) such that
p(v(e®9)) = y(@'¥"") Hence p induces a permutation of blocks of D that pre-
serves incidence of points with blocks. Therefore p corresponds to an automor-
phism of the design.

Case (ii) p = 2.

By Proposition 3, minimum ‘words of the binary codes are the rows of G, and
codewords of the form 3°__,, v(%:%) where a is constant. We show that it is not
possible for an automorphism of C5(G,,) to map a row of G, to a codeword of
theform3_ ., v(@aza),

Let

Sa = {(az,a),(42,2)] : = # o} = Supp (Z ﬁ) .

zT#a

A fixed element [(ab, a), (ab, b)] of S, is also in the support S}, of 3, , v(®=5),
This holds for every element of S,. Therefore minimum words of the form
Z,#a v(#%:%) are pairwise commonly incident. This property is not satisfied by
the rows of Gy,. An automorphism of C3(G,,) must preserve this property. It
hence maps rows to rows and codewords of the form 3, v(*) to similar
codewords. By permuting the incidence vectors (as observed in the odd p case
above), every automorphism of C2(G,) induces an automorphism of the design.
Hence Aut(C2(G) € Aut(D). This completes the proof. O

Proposition 6. For any prime p and n > 5, let Cp(G,) be the p-ary code
Jrom the row span of G,, an incidence matrix of the graph I';,. Let A; =
{[(an, a), (ak,a)]Ik # a,n}, A2 = {[(bn,n), (bn,b)]Ib # n}, Az = {[((n —
)n,n),(cen,n))lc # n —1,n}.

@ I,= Uf=l A; is an information set for Co(G),).
Ifpis odd then I, U {[((n — 3)n,n), ((n — 2)n, n)]} is an information set
Jor Cp(Gr);

(b) Ifp=2thentheset S = {(1),(n -1, y)(n,z)1 <zy<n-1,z # y}
of n+ (n — 2)? elements of S, is a PD-set for C3(Gn) with T, as informa-
tion set.
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Ifpisodd then SU{(n — 2,y)(n,z) : z,y € Q\ {n},y <n—4}isa PD-
set with T, U {[((n = 3)n, n), ((n — 2)n,n)]} as information set.

Proof. (a) We first show that columns of G,, indexed by points in Z,, are linearly
independent over IF and hence Z,, is an information set for C2(Gr).

Write Gy, as in Equation (1). Points in A, are indices of the 2("; 1) columns
of the identity matrix.

Re-order rows and columns of M,,_; as follows. List rows corresponding
to vertices in By = {({b,n}, {b})|b # n} followed by rows corresponding to
vertices in By = {({b,n}, {n})|b # n} in lexicographic order. Write columns
corresponding to edges between vertices in B; and vertices in By followed by
columns corresponding to edges between vertices in Bz. In this way, My, takes

the form
I 0
I Ln— 1

where I is the identity matrix of size (n — 1) x (n — 1) and L, is an incidence
matrix of K,_;. Columns of I are indexed by points in As.

Re-arrange columns of L,—; so that they begin with those indexed by the
following points in the given order.

[(1n1 n)’ ((n - l)ns n)]: Tt [((n - 2)"‘: n)r ((n - l)nv n)]:
[((n = 3)n,n),((n — 2)n,n)].

Then L,,_; takes the form
I | Ln—o
11---1 | 00---0

where I is the identity matrix of size (n — 2) x (n — 2) with columns indexed by
points in Ag. L,—2 is an incidence matrix of K, —2.
With these permutations of rows and columns, G, takes the form

Gn1| 1| 0
I 0

I Ln—2
I 1---110--:0

o |J

Excluding the last row from consideration, columns with the identity matrices are
seen to be linearly independent over F,. They are indexed by elements of Z,,.
Hence Z,, is an information set for C3(G»).

If p is odd, adding to Z, the point [((n—3)n, n), ((n—2)n,n)] gives a linearly
independent set of columns. Hence Z, U {[((n — 3)n,n), ((n — 2)n,n)]} is an
information set for Cp(Gr).
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(b) Let A4 = {[(dn,n), (en,n)]|d,e # n —1,n}, .

As = {[(f9,9): (fg, NIIf,9 # n}, As = {[(hL,1),(5,0)]l5, h, ! # n}. Then
C = A4U As U Ags is a check set for Ca(Gr). The non-binary codes have check

set C\ {[((n — 3)n, n), ((n — 2)n,n)]} . Notice that A5 U Ag = E(T'n_).

We first determine PD-sets for the binary codes. Since the minimum distance
is n — 1, the codes correct up to | (n — 2)/2] errors. Suppose a codeword is sent
and a vector y is received such that ¢ < |(n — 2)/2] errors occur. Let £ be the set
of error coordinates of y. There are three possible cases.

(i) £ C C. Use the identity permutation (1) of S,, to fix errors in the check set
C.

(ii) £ C I, UC \ Ag. Suppose there are at most n; errors in A; where 1 <
i<5.Then2Y n; <n—2.LetTi = {a1, -~ ,an,, k1, ,kn, }, T2 =
{blt"' 1bnz},7§ = {cl,"' 1cn31n_1}r72 = {dl)"' ,d‘ru,el:“' )en4}$
Ts={f1," " fuss 91+ + Gns}- Let T = US| Ts. Then

[T] <21y +n2 +n3+ 1+ 2n4 + 2n5 < n.

Since 2} n; < n—2, we have |T| < n—2. Hence there exists = € Q\ {n}
such that = ¢ 7. Use a transposition of the form (n, =) to map £ into C and
fix errors already in C.

(ili) € C Z, UC. Suppose at most ng errors occur in Ag. Let
78 = {jli v 1.7'110’111 s ,lns}- Then

|TUTsl < 2n1+n2 +n3 + 2n4 + 2n5 + 2ng < n.

Since 23 n; < n — 2, thereexists x € Q\ {n} suchthatz ¢ 7T U Ts. Use
a transposition of the form (n, z).

Suppose = = [ and there is an error coordinate [((n — 1)1,1), (jI,1)] in Ag
where j < n — 2. Then (n, z) maps this point to an information position in
Ajs. Use an automorphism of the form (y,n — 1)(n,z) where y < n — 2
andy # j, .

In addition to cases considered above, if p is odd there is a problem if h =
n—2,j =n—3andz = [ for points in Ag. In this case, a transposition of the
form (n, 1) maps [((n — 2)L,1), ((n — 3)L, )] to [((n — 2)n, n), ((n — 3)n,n)], an
information position. Use an automorphism of the form (n — 2, y)(n, z) where
1<y<n—-4 ‘ O
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