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1 Introduction

The connection between self-dual codes, modular lattices and modular
forms has been brought out in a number of papers. There has been in-
tensive research connecting invariant theory and coding theory over fields.
The complete weight enumerators of codes over fields can be considered as
an invariant polynomial under a certain finite group. It is known that one
can construct various modular forms from the weight enumerators of the
code by plugging special types of theta-functions, see for example [1], [2],
[3], [4] and [5]. Generally, the lattices constructed in those works were either
real, complex or quaternionic. In this work, we study this relationship to
finite polynomial rings and lattices over totally real fields. This generalizes
the construction of integral lattices induced from codes over F4, which has
connections with Jacobi forms over the real quadratic field K = Q(v/5) and
Hilbert modular forms over K (see [2]).

This paper is organized as follows. In Section 2, the necessary definitions
and notations are introduced. In Section 3, we describe codes over the rings
Zom/{g(z)). In Section 4, we recall the notions of Jacobi forms and their
theta series expansions. In Section 5, the complete weight enumerators of
codes over Poly(2m,r) are defined and the MacWilliams identities of those
are derived. In Section 6, the theory of shadows is discussed. Invariant ring
and Modular lattices are constructed using the MacWilliams relations in
Section 7. In Section 8, by plugging proper Jacobi theta series to the com-
plete weight enumerators of Type II codes over Poly(2m,r) we construct
Jacobi forms over Ox. Moreover, we construct an algebra homomorphism
between a certain invariant ring and that of Jacobi forms over O.

2 Notations and Definitions

Let p be an odd prime and K = Q(¢, + ¢;*) be the maximal real subfield
of a cyclotomic field Q({;), where ¢, = ¢%*. Then its ring of integers is
Ok = Z[(p + (). For convenience, let ap := {, + {;'!, then O = Z[ay).
Then the elements of Z[a,)] can be written as follows:

Ok = Z[oyp| = {ao +a10p + -+ - + anag |a; € Z,n > 0}.

Let Z,, denote the residue ring of integers modulo m, and let Zm, [z] be the
polynomial rings. We take the monic irreducible polynomial g,(z) € Z[z]
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of degree r = %1 corresponding to oy, ie., g1(z) = bp + bz + --- +
br_12""! 4 z" is irreducible and g1(0p) = 0. Since for any f(ap) € Z[oy),
where f(z) € Z[z], there exist unique polynomials g(z),r(z) € Z[z] such
that

f(z) = q(z)o1(z) + r(z),

where degr(z) < deggi(z) or r(x) = 0. This gives that f(ap) = r(ap).
Hence we have that

Ox = Zlap] = {ao + maap + - + ar_105 " |a; € Z}.

Let g(x) be a polynomial in Zy,[z] such that g(z) = g;(z)(mod 2m).
Then g(z) is a monic polynomial, and there is a homomorphism

U : Ok — Zam[z]/(9(z))
given by
\Il(ao+alap+a2a§+' . '+aﬁiﬁar&?) = ao+a17+as7%+-- .+a,,_;3:c£i£(modg(z)).

It is easy to obtain that the kernel of ¥ is generated by 2m, that is Ker(¥) =
(2m). We let Poly(2m,r) denote the ring Zyn[z]/{g(z)).

Example 2.1. Let p = 5 and m = 3, thent = 51 = 2, and a5 =

e + =¥ =2cos 2z, Let g1(z) = 22 + 2 — 1. We have that

eftos—1 = (G+GE)2+H(G+HEY) -1
G+GiH2+G+G -1
1+G+@E+¢E+¢¢=0,

since (§ = 1. This gives that g(z) = 2%+ +5, and g(z) is irreducible over
Zg. Then Zg[z]/(9(z)) = {a + bz + (9(z)) | a,b € Zg}.

Remark 2.2. We note that the ezample above shows that go(z) = z%+z+1
and g3(z) = 22 + z + 2 are both irreducible over Z; and Z3 respectively.
But this is not always true. The following is a counter example.

Let m =5 in ezample above, we get that g(x) = z2 +z+9 is irreducible
over Zyo, but gg(z) = 22 + z + 4 = (z — 2)? is reducible over Z;.

A code C over the ring Poly(2m, ) of length n is a subset of Poly(2m, r)".
The code is said to be linear if it is a submodule. All codes are assumed to
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be linear unless otherwise stated. To the ring Poly(2m,r) we attach an in-
volution Z which corresponds to algebraic conjugation in the ring Og /(2m).
The involution satisfies the usual properties in that it is additive and mul-
tiplicative (since the ring is commutative). Additionally, the involution is
the identity on Z3,,. The ambient space Poly(2m,r)" is equipped with the
following inner product

v,w] = Z ;.
The orthogonal of a code is defined to be

Ct = {v| v € Poly(2m,r)" such that [v,w] =0 for all w € C}.

The orthogonal of a linear code is linear and satisfies |C||CL| = (2m)™.

We say that a code is self-orthogonal if C C C* and self-dual if C = C*.
We define the norm of an element z € Poly(2m,r) by N(z) = zZ where the
computation is done in Poly(4m,) and each coefficient in the polynomials
is read as an element in Z,,, rather than as an element of Zs,,. For a vector
v = (v;) we define N(v) = Y N(v:) = )_v;%;. We always read the norm
as an element of Poly(4m,7). If a self-dual code C over Poly(2m,r) has
N(v) = 0 for all v € C then C is said to be a Type II code, otherwise it
is said to be Type I Note that the norms of self-orthogonal vectors must
either be 0 or 2m since their inner product is 0 in Poly(2m, ).

3 Codes over the Rings Zion[z]/(g(z))

In this section, we first discuss some properties on the ring Za,,[z]/(g(z))
and then show the existence of a basis of codes over the ring Z,,, [z]/(g(z)).

3.1 Some Properties of the Rings Z,,,[z]/(g(x))
Suppose 2m = pi' - - - p&* with p; prime and p; # p; if i # j. Let

("2 ng — Zp? Xeer X Zp:n (1)
a + (a(modpi'),- - ,a (mod p5*)) 2

be the canonical isomorphism. Let

Pp: ZLom - ZP:" 3)
a +— a (mod p{*). (4)
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For the function f(z) = ao + a12 + - -+ + a,x* € Zyp[z], define
fpi(z) = pp;(a0) + pp; (a1)T + -+ + pp, (ar)".

Let f(z) + (g(z)), f'(z) + (9(z)) € Zam[z]/{9(z)). Suppose f(z) +
(9(z)) = f'(z)+(g(z)) and deg f(z),deg f'(z) < deg g(z), then there exists
a polynomial ¢’(z) such that
f(@) - f(=z) = 9(z)g'(z).
Since g(z) is monic, if ¢’(x) # 0 then
deg g(x) > deg(f(z)—f'(z)) = deg(9(z)g'(z)) = deg g(z)+deg g'(z) > deg g(z).

This is a contradiction. This means that for each element of Z,,[z]/(g(z)),
there exists a unique f(z) + (g9(z)) € Zam[z]/{g(z)) such that deg f(zx) <

deg g(z).

Theorem 3.1. Assume the notation given above. Then

Zomlz]/(9(2)) = Lz []/ gy (2))) X - X Zgs [2]/{gp, (2)),
where the isomorphism is given as follows:

e(f(2) +(9(2))) = (fo (2) + (gps (D)) -+ fpu (@) + (9, (2))),

and f(z) is the unique representative element of f(z)+(g(z)) with deg f(zx) <
degg(z) and gp,(z) is g1(z) mod p§*.

Proof It is easy to get that the map above is a homomorphism.
Letf(z) + (g(z)) € Ker(p), where f(z) = ag + a1z + -+ + a;x* with
t < deg g(z). Then we get that

(for (2) + (gp: ()} -+ fpu (%) + (95, (2))) = ({gpr ()1 -~ 4 {gp, (2)))-

This means that f,,(x) + (gp,(z)) = (gp;(z)) for all i. This implies that
9p:(Z)|fp,(z). Note that gy, (z) is a monic polynomial, and deg fp,(z) <
deggp,(z). This implies that f,,(z) = 0. In fact, suppose there exists
a polynomial h(z) # 0 such that fp,(z) = gp,(z)}h(z). Without loss of
generality, suppose h(z) = ho + hyz + - - - + bz’ with hy # 0, then we have
that

deg fp,(z) = deg gy, (z)h(2) = deg gp, () + | > deg gp, (x) > deg fy,(z),
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since gp, () is a monic polynomial. This is a contradiction. Therefore, for
each a; we have that

a; = 0(modp{*) for all 7.

Since ged(pyt,- -+ ,pS*) = 1, this gives that for each a; we have that a; =
0(mod 2m). Hence a; = 0 for all j and we get that f(z) = 0. This implies
that the homomorphism above is an isomorphism. a

Lemma 3.2. Let §(z) be a monic polynomial over Zy|z] with g(z) =
II2_, 05 (), where pi(z) and pj(z) are relatively prime if i # j. Then

Zope [2]/(G(2)) = Zpe[2]/(pF* (2)) X - -+ X Tpe[]/(p5* (2))-
Proof Let
©1: Zpe[2)/(G(2)) = Zpe[z]/(p1*(2)) X+ X Lpe[2]/(P5* (z)), (5)
f(@)+{g(=@) = (f()+ (), -, f(=) + (P (2))).  (6)

If f(z) + (§(z)) = f'(z) + (§(z)) then f(z) — f'(x) = §(z)h(z) for some
h(z) in Zpe[z]. This means that

f@) - f'(@) = (0§ (@) -+ i (@it (2) - - pi* (2)h(2))pf (=) € (P (2)-

Hence we have that f(z) + (p{*(z)) = f'(z) + (p§*(z)). This implies that
the corresponding ¢; is a well-defined map. It is easy to see that the map
is a homomorphism. We have that

Ker(p1) = {f(2) + (§(2)) | f(2) + (pi* (2)) = (p{* (z)) for all i}.

This gives that §(z)|f(z) since pi(z) and p;(z) are relatively prime. We
have that

f(z) + (§(x)) = §(z)h(z) + (3(=)) = 0 + (§())-

Therefore the homomorphism is injective. This implies that ¢; is an iso-
morphism. a

Lemma 3.3. Let o be an arbitrary positive integer. Let p(z) be a monic
irreducible polynomial over Zye[z]. Then f(z) + (p*(x)) is a zero divisor if
and only if p(z)l f(z).
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Proof If p(z)|f(z) then there exists a polynomial »’(z) and an integer
B < a such that f(z) = p?(z)h/(z). Then

(f(@) + P @) P(2) + (p*(2))) = (p*(2))-

This gives that f(z) + (p®(z)) is a zero divisor.
Now suppose f(z) + (p*(z)) is a zero divisor then there exists a poly-
nomial g(z) such that

f(z)a(z) + (p°(2)) = (p*(2))-

This implies that f(z)g(z) = p*(z)r(z) for some r(z). Hence we have that
(z) , f(z) since otherwise g(z) = p*(z)l(z) and g(z) + (p*(z)) = (p*(z)) is
zero in Zpe(z]/(p*(z)). O

Lemma 3.4. Assume the notation given above. If p(z) is a monic irre-
ducible polynomial over Zype[z] then Zye[z])/(p*(z)) is a chain ring with a
mazimal ideal (p(x)).

Proof Let I be an ideal of Zy[z]/(p*(z)). If I = {0} then I =
(0). Suppose I # {0}. If I # (p(z) + (p*(z)))} fori = 1,--- ,a — 1.
Then there exists a h(z) + (p®(z)) € I such that p(z) Jh(z). Since the
ring Zye[z]/(p*(x)) is finite, by Lemma 3.3. h(z) + (p*(z)) is a unit in
Zye|z]/(p*(x)). This implies that I = Z,[z]/(p*(z)). So the chain of
ideals is

0C (P*(z) + (p*(2)) C - C (p(z) + (p%(2))) C Zpe[2]/(p*(2))-
Hence Zp<[z]/{p™(z)) is a chain ring. O

Example 3.5. For ezample, Z4[z]/{(z + 1)?) is a chain ring. We know
that (z + 1 + ((x + 1)2)) is the unique mazimal ideal. We have that (z +
1+ ((z+ 1)) C (z+ 2+ ((z + 1)?)) = Zy[z]/{(z + 1)?), since

(z+1)(z+2)=22+82+2=(2?+2z+1)+(z+1) = (z+1)®+ (z +1).
We have that
(z+2)(ax+b)=a(z®+2z+1)+2b—a+bz=a(z+1)°+2b—a +bz.

This gives that (z +2 + ((z + 1)?)) = Z4[z])/{(z + 1)?).
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Corollary 3.6. Assume the notation given above. Then the ring Zom|z]/{g(z))
is a principal ideal ring.

Proof By Theorem 3.1, we have that
Zom(2)/(9(2)) = Zpe1 [2]/{gp, (x)) X -+ X Lipga [2]/(p, (x))- (7

Suppose g, (z) = [I;L, p;; (z). By Lemma 3.2, for each Z: [z]/(gp. (z)),
we have that

Z,:2)/(0p. (2)) 2 Tpes 2]/ (951 (2)) X -+ X L[]/ (pgy* (). (8)

Since the product of chain rings is a principal ideal ring, the result follows
from Equation (7) and Equation (8). o

3.2 Basis of Codes over Rings Zon[z]/(9(z))

It is always important to understand the generating matrix of a code. Un-
like codes over fields and chain rings, the generating matrix is not always
in a simple form. In this subsection, we show the existence of a basis of a
code over the ring Zy,[z]/(g(z)). This basis forms the generator matrix of
the code.

Let R be a finite principal ideal ring and let R; be a chain ring. We begin
with some definitions and lemmas. In (8] the following definitions are given
with respect to Frobenius and local rings. We specialize the definitions and
results to principal ideal rings and chain rings. Note that a principal ideal
ring is Frobenius and a chain ring is a local ring.

Definition 1. Let R; be a chain ring with unique mazimal ideal m;, and
let wy,- - ,w; be vectors in R}. Then wy,--- ,w, are modular independent
if and only if 3 oyw; = 0 implies that o; € my for all j. The vectors
vy, ,V in R™ are called modular independent if ®;(vy),--- , ®;(vk) are
modular independent for some i. Let vy,--- ,vx be vectors in R®. The
vectors vy, -+ , Uy are called independent if ) ajv; = 0 implies that ojv; =
0 for all j.

Remark 3.7. It is possible to have vectors that are independent but not
modular independent and to have vectors that are modular independent but
not independent. See [8] for ezamples.

Following the remark above, we have the following definition.

148



Definition 2. Let C be a code over R. The codewords ¢;,ca, -+ ,cr are
called a basis of C if they are independent, modular independent and gen-
erate C.

Theorem 3.8. Assume the notation given above. Let C be a code over
Zam[x])/{g(x)), then any basis for C contains exactly r codewords, where r
is the rank of C.

Proof By Corollary 3.6, we know that the ring Zon,[z]/{(g(z)) is a
principal ideal ring. Then the result follows from Theorem 4.9in [8]. O

4 Jacobi form over the totally real field K

We recall the definition of Jacobi forms over the totally real field K =
Q(ép +¢;") and theta-functions. We follow the definition given in [15).

4.1 Jacobi Group
The Jacobi group of K = Q({, + ¢;!) will be denoted by

[Y(K) := SLy(Ok) x O%.

This group acts on H" x C", where H denotes the complex upper half plane.
Variables of this space will be listed as, (7,z) := (71,..,7r, 21,..,2r). The

action of I'/ (K') on the space H™ x C are given by, : g € SLy(Ok),

a f -(1- z) — (a(l)fl + ﬂ(l) a(")»rr +ﬂ(") z zr )
vy 6 ! ' 7(1)1'1 +6M 7(")1‘,. + 6(r)? 7(1)1'1 + ﬂ(l) v 7(")1-,. + ﬂ(")

and, for all [\, 4] € O%,
[A’ I"’] : (T: Z) = (Tla T2y -y Try 21 + A(l)fl + #(1), vy Zp + A(T)Tr + #(r)).

Remark 4.1. It is known(see [11]) that SLa(Ok) is generated by the ma-

trices
0 -1 1 b
(22 (1 ) meon
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4.2 Jacobi forms

We first introduce the following notations; for 7 € H",2 € C",v,6,£ € Ok,
denote

N(r +6) = [[ (975 + 69),

i=1
()2
r c 5
. 2 2rigld) e d
e2™iTre/a(¢ ) = I I e ryxdl ,
=1

e-z«irr(e().zrn,\z)) = ﬂ e—21rit(j)()\(j)2rj+2A(j)z,).
j=1
Definition 3. Given k € Z and £ € O, a function g : H" x C" — C is
said to be a Jacobi forms of weight k and index ¢ for the totally real field
K if it is an analytic function satisfying

1.
(Gl eM)(r2) = N(cr+d)*e=mTreEDg(M - (1, 2))
= g(r,z), VM = ( Z ; ) € SLy(Ok),
2,

(gle[M w)(7, 2) 1= 72 TrEC T42Ng 7 [ 4] . 2) = g(r, 2).

It has the following Fourier expansion:

g (T, z) = Z c(,n, ,r) ezwiTr(n'r+rz) .
n,reé5l,n>0

Here 83 is the inverse different of K. (See a standard textbook for algebraic
number theory, for instance [6] (page 203), for a detailed definition of this

term.)

Remark 4.2. 1. The C-vector space of Jacobi forms of weight k and
indez £ for the field K is denoted by Jk,e(I'1(Ok)).

2. Note that letting z = 0 one obtains a Hilbert modular form g(t,0)
from a Jacobi form over K.
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4.3 Theta Series

The following theta-function was first introduced and studied in [15] to
show the correspondence between the space of Jacobi forms over K and
that of the vector valued modular forms.

N
For each p € Ok, O u(7,2) = Z e?miTrlGm +us)  (g)
ue&}l yw=p  (mod (2m))

Then, by the Poisson summation formula, the theta-series satisfies the fol-
lowing transformation formula.

Lemma 4.3. 1. (9mulym ( 1 b )) (r,2) = ezmTr(tfr’,;")gm,u(T, 2),Vbe

01
Ok.
2,
0 -1
(Ol (“ “))( ) X(l °) T TR, (r,2)
m, m T,Z T e ——— e m m’uT,z,
* %‘ 1 0 (4m)i VEOD K [2mOg

withx“(( (1) "01 )):1.

Proof The standard tool using the Poisson summation formula gives
the result which was stated in [15]. O

5 Weight Enumerators and MacWilliams re-
lations

We shall define a series of weight enumerators and find the MacWilliams
relations for these weight enumerators.
For a code C over Poly(2m,r) define the complete weight enumerator

by

cwec(Tags Tayy -+ -y Tay_y) = Z H zle®) (10)
veC a€Poly(2m,r)

where n,(v) = |{j | v; = a}|. The complete weight enumerator is a ho-
mogenous polynomial in (2m)" variables.
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On the ring Poly(2m,r) define the relation a ~ b if @ = be where ¢ is
& unit in the ring. Let Py, := Poly(2m,r)/ ~ denote the equivalence
classes of the ring under this relation. The symmetric weight enumerator
is given by

swec(Tagy Tays---) = 3 | za=® (11)

vEC a€Pzpm,r

where n/,(v) = |[{j | v; ~ a}|. The symmetric weight enumerator is a ho-
mogenous polynomial in |Pypm »| variables.
The Hamming weight enumerator is given by

We(z,y) = Yz hyhe) (12)
velC

where h(v) is the number of non-zero elements in the code. The Hamming
weight enumerator is a homogenous polynomial in 2 variables.

Note that We(z,y) = cwe(z,y,v, .. .,y) and the symmetric weight enu-
merator is formed by replacing each occurrence of z; with z;), where [i]
denotes the equivalence class containing 3.

Define the character x; : Poly(2m,r) — C by

x1(ao + a1z + - -- +ar_la:"1) = szm"‘ (13)
and

Xa(B) = x1(c- B) (14)

for any a, B8 € Poly(2m,r).

Let T be a (2m)" by (2m)" matrix indexed lexicographically by the
elements of Poly(2m,r), where the a-th row and $-th column of T is given
by the values of x(8). Specifically,

ari

Tao+01z+~--+a,-z",bo+b1::+...b,.:::"' = Cg‘m' Com = €3m (15)
where Y cirt = Y a;2*Y) bzt (mod g(z)).

Essentially the matrix T is a character table of the underlying additive
group, with the columns permuted by conjugation, where the characters
are canonically associated with multiplication in the ring.

To obtain the MacWilliams relations for the symmetric weight enumer-

ator we define the following matrix. Let S be a |Pom r| by |Pem,r| matrix
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indexed by the elements of Pay, » With
S[a.]‘[b] = ZT"’b' (16)
cr~a

The following notation is used to describe an action of a matrix on a
polynomial ring. If A = (ai;) is an n by n matrix and f(z1,...,z,) a
polynomial in C[zy,z3,...,2Zs] then

A f(zy,...,za) = f( E 15Ty, Z anjTs)- mn

1<j<n 1<jsn

We can now state the MacWilliams relations for the complete and sym-
metric weight enumerator.

Theorem 5.1. Let C be a code over Poly(2m,r) then

cwegs (X) = I%Icwec(T- X) (18)

and
swec.(X) = I—é,l-swec(s - X) (19)
Proof Follows from the results in (7). ]

Then specializing the variables we have the following.

Corollary 5.2. Let C be a code over Poly(2m,r) then

L

1] We(z + ((2m)" - 1)y,z - y). (20)

WcJ. (.’L‘, y) =

Definition 4. For codes C and D over Poly(2m,r) define the complete
joint weight enumerator by

=3 I e (21)

veC v'eD (a,b)e(Poly(2m,r))?
where ng p(v,v") = [{j | v; = a,v]j = b}|.

The complete joint weight enumerator is a homogeneous polynomial in
(2m)?" variables.
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Corollary 5.3. Let C and D be codes over Poly(2m,r) then

Jes,p(X) = i |Jc,p((T® I)-X) (23)
1
Je,pr(X) = WJC,D((I®T) - X). (24)
Proof Follows from Theorem 5.1 and the results in [7]. O
6 Shadows

Let C be a Type I code over Poly(2m,r). A vector v in C is said to be
doubly-even if N(v) = 0 in Poly(4m,7).
Lemma 6.1. The sum of two doubly-even vectors in e self-dual code C is

doubly-even.

Proof Let v and w be two doubly-even vectors in C. Do the following
computation in Poly(4m,r):

(v+w)(TF)

(v + w)(7 + )
= VU + W+ v +Tw
= YW+ Tw
since v% and ww are both 0 in Poly(dm,r). Now Tw = vW. Since vw and

Tw are both 0 in Poly(2m,r) they are actually equal since € = ¢ where ¢ is
a constant in Zs,,. Hence we have

T +Tw=200=0

in Poly(4m,r). a

Let Cp be the subcode of doubly-even vectors in C. The linear map
v — N(v) has kernel Cp and an image of size 2, hence Cp is of index 2 in
C. As usual we define the shadow to be

S=Cé‘—C=ClU03 (25)

and
Cy=C-Cy. (26)
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Lemma 6.2. Let C be a Type I code over Poly(2m,r). Then

1
cwec, (%o, - - -y Tg(z)—1) = 5(61080(30, vy Tg(z)—1) + cwec(Yo, - - - 1 Yg(z)-1))
27

h,{,f“)a:a.

where yo = ¢}

Proof If the vector v is doubly-even then it is counted twice and if it
is singly-even then it is counted once positively and once negatively. O

Theorem 6.3. Let C be a Type I code with shadow S, then
1
cwes(Zo, - - -, Tg(z)-1) = |—C-|(T - cwec (Yo, - - - 1 Yg(z)-1)) (28)

where T is the matriz that gives the MacWilliams relations.

Proof Simply apply the MacWilliams relations to both sides of equa-
tion (27). That is

cwes(Zo, ..., Ty(z)-1) = cwecy (%0, .- - Tg(z)—1) — cwec(Zo, - . ., Tg(z)-1)

]z{;l(%(cwec(T . (2:0, vee )xg(:c)—l))
+ cweo(T (W, -, Ug(z)-1))) — cwec((o, .1 Tg(z)-1)

1
mcwec(T - (0, ..., Tg(z)-1)) — cwec(o, ..., Tg(z)-1)

1
+ |—C','wec(T (yo,. .- ’yg(::)—l))

1
= ﬁc‘weC(T . (yo, v ’yg(z)—l))

There exists vectors s and t with
Co=Co+t, Ci=Cp+8, C3=Cop+s+t.

Let a = [s,s] and 8 = [s, t] then it is clear that the orthogonality relations
are given in Table 1.

The glue group of Cy/Co can be either the cyclic group of order 4 or
the Klein-4 group. We see that in either case s + s = 2¢ € C and hence
[2s,t] = 0 and so 2[s, t] = 0. This implies that [s,t] = 0 or m. But [t,s] #0,
since otherwise s would be in C. Therefore we have that 8 = m. We
notice that N(s) = a (mod 2m). If the glue group is the Klein-4 group
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Table 1: Orthogonality Relations

Co C] Cz 03
Co| O 0 0 0
Ci| 0 a B a+f
Cy{ O B 0 B
Ci| 0 a4+ B a+28

then 2s € Cy and N(2s) =0 (mod 4m). Then 4N(s) =0 (mod 4m). This
implies that a is either 0 or m. If the glue group is cyclic then 2s € C;
and N(2s) = 2m (mod 4m). Then 4N(s) = 2m (mod 4m) and we have
2a = m (mod 2m) and so a = 2. This case can happen only when m is
even.

7 Modular Lattices

Let “Tx ” denote the trace function Tr : K — Q. Note that T'r(Og) C Z.
We attach to K™ the inner product

(a,b) =) Tr(a;-b), (29)
The dual lattice is defined as
L*'={v|ve K", (v,w)€ Ok forall we L}. (30)

For a lattice L in K™ we say that L is integral if L C L* and unimodular
if L = L*. Additionally, if Tr({v,v)) € 2Z for all v € L then the lattice is
said to be even.

We denote the inverse image @ of u € Poly(2m, ) under the reduction
map modulo an ideal (2m), ¥ : Og — Poly(2m,r).

For a code C over Poly(2m,r) of length n define

A(C) = ilueC). (31)

1
Ve
Theorem 7.1. If C is a self-dual code over Poly(2m,r) then A(C) is a
unimodular lattice. Moreover, if C is Type II then A(C) is even.
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Proof Let v and w be vectors in C, then

1 1 1 -
T Jamy =y
= ___(2;)rZTr(mw.-).

Note that Tr(v;w;) = v;w; (mod (2m)) and we have that the lattice is
integral. If the code is Type II, then reading v;w; (mod 4m) we see that
Tr(vab;) = 0 (mod 4m) and so 5L-Tr(3:05;) € 2Z, giving that the lattice
18 even.

The standard proof shows that the code is unimodular, i.e. we have

2mO% C V2mA(C) C Ok

and V(2mO%) = (2m)"* and |v2mA(C)/2mO%| = (2m)%. Which gives
that V(v2mA(C)) = (2m)¥ and then V(A(C)) =1. O

Let L be a lattice that is not even and let Lo = {v|v € L, Trv,v € 2Z}.
Then Ly is of index 2 in L and

L6=L0UL1UL2UL3 (32)

with L = Lo U L. The shadow is defined by ¥ = L; U Lz. The next
theorem follows naturally from the definition.

Theorem 7.2. Let C be a Type I code over Poly(2m,r) with A(C) = L.
Then A(Cop) = Lo, A(C3) = Lz and A(S) = L.

The theta series for a lattice is defined by

eL(g) =) ¢=** (33)

veL

As usual the variable g = 272,
The standard proof gives that

O1-(2) = (det L)}(2)¥01(Z0). (34
It is clear that
Or0 = 5(O1(2) + O1(z + 1)) (35)
The standard computation gives that

6.(:) = (2)#6(1- 1) (36)
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8 Main Theorems

Theorem 8.1. Let Inv(Grr(cwe)) be the invariant ring of the group de-
fined before.
Then the following map

& : Inv(Grr(cwe)) — ®,cz.Tae,sme)(T1(Ok)),
given by
®(H(zs|Va € Poly(2m,r))) = H(0m,. | Vi € Ok /(2m))
VH € Inv(Gy(cwe)), is an algebra homomorphism.
Before we prove the main theorem we need the following lemma:

Lemma 8.2. Let Gp,r be a group
Gm,r =< hm, A.-VIV'Y € OK >,

where each of A, is a matriz indezed by Poly(2m,r) such that
Tr(yal
(An)as =bus - Gom T+ (s = o™,
Then the group G, and the group Gyr(cwe) are the same.

Proof of Theorem 8.1 It is enough to check the transformation

formula for
9(7, 2) := H(Om,u(7, 2) | 1 € Poly(m,r)); with degree(H) = ¢,¥b € Ok,

o( 5 2) (a) = H(mulr+b2)lu€ Polym,r)
= H((GaE - B, 2l € Poly(m,r)))
= H(Ab(om,y('r’ z)lf" € Poly(m, 1')))
= H(0m,u(r,2)|p € Poly(m,)).

Last equality follows from the fact that H(z,) € Inv(Grr(cwe)) and Ay =

Tr!;zb!
(Ab)up = (om? ) € Inv(Gp,r), Vb € Ok from Lemmad.3.
Next,

1 =2 1 2
9(—;, ;) = H(om,u("',,?' ;)“‘ € Poly(m,r))
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~ ( 1o ) NGRS T 28 s (O, 2)ls € Poly(m, 7))

= N T H (b - (Omu(, 2)l1 € Poly(m,1)))
( since £ =deg(F)=0 (mod 4))

= N(r) 2T mED (6, (7, )| € Poly(m, 7).
Here, M - (O ulp € Poly(m,r)) denotes matrix multiplication. Next, to

check the elliptic property, first note that, for any (A1, A2) € O%, and for

each u € Poly(m,r),
.
Omu(Ty2 + M7+ Ag) = ) 2MTr(GE +r(s+MT4A2))
resgl,r=p  (mod (2m))

2
e~ 2miTr(m(Ar+2)12)) Z ezniTr(%hLﬁ(rnxl)z)
re&,'(l +w=p  (mod (2m))
; 2
= e—2‘mTr(m(>\1 r+2¢\|z))0m’“ (T, z) .

So, the elliptic property of g(r, z) is now immediate. The condition at the
cusps can also be checked from that of each theta-series 0, (T, 2). We omit
the detailed proof. a
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