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Abstract

Let d(u,v) denote the distance between two distinct vertices of a
connected graph G and diam(G) be the diameter of G. A radio
labeling f of G is an assignment of positive integers to the vertices
of G satisfying d(u, v) +|f(u) — f(v)| 2 diam(G) + 1. The maximum
integer in the range of the labeling is its span. The radio number of
G, denoted by rn(G), is the minimum possible span. In [7] M. Farooq
et al. found the lower bound for the radio number of generalized gear
graph. In this paper we give upper bound for the radio number of
generalized gear graph, which coincide with the lower bound found
in [7] .
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1 Introduction

A labeling of a graph G(V, E), is a map that carries graph elements to num-
bers (usually to the positive or non-negative integers). The most common
choices of domain are the set of all vertices and edges (total labelings), the
vertex-set alone (vertez-labelings), or the edge-set alone (edge-labelings).
In this paper we consider a type of vertex labeling known as the multi-level
distance labeling or radio labeling of graphs. Multi-level distance labeling is
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motivated by restrictions inherent in assigning channel frequencies for radio
transmitters. We consider simple and connected graphs G = (V(G), E(G)).
We write d(u, v) for the distance between vertices © and v, and use diam(G)
to denote the diameter of G.

A radio labeling [1) is a one-to-one mapping f : V(G) — IV satisfying the

condition,
d(u,v) + |f(u) — f(v)| 2 diam(G) + 1

for every u, v € V(G). The span of a labeling f is the maximum integer
in the range of f. The radio number of G denoted by rn(G) is the lowest
span taken over all radio labelings of the graph G.

The generalized gear graph Ji, is obtained from a wheel graph on n + 1
vertices by introducing t-vertices between every pair (v;, vi4+1) of adjacent
vertices on the n-cycle of wheel. We will denote the central vertex by z.
For each i = 1,2,...,n the tvertices between v; and v;4; are denoted by,
bij=01,..,1%) -2 and el ;5 =0,1,...,|4] — 1, for odd ¢.

For even t these vertices are denoted by

b;5=0,1,...,|4) -1,and al, ;5 =0,1,..., ] - L

L 3

The diameter of J;, for t > 1, n > 3 is given by,

diam(Je,n) = { ﬁiﬁ, todd.

Some of the contribution of various authors to the area of radio labeling

(a) (b)

Figure 1: rn(J;,n) when (a) t is odd and (b) when ¢ is even

of graphs are given below.

Theorem 1.1 [1] If G is a connected graph of order n and diameter 2,
then n < rn(G) < 2n — 2, and for every pair of integers k and n with
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n < k < 2n— 2, there exists a connected graph of order n and diameter 2
with rn(G) = k.

Theorem 1.2 (2] The radio number of the complete graph on n vertices is
n, ie. rn(K,) = n.

Theorem 1.8 [2] ra(Jy,) =4n+2 forn > 4.

Theorem 1.4 [5] For oddn > 3; rn(Pa) = 3(n—1)2+2;
For evenn > 4, m(P,) = 1'23 ~n+1.

For a connected graph G of order n, let DG represent the weighted complete
graph K,, having V(K,) = V(G). The length of an edge ij is defined by
I(i7) = da(%, 7), and hpmaz(DG). denotes the maximum length of a hamil-
tonian path in DG. Using these notations M. T. Rahim and I. Tomescu
found a lower bound for the radio number of a graph G in terms of the
length of the maximum hamiltonian path in the corresponding weighted
completed graph.

Theorem 1.5 [6] n(G) > (n — 1)(diam(G) + 1) - hpmaz(DG) + 1.
Theorem 1.8 (7] Fort <n—1, n 27, m(J;,) > 3(nt? +4nt +3n+4).

The most complete survey on the radio labeling of graphs can be found in
[3].

2 Upper bound for the radio number of gen-
eralized gear graph J;,

2.1 An upper bound for rn(J;,), when t < (n — 1)
Theorem 2.1 Fort<n—1, n 217, ra(Jyn) < 3(nt2 +4nt + 3n + 4).

Proof: We will define a labeling f : V(Jin) — IV and claim that this
labeling is a radio labeling . The span of this labeling will provide an
upper bound for the radio number of J; 5.

Before defining the labeling we rename the vertices of J; ,, by defining a
position function P : V(Ji,n) — {Z0,Z1,--.,T(e41)n}- Forn=2k+1, P
is defined as follows;

P(z) = =,

P(a‘;‘_l) = z.-_,.j(u.,.n, for every i= 1,2, eeny k+ l, j = 0, ], cory I-t/2-| -1

P (a%,-) = Tipj(2k+1)+k+1, for every i =1,2,..,k,5=0,1,..., [t/2] -1

PV 1) = Tuporgalgheoi+rgy for every i = 1,2,k + 1,
J =0!11'"’ [t/z] -2
P(by) = ZTookgirgDeksaiaergy for every & = 1,2,k

§=0,1,..,[t/2] -2
P(v) = ZTiptn, for i = 1,2, ...,n.
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For n = 2k, the position function P is defined as,

P(z) = xo,

P(a};_,) = Ziyajk, for every i =1,2,..,k, j=0,1,..,[t/2] — 1

P(a}:)) = Tiskeasen), for every i = 1,2k, j =0,1,..., [t/2] — 1
P(byi_1) = Tirani4147) for every i=1,2,...k, 7 =0,1,...,{t/2] -1
P(b)) = Zoqangi+ 414k for every i=1,2,..,k, j =0,1,.., [t/2] - 1
P(v) = Ziytn, for i = 1,2,...,n.

Now we define the labeling f : V(J;n) — IN. We specify the labels f(z;)
so that { < e, if and only if

f(z:) < f(ze)-
1 i=0

A+ (25 + 1)@ — jn), i=12,...,[t/2]n,
f@)= B+C+(t-2)i—G+[EDn), i=[§In+1,....tn,
BMED Lo htn+ (t+2)(—tn), i=tn+1,...,(t+1)n.
Where A = [42] - 1 + (5 — 1)[i(t + 3) - 1] + jn,
B ={[42] -1+ ([5]1 - 2)[[31(t+3) - (¢ + )]},
amz C=n(t—-1)+j2t+3+n—-j(t+3)+2[5|(t+2)]+
n[].
Cl:im: The labeling f is a valid radio labeling. For this we must show
that the radio condition,

d(v, ) + |f(v) — F(W)| 2 1+ diam(Jom) = £+ 4 (1)

holds for all pairs of distinct vertices (t;, v). For this we consider the
following cases.

Case(1). Consider the pairs (2,7), for any vertex r # z. Consider
the pairs (z,7), such that d(z,r) = 1, a:xd recall P(z) = zg, f(zo) = 1,
P(r) = P(v%) = Ziseny [(@ign) = 570 4+ 2 4 tn + (¢t + 2)i, where

2

i=1,2,...,n. RHS of condition (1) implies 1-+{25=2 42 tn+(¢4+2)i-1| >
t+4+ [ﬂ%'—l)- +tn] > t + 4. So condition (1) holds for all such pairs.
For pairs (z,7) for which d(z,r) > 2, and r € {adi_1r 0 U1, b},
consider the pair (z,a};_,). Now P(a};_,) = Zip2jk, f(Tisos) =
[42] — 14 (5 — V)[5(¢ +3) — 1) + jn + (25 + 1)(i + 2jk — jn). Hence RHS
of condition (1) is d(v,u) + |f(v) — f(u)| = 2+ Iﬁé] -1+@G -1+
3)—1+jin+ (25 +1)(E+ 25k —jn) -1 > 2+ [ +i+2t-2>t + 4.
Condition (1) holds. Analogously it is true for other such pairs.

Case(2). Consider the pairs (af,a‘f“'), for each j = 0,1,...,[$] — 1,
and i = L,2,...,n. As da,ai*) = i - @G +1)] = 1,
P(a]) = T a5k P(ait!) = Tigs yas41)e- RHS of condition (1), implies
li=(G+DIHI31 -1+ G- )l(E+3) - 1] +in+ (25 + 1) +5(2k—n)) -
[[45]-145(G-+1)(143)— 1+ +1)nt 7 +3)(E+(+1)(2k—n))) 2 [1+
2(t+3)(j +1)+2k+1| > t+4. Condition (1) is satisfied . Now for the pairs
with d(a};,ad;_;) > 4, P(a}) = Tiyr(zi+1ys P(ahiy) = Tiy2jk, and their
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label difference is | f(i+x(25+1))— f(%i+a5x)| = ¢. Condition (1) implies that
(030, @51 )+ (Ti(ase10) —F(@irain| 2 4+lj—j+1Ht—|j—j+1] = t+4.
So condition (1) holds.

Case(3). Following the same proeedure as in Case(2) the condition (1)
can be verxﬁed for the pairs (b,b]*"), for each j = 0,1,. -»[$]1 -1, and
i=1,2,.

Case(4). For pair, (v;,v,), where i,8 = 1,2,...,n, and i # s the
distance is d(v.,v.+1) = 2, lf($.+m) f($,+1+gn)| > t+2 RHS
of condition (1) implies, 2 + 2 + ¢ = ¢ + 4, holds. For vertices w1th
d(v;,7) > 1, where i = 1,2,...,n, and r € {a,_,,al;,b5_,, 0%},
P(0) = Titins o) = 20 +2 4 tn 4 (6 + 2 — ), and

P(b2;_1) = Tiyari+141) f(xn+2k(j+[§'|)) = [45] -1+ ([§1 - 2[§1¢t +
3)-(@E+4)]+nft - 1] +j[2t+3+2[EJ(E+2) -5t +3)+ (G + [E)n+
(t = 25)( +2k(5 + [51) — (G + [§])m).

So the radio condition 1+ [M +2+tn+(t+2)(i—tn) - [[HB3] -1+
(f 1-2)[[51(¢+3)— (t+4)]+n[t 1]+][2t+3+2|_2_|(t+2) -J(t+3)l+(9+
[ Tin+ (£ = 24)(G + 265 + [N =G+EDM 21 +3+tn+t+22t+4,
holds Similarly it is true for all pairs for which d(v;,r) > 1.

Case(5). Consider the vertices 1,72 € {ai,_,,az,, b;,_,, 2,}, with
d(r1,72) > 2 and suppose ) = aa‘_l,rg = b’. _1

Angd their label difference is | f(Zi424x) — f((a:‘.,,zku +[41)] = nt. So the ra-
dio condition d(ad;_,, b, _,)+|f (Zisax)— f((z‘+3,,(3+[§]))| 2 24nt > 4+,
holds. Analogously it is true for other such pairs.

These above cases establish the claim that f is a radio labeling of J; .

Hence rn(Ji.n) < span(f) = f(z(41)n) = 3(nt? + 4nt +3n + 4). [ |

Remark(1l): The labeling defined in theorem 2.1 is not a valid
radio labeling when ¢ > n~ 1, and n < 7. Consider the adje-
cent pair of vertices (a},a}). As P(a?) = z;,P(a}) = 142, and
flz1) = [481+1, f(a:l.,.zk) = [-"{i] 1+n+2(1+2k—n). RHS of condition
(1) implies 1+|r-+—]+1 ([452] - 1+n+2(1+2k—n))| = 6k+2—2n = n+2,
orn+ 1. Itxseasytoseethatn+2 orn+l<4+tfort>n—1.
Hence the labeling defined in theorem 2.1 is not a valid radio labeling
for Jen when t > n — 1. For the palr (a3,a2), d(al,a%) = t +1 and
P(ad) =1, f(@1) = [48]4+1 for P(a) = Zags, flzag) = [45] 422,
Henee t +1 + |[448] + 1 — [4287128| —t+—+—4+t for n < 7. Hence
the the labeling defined in theorem 2.1 is also not a valid radio labeling
for J;, when n < 7.

2.2 An upper bound for J;,, when t > (n — 1)
Theorem 2.2 Fort >n—1,n2> 7, r(Jyn) < 3(nt? + dnt + 2t + n + 8).

165



Proof: For this we define f: V(G) — IV in the following way.
1,i=0,
[‘L]-H»%—l n, §j=0,
Flz:) = A+(2.7 +3)[""(.7+1)n]7’—"+1 ., [31n,
B4+ C+(t—25)i— (G +[§nli= [2]"+1
D+(+2)i—tn),i=tn+1,...,(t+ )n.
Where A = t+1—n+[—'!'-]+] +(J+l)[y(t+2)+n]
= {(n+ 1)t —2n + 1+ [45] + ([3] - 2)[(e + 331 - (¢ + N},
for] 0,1,..... [$1-2,C= J[2t+3 ](t+3)+2(t+2)[2J]+(J+fg])n,
and D=t+4+n(t— 1)+ﬂ‘1;ll
Following the same procedure as in theorem (2.1) it can be shown that
the above labeling is a valid radio labeling for J;n, for t > n — 1,
and n > 7. We verify the remark (1) for the pairs (al,r), where
r e {di,¥,v,2}, d(al,r) > 1, and P(al) = z,. Consider r = aj, where
=1,2,...,[§] = 1, f(z1) = [42] + 1 and P(a]) = z1425% so0 the
label diﬁerence | f(zl) — f(z1424x)] = t+ 3. Hence the radio condition
d(a},a]) +|f(z1) — f(z14ae)l 2 5+t +3 > 44t where j > 1, is satisfied.
Similarly it is true for other pairs. Thus for ¢ > rn—1, and n > 7,
ra(Jin) < d(nt2+4nt+ 2t +n+8). B

2.3 An upper bound for J;,, when n =5, 6.
Theorem 2.3 rn(J;n) < 3(nt? + 4nt + 5n + 2). forn =5,6.

Proof: For this we define f : V(G) — IN in the following way.
1,i=0,
(81 +1+42(i-1),i=1,...,n, j=0,
A+(2J+1)('-.7n) i=n+l,. 1(J+1)n1
f@) =1 B+C+3i~ [§nli=[§ln+1,..., [4]n,
B+D+(2]+3)[z— G+ [2])73],: =[42n+1,...,tn
M+nt+l+(t+2)(z—tn),z—tn+1 (4 Dn.
Where A = r-i'—] —14jn+(n— 1)[1(1 1)+1)+( —1)3 B =[48] ~
1+ (n- 1)[([51 - 1)([2] 2) +1]+ (fgl -2)%,
and j = 1,2,.. rg'l (J+|'§])n+(n—1)t+|_§j, and D =
G+ [En+ (n 1)t + [g_l +3%242n-1)(25 - 1).
Following the same procedure as in theorem (2.1) it can be shown that the
above labeling a is valid radio labeling for J; », when n = 5,6. We verify the
remark (1) for the pairs (al,r), where r € {a‘,bz,v,, z}, d(a?,7) > 1, and
P(a?) = ;. Consider r = a}, where j =1,2,...,[£]-1, f(z1) = [48]+1,
and p(al) = 1425 so the label difference | f(:z:l) f(z14258)) 2 t + 3.
Hence the radio condition d(a$, a?) +|f(z1) — f(Z142ik)| = j+t+3 > 4+t,
where j > 1, holds. Similarly it is true for other pairs. Thus for n = 5,6,
rn(Jen) < 3(nt? + 4nt + 5n + 2).
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2.4 An upper bound for J;,, when n = 4.
Theorem 2.4 For any t, when n = 4, then rn(J;,) < §(nt? + dnt + 7n).

Proof: Define f : V(G) — IN as follows;
1,i=0,
(48 +1+3(i—1),i=1,...,n, =0,
A+(2_'i+l)(z—]n),z—n+l G+ n,
fE) =9 B+C+3i—[tlnli=[Lln+1,.. [521n,
B+D+(2J+3)[*—(J+f'z'])ﬂl,'—f-”'—]""'l
ﬂ‘-ﬂ+n(t+1)+(t+2)(z-tn),z_(tn+1), ,(t+1)n.
Where A = I'!-?]+1+n(1+.7)+(n l)b(J 1)]+(J 12 B =42+

1+n+(n I((F 1—1)([21 ~ 21+ (3]~
and j = 1,2, [§] =1, C = ( + [,])n+(n—l)t+2+ l3), and

D=+ [-2-])n+(n—1)t+2+ 13 +3%+2(n—1)(25 - 1).

Following the same procedure as in theorem (2.1) it can be shown that the
above labeling is a valid radio labeling for J; ,n, When n = 4. We verify the
remark (1) for the pairs (a},r), where r € {al,b],v;, 2}, d(al,7) > 1, and
P(ad) =, Consider r = @], where j = 1,2,. ,[2] =1, f(z1) = [&8]+1
and P(a]) = Zy42. The label difference |f($1) = f(z14256)] 2 t+3.
Hence the radio condition d(a?, a]) +|f(z1) — f(z1425k)] = 7 +2+3 > 4+¢,
where j > 1, holds. Similarly it is true for other pairs. Thus for n = 4,
r(Jen) < 3(nt? +4dnt + ).

Theorem 2.5 Fort <n—1, n>7, rn(Jiz) = 3(nt? + 4nt + 3n +4).

Proof: Combining theorem (1.6) and theorem (2.1) we get the required
result. I

Open Problem: Calculate the radio number of J;, when n < 7 and
t>n—1.
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Figure 2: rn(Js ) = 194
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