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Abstract. The main aim of this paper is to present the idea of L-
presheaves on a topological space X. Categorical properties of L-presheaves
are studied. The nature of L-presheaves locally in the neighbourhood of
some point is summarized. This aim required constructing the notions
of category of L-sets, L-direct systems and their L-limits and L-functors
with their L-natural transformations. We prove that the ” L-stalk” is an
L-functor from the category of L-presheaves to the category of L-sets.

1. Introduction.

The rise and development of new fields in this century, for example,
general systems theory, language theory, robotics and artificial intelligence,
force Mathematicians to be engaged also in the problem of specification of
non-precise notions. In 2001-2005, Radwan, Haussein and Hashem pub-
lished their papers [12], (13] which opened the development of the modified
sheaf theory called "fuzzy sheaf theory” in which [0,1] was the measuring
grade.

It is known that sheaf theory is a broad generalization of a part of
algebraic topology e.g. singular homology theory, see ref.[14]. Sheaves play
a fundamental role in the study of cohomology theory; [14], [16] and of
commutative and noncommutative algebraic geometry; [3], [4] and [17].
Even in case of graded and filtered levels; [18}, [9], [10] and [11). Sheaf
theory depends in its construction and its applications on the theory of
categories, functors and ....; [16], [4], [17], [19]. Hence, sheaf theory provides
a language for the discussion of geometric objects of many diferent kinds
and has main applications in topology and (more especially) in modern
algebraic geometry. It has been used in the solution of several long-standing
problems.

Theory of lattices is not only fundamental tools in the general theory
of rings; [15], but it represents the scale of membership grades in fuzzy set
theory and its applications, fuzzy commutative algebra and fuzzy topology
theory; (5], [6], 1], (7], [2] and [8]. In the present paper, the infinitely
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distributive lattice ,L, is the main type of structure with which we shall be
considering and using instead of [0,1].

The results here in this paper strengthen [12], [13]. We deal with the
concept of what we call category of L-sets , Lg, which may be viewed as a
category of solutions for L-presheaves. Of course, the notions of L-direct
limit for L-direct system of L-sets is applied to construct L-stalks for L-
presheaf which summarize the nature of L-presheaf in the neighbourhoods
of the points of the space X. Also we deal with L-presheaf morphism
between the L-presheaves.

2. Generalities.

To reach our aim in this paper we need some preparations about a cate-
gory of L-sets, category of L-direct systems and L-direct limits of L-direct
systems which will be used later in the framework of L-presheaves.

2.1 The category of L-sets "Ls”.

It can be constructed as follows:
s1. The objects are (L-sets) of the form (A,ua) where A is a set and
pa: A — L is a map from A into the lattice L. The object (A,u4) is
denoted by p4.
so. For each two objects 4, up a set Hom(pa,pp) of morphisms (maps)
from p4 to pp. A morphism from p4 to pupisamap f = pap: AxB —
L
s3. For each pa,pB,puc a function (composition) from Hom(us, uc) x
Hom(pa,pp) to Hom(pa, pc) which is a map pga—.c : A x C — L such
that

pa—clae) = \/ [ka=5(a,b) Appc(b,0))i(a,) € Ax C.
beB

This composition p4.c = B—c © ta—B is called the joint-meet compo-
sition or the lattice composition for which we have

s4. Associative law is satisfied for the L-morphisms, i.e., for any pa—~p €
Hom(pa,up),ue—c € Hom(ugp,puc),bc—p € Hom(uc,pp) it follows
from the distributive condition on L that pc_p o (uB—c © pa—B) =
(rc—D o ppB—~c) o pa—B.

ss. For every object 4 € Lg there exists a morphism I,,, € Hom(ua,pa)
called the identity of p4 so that for all us.p € Hom(pa,uB),pa—B ©
I, =I5 0pap = pa_p. It is noted that I, may be defined in terms

of ua.

2.1.1 Remarks and examples.
i. See examples in [12], [13] in case of L = [0, 1], V = maz, A = min.
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ii. Let o € L. Define pg : A — L by ug(a) = @, Va € A. Then (4,43) is
called the constant L-set.

iii. Recall from [7], let (4, p4) be L-set, @ € L. Define (4,u4)* = {a €
A: #A(a') 2 a} C A Then, for a < ﬁ in L) (Aa“A)ﬂ - (A,[,LA)"", and
(A,pa) = (B,pB) <= A = B,ua = pp. If (A,pa) = (B,u5), then
(A,I‘A)a = (A,[LB)Q,VC! € L.

iv. L can be embeded into a geometrical factor lattice e(L) up to an
equivlence relation. The later lattice is applied well in algebraic geometry,
e.g. constructing the L-germs of sheaves over L. We donot go into this

here.
v. Let {(Ai,pa,);% € I # ¢ indexed set } be a family of L-sets, A = [] A;
i€l
the cartesian product of its members. Then A can be mad into an L-set
by:
pa:A— L; pa((ai)) = /\ ka;(a:), foreach(a;) € A.
i€l
2.2 L-direct systems and their limits.

In this section we construct the second preparation for our aim, that is
the category of L-direct systems over Ls (hence forth denoted by Di(Ls)).
It can be defined in the following manner:

d). A direct system of L-sets {D, 7} indexed by a directed set I is a
function which assigns to each i € I an L-set (D, up); = (D;, up,), and to
each pair ¢ < j in I an L-morphism m;; = pp,.p, : D; x D; — L such
that, for each i € I'm;; : D; x D; — L is the identity and for i < j < k in
I ik = Wik o Tij.

dy. For each two L-direct systems on Ls {D,r},{D’,n'} indexed by I, I
respectively a map @ from {D, 7} to {D’, '} which consists of an ordered
preserving map ¢ : I — I’ and for each i € I a map (L-morphism)
wi:D; x D;(i) — L such that, if ¢ < j in I, then we have

’

©; O7I','_,’(! D,' X D,:,(j) — L) = Wo(i)p(s) © tpi(: Di X D‘P(.’i) e L)

d3. If {D,n} is L-direct system indexed by I, then the identity Iipxy is
defined to consist of the identity map on I and the L-identity map

I”D'_ = ID,-—oD,- . D,' X D.' — Lin Ls.
dg. f®: {D,n} — {D',n'},® : {D',x'} — {D",n"} are two L-
direct system morphisms on Lg, then their composition from {D,7} to

{D",n"} can be defined to consist of the compositions g o ¢’ : I — I*
and gafp(i) 09;i: Di X Dyropiy — Lyi € 1.
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Again we come back our preparation, given an L-direct system {D, 7}
in D;(Ls) over Ls as above, an L-target (denoted by t(D)) for {D, 7} is
a pair (E,{o; : D; x E — L; i € I}) consisting of an L-set (E,ug) and
a collection of L-morphisms {o; : D; x E — L,i € I} such that, for each
i<jinlI o; = 0;0om;. An L-direct limit (denoted by £(D)) for {D,w} is
an L-target satisfying that if (E’, {0} : D; x B’ — L, i € I}) is another
L-target for {D,}, then there is unique L-morphism ¢ : E' x E — L
such that o; = 0} 0 .

2.2.1 Proposition.
Constructions and notions are as above:
i. Every L-direct system of L-sets has an L-direct limit.
ii. Any two L-direct limits for an L-direct system are naturally isomorphic.

Proof.
i. Let {D,7} be a member in Di(Ls) indexed by I and F = [] D; the
iel
L-set of disjoint union of the L-sets D;’s; [7]. On F we define the relation
" ~p? by: di ~f dj <= 3k > 4,7 in I such that mik(di, di) = 7(d;,di).
We have i > 4, in I such that m;(d;,d;) = mi;(di, d;). Therefore, ” ~p ”
is a reflexivity relation. It is clearly that ” ~p ” is symmetric. Finally, if
d; ~r dj,d; ~ di, then we have n 2 m, p where m > i, and p > j, k such
that s (di, dn) = Tkn(di,dn). So” ~L " is an equivalence relation on F.
Denote by E the resultant factor L-set F'// ~, and o; : Dj x E — L the
composite of the inclusion D; x F — L and the natural map FxE — L.
Therefore (E, {o: : D; x E — L,i € I}) is L-direct limit for {D,7}.
ii. Let (E,{o;:Dix E — L;i € I}),(E',0}: D; x B' — L;i € I}) be
two L-limits for {D, 7}, over Lg, indexed by I. The universality of both
targets implies the existence of unique L-morphisms ¢ : E x E' — L and
¢’ : E' x E — L such that p 0 0; = 0] and ¢’ 0 ; = 0;. The uniqueness
of p oy’ and ¢ o ¢ implies p o ¢’ = I, ¢’ o p = Ig, which proves the
assertion in ii. a

2.2.2. Remark.

As in [7] it is clear that we can define and construct the same concepts
relative to any structure, e.g., of L-rings, L-groups, L-ringed spaces, L-
schemes, L-modules, etc. This will give us the ability to construct a new
L-commutative (noncommutative) algebraic geometry.

3. L-presheaves and their stalks.

In this section, we give definitions of L-presheaves of L-sets, and of L-
morphisms between them. We apply the notion in 2.2 to construct the
L-stalks of an L-presheaf. This construction allows us to study some prop-
erties of L-presheaf and of its stalks.
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We introduce, at first, the notion of L-functor with solutions in the
category Lg which may be viewed as a key of the concept of L-presheaf over
a topological space X in case that open(X) will considered as a category.

An L-functor F, from an arbitrary category A to Lg, is given by:

t;. For each an object A € A an L-set F(A) is Lg.

t2. For each morphism f: A — B in A an L-morphism (a single-valued
map) F(f) : F(A) x F(B) — L which is a morphism from F(A) to F(A),
object to the following conditions:

ts. For each A € A F(I4) = Ip(a) : F(A) x F(A) — L.

t4. For each two morphisms f : A — B,g: B — Cin A F(gof) =
F(g)o F(f): F(A) x F(C) — L whenever go f is defined in A.

3.1 Example.
Let X = [0,1] C R with the usual induced topology, open (X) = A. We
can define a [0, 1]-functor F from A to [0, 1]s by putting:

F(X) = (Z* e : 2+ — [0, Ui pgs (n) = =, n € Z¥),
FU) = {1}y {1} — [0, 1 1) (1) = 1) VU € open(X)

and pyv except pxy being identities VV C U in open X).

If F,G are two L-functors from an arbitrary category A to Lg, an L-
natural transformation T from F to G (i.e. T : F x G — L) is specified
by giving for each A € A an L-morphism T} : F(A) x G(A) — L, in such
a way that whenever

f:A— Bin A, Tgo F(f) = G(f) o T4.

An L-natural transformations can be composed (ThoT2)a =T1a0To4, and
the L-functors F, G are called L-naturally isomorphicif 3T} : FxG — L
and 75 : G x F — L such that Ty o T3 = I and T o T} = Ir. Note that
L in the above definition may be viewed as a constant functor.

Now, let X be an ordinary topological space determined by its collection
open(X) of open subsets. The family open(X) is partially ordered by inclu-
sion, hence may be regarded as a category. An L-presheaf of L-sets on X is
an L-functor Fy from open (X)°P to Lg, then for each U € open(X), we
are given an L-set Fy (U) = (Ex(U), #F, (v)), and for any smaller V C U
in open(X) an L-morphism p,, = BE, (U)=Fy) : Ex(U)xEx(V) — L
in Lg such that :
by. Forall U e open(X) Puy = BUE(U)=E,(U) = IEX(U) in Lg.
ba. Whenever W C V C U in open(X) py,, = p,y ©p,, as the joint-meet
composition in Lg.

The elements in Fx(U) are called L-sections and the elements in F x(X)
are called L-globle sections.
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3.2 Example and remark.
i. Let (A,p4) be an L-set in Ls. Then the constant L-presheaf F4, on
a topological space X is given by Fa, (U) = (4,p4)VU € open(X) and
Puu, =JamaAXA— LY U, C U, in open(X).
ii. The L-presheaf F' can be defined over an arbitrary lattice. Hence a
generalized sheaf theory again will come.

It is not difficult, by using the notions in Section 1.2, to prove the fol-
lowing result:-

3.3 Lemma.

Let X be a topological space, open(X), the directed set, by inclu-
sion, of all open sets containing z. Then, for an L-presheaf Fy on
X, {Fx(U),puv;V CU in open(X).} forms an L-direct system of L-sets.

The L-stalk Fx, of Fx at x € X is the L-direct limit for the L-
direct system in the above lemma. The elements in Fx , are called L-
germs. Any element is denoted z, for some L-section z € Fx(U),z €U €
open(X), with pp (v)(2) € L. Two members z;, z; in Fy ;, for some 2 €
Fx(U),2' € Ex(V), are equal <=> 3W C U NV such that pyw(z,z") =
pvw(2',2"); 2" € Ex(W). In example 3.2 above Fx , = (4, pa)-

An L-presheaf morphism f from Fy to Gy is given by L-morphisms
fU): Fx(U) x Gx(U) — L for each U € open(X), such that whenever
V C U in open(X), plyy © f(U) = f(V) o pyv. Composition of such
L-presheaf morphisms is defined as: if f : Fx x Gx — Ly and g :
Gx x Hy — Ly, then

gof:Ex xHx — Lx; gof(U)=g(U)o f(U)

for each U € open(X). From Section 2.1 and the local property we can
deduce that ” o” is an associative. Here, Ly can be regarded as constant
presheaf on X. The identity I, : Fx x Ex — Ly is given by Ir, (U) =
Ip, ) for each U eopen(X). Again, by Section 2.1 and the local property
we can verify the properties of [r . An L-presheaf morphism f : Ey x
Gx — Ly is L-presheaf isomorphism <= 3¢ : Gy x Ex — Ly such
that go f = I, and fog = Ig, . This statement is local, hence f :
Fy xGx — Ly is an L-presheaf isomorphism <= f(U), VU €open(X),
is L-isomorphism in Lg.

3.4 Proposition.

Notions and notations are as above:
i. Let X be a topological space, f : Fy xGx — Lx L-presheaf morphism.
Then f induces, for each z € X, an L-morphism of stalks fr : Ex , X
Gxr— Lin Ls.
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ii. If f: ExxGx — Lyx,9:Gx x Hy — Ly are two L-presheaf
morphisms, then for each z € X, we have

(90f)e=9z0fs

. If f: Fx xGx — Ly,9:Gx xHyx — Ly,h: Hy x Ry — Ly
are L-presheaf morphisms, then for each z € X, we have

hzo(gz0 fz) = (hzogz)o f

iv. If I, F, + Ex X Ex — Ly is the L-presheaf identity, then for each
z € X, we have

(IEx)x = IEX,:
Therefore, the L-stalk is an L-functor from the category of L-presheaves
on X to the category of L-sets Lg.

Proof.
The proof we present here is some what general and in more detials:

(i) Let z € X, one may define f, as: for (z;,2.) € Fx.xGx.iz €
Ex(U),2' € Gx(U),z € U € open(X), put fz(2z,2;) = (f(U)(2,2))z. It
is not difficult to show that f. is well defined. For, let (2., z.) = (hs, k),
where h € Ex(V),h' € Gx(V),z € V € open(X), then IW C VNU
containing x such that p,, (z,2') = pyy (h, k'), then f(W)p,, (z,2') =
f(W)pyw (h,}'). Since f is L-presheaf morphism, then (f(U)(z,7')); =
(f(V)(h,h'))z which proves that f. is well defined.

(i) If (2,2") € Fx(U) x Hx(U),U € open(X), then we do obtain

(9of)(U)(z,2") = (9(U)of(UNz,2") = \/ [f(U)(z,2")Ag(U)(',2")).

Z'€Gy (U)
Therefore,

(90 a2z, 27) = (g0 HHUN2,2"))a
( V [f(U)(z,Z')/\g(U)(Z',Z")])

z'eGy(U)

V' [(FW0)z2))z A (gU)(, 2"))s]
z,€Gy .

Ve 2) A gl 2]
z:’l.'EQX_z

=gz ofx(z::,z,r,;’)

it

It
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which proves that, for each (zz,2%) € Fyx . X Hx z,(90 f)e =gz 0 fx
(iii) From above, since (ho (g o f))z = ((h o g) o f)z, we obtain

hz o (gz 0 fz) = (hz 0 gz) 0 fa.

(iv) The statement is local, for, let f : Fx x Gx — Lx be an L-presheaf
morphism. Then for each U € open(X), we have

gy o )U) =Ig, (U)o fU) = Ip, ) o f(U) = f(U)

in Lg. In similar, if f : Gx x Ex — Lx is an L-morphism of presheaves
Gx,Fx over X, then for every U € openX, we have

(folp, )U) = f(U)oIg, (U) = f(U)eIp,w = FU)
in L. Now, if (zz,2,) € Ex o x Fx . where
(2,2") € Ex(U) x Ex(U),z €U € open(X),
then we have
UE,), (22 22) = (e, (U)(2:2))z = Up,)(2: )z = IE, (220 22)

which proves that, foreach z € X, (If, )z = I Frxn

Now, we study L-presheaves which satisfy additional property concern-
ing their L-section. The constant L = [0, 1]-presheaf mentioned above
satisfies this property.

Let X be a topological space and Fx an L-presheaf over X. Fy is
said to satisfy the property "Mos” iff it satisfies the following condition:
For every U € open(X), every open covering {Ua} of U (i.e. each Uy €
open(X)) and every (21, Za, ), (221 2a;) € Ex(U) X Ex(Ua), it follows from
puv. (21, 2a,) = PUU, (22, 2a,) that (21, 2a,) = (22)24,) i.6. 21 = 22 and
Zay = Zay-

3.5 Proposition.

Notions and notations are as above:
i. If Fx,Gx are L-presheaves over X, G x satisfies the "Mos” property and
f.9: Fx x Gx — Ly are two L-presheaf morphisms such that for each
z € X, fz = gz, then f =g.
ii. Let Fy be an L-presheaf over X satisfying the property "Mos”. Then
for any U € open(X),z,2' € Ex(U) and z; = 2;Vz € U, we have z = z.
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Proof.

(i) Let U € open(X) and (z,2') € Ex(U) x Gx(U). We have to prove
that f(U)(z,2') = g(U)(z,2’). Now, Vz € U, fu(2z,2.) = gz(2z,2.) that
is (f(U)(2,2)z = (g(U)(2,2)). and 3W C UNU containing = such that
Pow (F(U)(2,2)) = pyw ((9(U)(2,2’)). Applying the property "Mos” for
Gx to W’s of U we see that f(U)(z,2’') = g(U)(z,2') which proves that
f=g

(ii) If 2, = z;;2 € U € open(X), then IW C UNU = U containing z
such that p,, (z,2") = p,,, (2/,2"); 2" € Fx(W). Applying the property
"Mos” for Fx to W’s of U we see that (z,2”) = (z’,2") so that z = 2'.
a
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