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Abstract

Ewa Wojcicka (Journal of Graph Theory, 14(1990), 205-215) showed
that every connected, 3-y-critical graph on more than 6 vertices has a
Hamiltonian path. Henning et al. (Discrete Mathematics, 161(1996),
175-184) defined a graph G to be k-(v,d)-critical graph if v(G) = k
and ¥(G +uv) = k-1 for each pair u, v of nonadjacent vertices of G
that are at distance at most d apart. They asked if a 3-(v,2)-critical
graph must contain a dominating path. In this paper, we show that
every connected, 3-(v, 2)-critical graph must contain a dominating
path. Further we show that every connected, 3-(v, 2)-critical graph
on more than 6 vertices has a Hamiltonian path.
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1 Introduction

We consider only finite connected undirected graphs without loops or
multiple edges. Terminology not presented here can be found in [1].

The neighborhood and the closed neighborhood of a vertex £ € V are
respectively N(z) = {y € V(G) : zy € E(G)} and Niz] = N(z) U {z}.
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Let deg(z) = |N(z)| and §(G) = min{deg(z) : z € V(G)}. For a vertex
set S C V(G), N[S] = UzesN|z]. Let G[S] denote a subgraph induced by
S in G. We write u L v if u is adjacent to v, and u £ v otherwise.

A path P in G is a Hamilton path if P contains every vertex of G. Some
classes of graphs which contain Hamilton path were researched on [10, 14].

A set S C V(G) is a dominating set if for each v € V(G) either v € S
or v is adjacent to some w € S. That is, S is a dominating set if and only if
N[S]) = V(G). The domination number ¥(G) is the minimum cardinalities
of dominating sets.

A graph G is k-edge-domination-critical (or just k-y-critical) if v(G) =
k, and for every nonadjacent pair of vertices v and u, ¥(G + vu) = k —
1. Hamiltonian properties of k-y-critical graphs were researched in [2-
8,13, 15, 16].

Wojcickal9 showed following two theorems:

Theorem 1.1. Every connected 3-v-critical graph on more than 6 vertices
has a Hamiltonian path. ]

Theorem 1.2.  Every connected 3-vy-critical graph has a dominating
cycle. |

Henning® et al. introduced the concept of the k-(v,d)-critical graphs
: Let dg(u,v) be the distance of two vertices u and v of G. When no
confusion is possible, we may write d(u,v) instead of dg(u,v). A graph G
is k-(v,d)-critical if v(G) = k, and for every nonadjacent pair of vertices v
and u with d(u,v) < d, y(G+vu)=k-1.

They showed following results:

Theorem 1.3. The diameter of a connected 3-(-y,2)-critical graph is at
most 4. [

Observation 1.4. A graph is a 3-(,2)-critical graph of diameter 2 if and
only if it is a 3-y-critical of diameter 2. |

They exhibited a class H of 3-(v,2)-critical graphs with diameter 4. Let
Hy 2 K.(r > 2),Hs = Ky(s > 1) and let H3 be obtained from a complete
graph Kayn(m > 2) by removing the edges of a 1-factor. Let u € V(H))
and let v € V(H3). Let G be obtained from the disjoint union of H;, H
and H3 by joining every vertex of Hj to every vertex of H) U Hj distinct
from u and v.

Theorem 1.5. G is a 3-(7,2)-critical graph of diameter 4 if and only if
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GeH |

Observation 1.8. Every 3-(v,2)-critical graph of diameter 4 has a Hamil-
tonian path. (]

Let the double star S(m,n) be the graph obtained from the disjoint
union of stars Kj,m, and K n(m,n > 1) by joining the two central vertices.
Let G is the complement of G.

Theorem 1.7. A connected graph G is a 2-(v,2)-critical if and only if
either G = U, Kin.(m > 1,n; 2 1) or G 2 S(m,n)(m,n > 1). ]

Theorem 1.8. A graph G is a 2-y-critical if and only if G 2 J; K1,n;(m
21,n; > 1)' .

They posed some open problems:

1. Characterization of 3-(v,2)-critical graphs of diameter 3.
2. Is it true that a 3-(v,2)-critical graph always possesses a dominating

path?

In this paper, we study connected 3-(-y,2)-critical graphs of diameter
3. In section 2, we characterize 3-(v,2)-critical graphs of diameter 3 and
0 = 1. In section 3, we prove that every connected, 3-(v, 2)-critical graph
of diameter 3 must contain a dominating path. In section 4, we prove
that every connected, 3-(vy, 2)-critical graph of diameter 3 on more than 6
vertices has a Hamiltonian path.

2  3-(v,2)-Critical Graphs with § =1

In this section, we study 3-(v,2)-critical graphs with § = 1.

Sumner and Blitch studied some properties of 3-y-critical graphs with
0 =1in [11, 12]. We prove that 3-(y,2)-critical graphs have similar prop-
erties.
Lemma 2.1. Let G be a 3-(v,2)-critical graph, thus every vertex v € V(G)
is adjacent to at most one endpoint of G.
Proof. If v is adjacent to at least two endpoints of G , say z,y € V(G),
then the distance of z and y is 2 and 4(G + zy) = 3, a contradiction. So v
is adjacent to at most one endpoint of G. |

By Lemma 2.1, we have

Lemma 2.2. A connected 3-(v,2)-critical graph has at most three end-
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points. |

Figure 2.1. The 3 — (v, 2)-critical graph with three endpoints

There is only one 3-(v,2)-critical graph with three endpoints, shown in
Figure 1, since for |V(G)| > 7, we have

Lemma 2.3. A 3-(7,2)-critical graph G with at least seven vertices has at
most two endpoints.

Proof. Suppose G has three endpoints, say v;,t = 1,2,3. Let N(v;) =
{ui} (i =1,2,3). Let S be an arbitrary dominating set of G with |S| = 3,
then S = {w; : w; € {u;,v;},i = 1,2,3}. Since G has at least seven vertices,
there exists a vertex z € V(G) — {u;,v; : i = 1,2,3}. Then there exists a
w; = u, such that u; Lz. Since d(v;, z) = 2, we have v(G +v;z) = 3, a con-
tradiction. | |

Observation 2.4. The diameter of a connected 3-(v,2)-critical graph with
d=1is3or4. [ ]

Hence Henning!¥ et al. characterized 3-(v,2)-critical graph of diameter
4, we only discuss 3-(v,2)-critical graph of diameter 3 and § = 1.

Let A= {u € V(G): deg(u)=1}.

Theorem 2.5. Let G be a graph with |A| = 1, u is the endpoint of G,
Nu)={vh, i ={z : 2 € V(G)\udz,v)=1}andVa={y : y€
V(G),d(y,v) = 2}, then G is a connected 3-(v,2)-critical if and only if

(1) G[W1] is a complete graph,

(2) Every vertex = € V) is adjacent to |V2| — 1 vertices of V5,

(3) For every z € Va, there exists a vertex y € Vi U V, such that y
dominates V; \ z,

(4) G[V2] is 2-y-critical.

Proof. Necessity.

(1) For any z,y € Wi, if = £y, then d(z,y) = 2. Since G is 3-(7,2)-
critical, 7(G + zy) = 2. Let S be a dominating set of G + zy with |S| = 2,
then S = {wy, w2 : w1 € {u,v},ws € {z,y}}. Hence w; dominates V5,
{v,w;} dominates G, a contradiction.

(2) Let z be an arbitrary vertex of V1. If = is adjacent to all vertices
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of V3, then {v,z} is a dominating set of G, a contradiction. If z is not
adjacent to at least two vertices of V5, say y, z, then since y € V3, there
is a vertex w € V; such that y L w. By (1), G[Wi] is a complete graph,
d(z,y) = 2, v(G + zy) = 2. Let S be a dominating set of G + zy with
|S| = 2, then S = {wy,w; : wy € {u,v},w; € {z,y}}. Since z can be
dominated by neither w; nor z, we have w; = y. Hence y dominates V5,
{v,y} dominates G, a contradiction.

(3) For every z € V3, d(z,v) = 2. Hence 7(G + zv) = 2. Let S
be a dominating set of G + zv with |S| = 2, then § = {w;,ws : wy €
{u,v},ws € V1 UV3}. Since w; can not dominate any vertex of Vz \ z, the
vertex y = wz € V; UV, dominates V5 \ z.

(4) If there exists a vertex z € V such that x dominates G[Vz], then
z,v dominate G and v(G) = 2, a contradiction. Hence [N[z]| < |V2] for
every vertex z € Va, |V2| > 2 and 7(G[V2]) > 2.

If |Vo| = 2, then since |N[z]| < |V2| for every vertex z € Va, G[V3]
contains two independent vertices. By Theorem 1.8, G[Vz] is 2-y-critical.
Hence we need only consider the case of |V3| > 3.

For any pair nonadjacent vertices z,y of V3, by (3), we have dg(z,y) =
2. Hence 7(G + zy) = 2. Let S be a dominating set of G+ zy with |S| = 2,
then S = {w;, w2 : wy € {u,v},ws € {z,y}}. Hence z dominates V2 \ y or
y dominates V; \ z, i.e. v(G([V2] + zy) = 1. Hence G[V2] is 2-y-critical.

Suf ficiency.
Let = be a vertex of V;. By (1), * dominates V;. By (2), there exists
a vertex y € Vo such that z + y and z dominates V2\y. Hence {v,z,y}
dominates G and v(G) < 3. Let S be an arbitrary dominating set of G,
then S contains at least one vertex of {u,v} and at least one vertex of
V1 UVz. By (2) and (4), any single vertex of V; U V, can not dominate V5,

hence [S] > 3, i.e. v(G)=3.
Let E; = {zy: d(z,y) = 2}. For any zy € E, there are three cases:

Case 1. Suppose £ = u and y € V5. By (1), y dominates V;. By (2), there
is a vertex of V5, say 2, such that z +y. Then {y, 2} dominates G + zy.

Case 2. Suppose £ = v and y € V,. By (3), there is a vertex z € V; U V3,
which dominates V5 \ y. Then {v, 2z} dominates G + zy.

Case 3. Suppose z,y € V3, then by (4), {v,w : w € {z,y}} dominates
G+ zy.

So, G be 3-(7,2)-critical. [ ]
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Theorem 2.68. Let G be a graph with |4| = 2, for i = 1 or 2, u; is an
endpoint of G, N(u) = v;, Vi = {z : z € V(G)—{w1,uz,v1,v2},d(z,v;) =
Land Vi={y : y € V(G)— V! = V2 — {u;,us2},d(y,v:) = 2}. Then G
is 3-(v,2)-critical if and only if

(1) GV}] = G[V{?] = G[W1] is a complete graph,

(2) G[V!] = G[Vi#] = G[V%] is a vertex which is adjacent to all vertices
of ¥;.

Proof. Necessity.

(1) Since the diameter of G is 3, v; L v2. Assume that there exists a
vertex £ € V;! and = ¢ V2, then d(z,v2) = 2 and (G + zv2) = 2. Let
S be a dominating set of G + zv, with |S| = 2, then § = {w;, w2 : w1 €
{z,v2}},w2 € {u1,n1}}. If wy = z, then wz has to dominate both u;
and uq, a contradiction to Lemma 2.1, hence wy = vo. Since ws has to
dominate V(G) — V3 — {ua,v1,v2,z}, we have wp = v;. Thus v;, v, would
be a dominating set of G, a contradiction. Hence G[V}!] C G[V{}]. By a
similar argument, we have G[V;?] C G[V{!]. Hence G[V}!] = G[V;?] = G[\].

For any z,y € W, if = £ y, then d(z,y) = 2. Since G is 3-(v,2)-critical,
4(G + zy) = 2. Let S be a dominating set of G + zy with |S| = 2, then
S = {w;, w2 : wy € {z,y}}. Since w; £u; and w; £ uz, ws has to dominate
both u; and ug, a contradiction to Lemma 2.1.

(2) By (1), G[V}] = G[V{), we have G[V}] = G[V{] = G[V2]. If V2 = 0,
then {vi,v2} would be a dominating set of G, a contradiction. Hence
[Va] > 1. If [Vo| > 2, let € V3, then Vo\z # 0. Since d(z,v) = 2,
7(G + zv1) = 2. Let S be a dominating set of G + zv; with |S| = 2, then
S = {wy, w2 : wy € {z,n1},ws € {ug,v2}}. If wy = z, then wy has to
dominate both u; and uz, a contradiction to Lemma 2.1, hence w; = v;.
Thus, any vertex of V3\z would not be dominated by S = {v;,we}, a
contradiction. Hence G[V2] contains exact one vertex.

Let V2 = {z}. If there is a vertex y € V; such that y % z, then v(G +
zy) = 2. Let S be a dominating set of G + zy with |S| = 2, then § =
{wy, w2 : w1 € {z,y}}. Since w; + u; and w; % u, wy has to dominate
both u; and ug, a contradiction to Lemma 2.1.

Suf ficiency.

Since the dominating set of G must contain wy € {v1,u1}, w2 € {vs,u2}
and w3 € V1 UV,, 7(G) > 3. Let Vo = {z}, from (1) and (2), {z,v1,v2}
dominates G. So v(G) = 3.

Let E; = {zy : d(z,y) = 2}, w € V4. For any zy € E;, there are six
cases:

Case 1. z = u; and y = v3, then {3, 2} dominates G + zy.
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Case 2. £ = u and y = vy, then {vy, 2z} dominates G + zy.
Case 3. £ =u; and y = w, then {w,v,} dominates G + zy.
Case 4. £ = u2 and y = w, then {w,v,} dominates G + zy.
Case 5. = = v; and y = 2, then {v1,v2} dominates G + zy.
Case 6. z = v; and y = 2, then {v1,v2} dominates G + zy.

So, G is 3-(v,2)-critical. [ |

Theorem 2.7. Let G be a 3-(v,2)-critical graph of diameter 3 with § > 2,
then G is 2-connected.

Proof.  Assume that G has a cut-point u, then d(u,v) < 2 for any
v€eV(G). Let V;={z : z € V(G),d(z,u) =i},(i=1,2).

Since the diameter of G is 3, there exists a connected component of G\,
say C1, with C; C V), and there exists a connected component of G\u, say
Co, withCoNVa #0. Foranyz € Cr andy € CoNVy, v(G + zy) = 2.

Let S be a dominating set of G + zy with |S| = 2, then S = {w;,w, :
wy € {z,y}}. If wy = z, then w; can not dominate any vertices of V2, ws
dominates V5, {u,w;} dominates G, a contradiction. If wy = y, then w»
dominates C; \z. Hence wp € uUC), and wz can not dominate any vertices
of V3, y dominates V5, {u,y} dominates G, a contradiction. [ ]

Lemma 2.8. Let G be a 3-(v,2)-critical graph of diameter 3 and let
A={z € V(G): deg(z) =1}. If |A] = 2, then G has a Hamiltonian path.
Proof. For i = 1 or 2, let u; be the endpoint of G, N(u;) = v;, Vf =
{z : z € V(G) - {u,uz,v1,%},d(z,v) = 1}and Vi = {y : y €
V(G),d(y,v;) = 2}, then by Theorem 2.6, G[V}!] = G[V{}] = G[W] is a
complete graph and G[V,!] = G[Vi] = G[V2] is a vertex which is adjacent to
all vertices of Vj. Let V(G[V1]) = {v1,1,v1,2,"** , v, )vieip }» V(G[V2]) =
{1)2,1}, then P = UIV1V1,102,101,2 < * - V1, |V(G[Wy )| V2 U2 be a Hamiltonian path
of G. [ |

Lemma 2.9. Let G be a 3-(v,2)-critical graph of diameter 3 and let
A= {z € V(G): deg(z) =1}. If |A| = 1, then G has a Hamiltonian path.
Proof. Let u be the endpoint of G, N(u) = {v}, i = {z : z €
V(G)\ u,d(z,v) = 1} and Vo = {y : y € V(G),d(y,v) = 2}, then by
Theorem 2.5,

(1) G[V1] is a complete graph,

(2) Every vertex z € V; is adjacent to |V2| — 1 vertices of Va,

(3) For every z € Va, there exists a vertex y € V} U V; such that y
dominates V3 \ z,
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(4) G[V2) is 2-y-critical.
By Theorem 1.8, we have G[V5] is G[V2] & UL, Kin,(m > 1,m; > 1).

Let r; be the root of Ky, and l;; be a leaf of Ky n,. Let V(G[W}]) =
{v,,v,2, v, vgvin ;-

Case 1. m = 1. Since r; € V3, r; is adjacent to a vertex of V;, say vy,1.
From (2), v;,; is adjacent to |V2| — 1 vertices of Vo. Without loss of general-
ity, we may assume that vy,1£!) ;. Sincel;; € V3, !;,; is adjacent to a vertex
of Vi, say vy v(g[wi))1» then P = wvvrimviz - v, viempibie -+ liyn, be
a Hamiltonian path of G.

Case 2. m > 1. Since r; € Vs, r; is adjacent to a vertex of V;, say
v, v(Gvi))- Then P = wvvi1vi2 - v vemm - mbi -l o2 lmp
*+lmn. i8 @ Hamiltonian path of G. ]

By Lemmas 2.3,2.8 and 2.9, we have

Theorem 2.10. Let G be a 3-(v,2)-critical graph of diameter 3 with § = 1
and n > 7, then G has a Hamiltonian path. ]

3 Dominating Path in 3-(v,2)-Critical Graphs

Henning!® et al. observed that a 3-(v,2)-critical graph does not neces-
sarily have a dominating cycle. They asked if a connected 3-(y,2)-critical
graph has always a dominating path. In this section, we prove that every
longest path in a connected 3-(v,2)-critical graph is a dominating path.

Let P = 7135 --- T, be a path in G. We will write P if the order
of vertices in P is to be considered from z; to z,, or P if the order is
in the opposite direction. For z;, ; € P, i < j, we write z;P~z; to
indicate the segment on P originating at z; and terminating at z;, and we
write z; P*z; to denote the same segment in the opposite direction. For
z belonging to P, we denote by zt the vertex on P~ that immediately
follows z, and denote by z~ the vertex that precedes z on P,

Observation 3.1. Let P = 323 - - - ¢, be any longest path in a connected
3-(v,2)-critical graph G of diameter 3, where z; = a and z, = b. If there
is a vertex z € V(G) - V(P), then z +a,z + b and a £ b. [ |

Lemma 3.2. There exists a vertex y € V(G) — V(P) such that |Y| =
IN@) NV (P)| 2 2.

Proof. By contrary, suppose that for every y* € V(G) - V(P), Y* =
N ) nV(P) = {¢¢}. By Theorem 2.7, G is 2-connected, hence every
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component of G[V(G) — V(P)] contains at least two vertices, and there is
at least one pair of vertices, say y*,y’ € V(G) V(P) such that y‘J.y-’ and
v ;éy',’ By Observation 3.1, we have y* +a, y* £ b,y +a and 37 £ b.

Ify;* La, then bP*y} aP"y,y y’ would bea longer dominating path(see
Figure 3.1.(1)), hence y{" +a. Ifyit Lb, then aPyiyiyly ’P"by“’P" 7=
would be 2 longer dominating path(see Figure 3.1.(2)), hence y;* +b.

Vwa W
vi 1

3

Figure 3.1.

Since d(y', 1) = 2, 7(G + y'yi*) = 2. Let S be a dominating set of
G +y'y;t with |S| = 2, then S = {wy, w2 : w1 € {¢,3i"}}.

Since y* + a, y* £ b, yit +a, yi* £, it follows that w, has to dominate
{a,b}. By Observation 3.1, a+b, hence d(a,b) = 2, 7(G+ab) = 2. Let S be
a dominating set of G + ab with |S| = 2, then S = {wy,ws : w; € {a,b}}.
Wlthout loss of generality, we may aSSume w; = a. Sincea+yi, atyl,
a + yit, wy has to dominate {y%,3%,yi*}. If wy € V(G) — V(P), then
aP~yi y‘wgyl‘"P"b would be a longer dommatmg path(see Figure 3.1. (3))
Hence wy € V(P). Thus, we = yi and ws = yi, a contradiction to vi £yl
Hence there is at least one vertex of {y*,3’} satisfies the conclusion of the
Lemma. |

Since P is a longest path of G, we have

Observation 3.3.
(1) For all i € {1, - - k}, a:!:y, : b:i:y, ,y+ytandyty].
(2) For i # j,i,j € {1,--k}, y} £y and y; ﬂ:y
(8) Forallie {2,---k},a+y;. Forallie {1 -1}, b 37
(4) If y; dominates one vertex of {a, b}, then y; :i:y, .

Lemma 3.4. Every longest path in a connected 3-(v,2)-critical graph G
of diameter 3 with J > 2 is a dominating path.

Proof. Let P = z;z2 -z, be any longest path in a 3-(-y,2)-critical graph
of diameter 3, where z; = a and z, = b. If P is not a dominating path,
then there exists a vertex u that can not be dominated by P. By Lemma
3.2 and Observation 3.3, there exist ¢ € V(G) — V(P) and z; € P such
that u L z, 1 z; and z; L a. Similarly, there exist y € V(G) - V(P) and
zj € Psuchthatu Ly, y L z; and z; L b.
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Figure 3.2.

If i # j, then |i — j| > 4(otherwise a P~ z;zuyz; P~ b would be a longer
path), ¢ # 1,2( otherwise yuzz;P~b would be a longer path) and j #
n — 1,n( otherwise aP~ z;yuz would be a longer path).

Case 1. i < j.

Ifaol a:"’ then yuxx,P“az*P"b would be a longer path(see Figure
3.2.(1)). So, a+ z}. Hence d(a,z"') =2, v(G + az}) = 2. Let S be
a dominating set of G + az} with |S| = 2, then S = {wj, w2 : wy €
{a,zF}, w2 € V(G) - V(P)} By Observation 3.1, b+ w, and b+ a, b has
to be dominated by wy = 7, thus, z; P* +bP*':c,yuma:,P“a would be
a longer path(see Figure 3.2. (2))

Case 2. ¢ > j.

If a L z;, then yuzz; P~ bz; P*az; P a:}' would be a longer path(see
Figure 3.2.(3)). So, a + z;. Hence d(a,z]) =2, ¥(G +az;) = 2. Let S
be a dominating set of G + az; with |S| = 2, then § = {w), w2 : w; €
{a,z7 }, w2 € V(G)-V(P)}. By Observation 3.1, b:!:wz and b+a, b has to
be douunated by wy = z], thus, yuzz;aP~z; bP-z} would be a longer
path(see Figure 3.2.(4)).

Case 3. i =j.

If 2;_11l2:41, then uzz;aP~z;_32:41 P~b would be a longer path(see
Figure 3.2.(5)). So, z;—1 £ ZTit1- d(:BH.l,:Bi_l) =2, 7(G + ziy1zi—1) = 2.
Let S be a dominating set of G + %;4+12i—1 with |S| =2, then S = {w;,w, :
w € {ZE,'..(.;,.'B,’-[},‘!D: € V(G) - V(.P)}. Since ws € V(G) - V(P)}, by
Observation 3.1, we & a and ws £ b, it follows that w; has to dominate
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{a,b}. If w; = =m;_y, then z;_,1b, uzz;aP~*z;_ 1bP*+ ;4 would be a
longer path(see Figure 3.2.(6)), a contradiction. If w; = z;4;, then a Lz,
then uzz;bP* z;11aP~z;_; would be a longer path(see Figure 3.2.(7)), a
contradiction. a

From Theorem 1.3, Observation 1.4, Theorem 2.10, Lemma 3.4 and
Observation 1.6, we have

Theorem 3.5. Every longest path in a connected 3-(,2)-critical graph is
a dominating path. |

4 Hamiltonian Paths

Throughout this section G will be assumed to be a 3-(v,2)-critical graph
of diameter 3 with order more than 6, and P~ = zy25---2; will be a
longest dominating path in G by Theorem 3.5, where z; = a and z; = b.
If V(G) = V(P), then there is nothing to prove and P is a Hamiltonian
path of G. So, we will also assume that V(P) is properly contained in
V(G) and we will let y denote a vertex of G that is not on P. We will set
Y =Ny NV(P)={yn, -y}, ordered so that if ¢ < j then y; precedes
y; on P,

For ¢ = 1, by Theorem 2.10, G has a Hamiltonian path. In the following,
we consider the case for § > 2.

Let B={veY: vt xv~}.

Lemma 4.1. B #0.
Proof. By Observation 3.3(1) a + g7, hence d(a,y7) =2 or 3.

Case 1. d(a,y]) = 2, then 4(G + ay;") = 2. Let S be a dominating set of
G + ay{ with |S| = 2, then S = {wy, w2 : w; € {a,y;}}. By Observation
3.1and 33,a+b,a+yand yi £b, yi £y, w, has to dominate b and .
By Observation 3.1, wa & V(G) — V(P), hence w2 € Y. By Observation
3.3(4), wy w7, we have w, € B.

Case 2. d(a,y;) = 3. Since d(y,y5) = 2, (G +yy;) = 2. Let S be a
dominating set of G + yy, with |S| = 2, then S = {w;, w; : w1 € {y,95 }}-
By Observation 3.1 and 4.2, y £ a, y £ y; and y; *a, 3, £ y;, hence
wg has to dominate {a,y; }, d(a,y7) < 2. I y; 37", then y; € B, and
the lemma is proved. If y; Ly, then since d(a,y}) = 3, we have a + g7 .
Hence d(a,y; ) = 2, 7(G +ay; ) = 2. Let S be a dominating set of G +ay;
with |S| = 2, then S = {w;, w2 : w1 € {a,y;}}. By Observation 3.1 and
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33,axb,axyand y; b,y y, it forces that we dominates b and y.
By Observation 3.1, we € V(G) — V(P), hence wy € Y. By Observation
3.3(4), wy + w7, we have w; € B. ]

Let G* be a directed graph with V(G*) = B and vw is an arc in G* if
and only if there exists a domination set S = {w;,w : w; € {v~,v*}} of
G+v vt

Lemma 4.2. If r € B, then there exists w € B — {r} such that rw is an
arc in G*, and w dominates at least one of the end points of P.

Proof. Since r € B, we have d(r~,7*) = 2 and 4(G + r~r*) = 2. Let
S be a dominating set of G + r~r* with |S| =2, then S = {w;, w2 : w; €
{r=,r*}}. fwyLlr~ and woLrt, then {w;, w2} would be a dominating set
of G, a contradiction. Hence w, is not adjacent to at least one of »— and ¥,
o0 wp # r. By Observation 3.3 neither of r~ nor r* can dominate both of
the endpoints of P and r—+y, r+ £y, it forces that w, dominates both y and
at least one of the endpoints of P. By Observation 3.1, we & V(G) -V (P),
hence wp, € Y. By Observation 3.3(4), wy + wy, we have ws € B — {r}
and w» dominates at least one of the endpoints of P. |

Lemma 4.3. If r € B dominates one of the endpoints of P, and both sw
and rw are arcs in G*, then r = s.

Proof. By contrary, suppose that there exists r, s, w € B, such that both
rw and sw are arcs in G*, and r # s. Then there exists a dominating
set S1 = {w1,1,w : w11 € {r7,vF}} of G+ r~r* and a dominating set
So = {we,1,w : we,; € {87,8%}} of G + s~s*. Without loss of generality,
assume that = follows s on P. There are four cases:

¥ v
a 3~ §é ;Err"' ba s- §£ ;Err"' b
(1 2)

Figure 4.1.

Case 1. wy,; = rt and wy,; = s*. If wls™, then since {s*,w} domi-
nates G + s~st, {s*,w} would be a dominating set of G, a contradiction.
Hence w £ s~. Since {r*,w} dominates G + r~r*, r+Ls~. If rLb, then
r~ P syrbP*r*s~ P+ a would be a longer dominating path(see Figure
4.1.(1)). ¥ rla, then r~ P<syraP~s~r*p~b would be a longer dominat-
ing path(see Figure 4.1.(2)).

Case 2. wy,; =7~ and wp,; = s~. Case 2 is symmetric to Case 1.

Case 3. wy,; =r~ and wy,; = s*. fwlrt, then since {r~,w} dominates
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G +r~r*, {r~,w} would be a dominating set of G, a contradiction. Hence
wxr*. Since {s*,w} dominates G + s~s*, s+ Lr+, which contradicts the
conclusion of Observation 3.3(2).

Case 4. w;,; =7+ and wy,; = s~. If wLlr~, then since {r*,w} dominates
G +r~r*, {r*,w} would be a dominating set of G, a contradiction. Hence
wxr~. Since {s~,w} dominates G + s~s*, s~ Lr—, which contradicts the
conclusion of Observation 3.3(2). [ ]

Lemma 4.4. For each w € B, there exists v € B — {w} such that vw is
an arc in G*.

Proof. By contrary, suppose that there is a vertex vg € B such that vy,
is not an arc in G* for every v € B — {vo}.

By Lemma 4.2 there exists v; € B — {v} such that vov; is an arc in
G”, and v; dominates one of the endpoints of P.

By Lemma 4.2 there exists v; € B~ {v;} such that v,v; is an arc in G*,
and v, dominates one of the endpoints of P. If vo = vy, then v,4p would
be an arc in G*, a contradiction. Hence, v, # vp.

By Lemma 4.2 there exists vz € B — {v2} such that v,v3 is an arcin G*,
and vz dominates one of the endpoints of P. If v3 = vy, then vovg would
be an arc in G*, a contradiction. Hence, v3 # vp.

So, we can get v;,v2,v3,...,v¢ such that v; # v(t > 3and 1 < i < ).
Then, let Q@ = vovy ---v; be a longest directed path in G* such that for
allie{l1,---,t}, the v; is distinct and each of them dominates one of the

endpoints of P.

Since vy € B, by Lemma 4.2 there exists v;4; € B—{v;} such that v,v;4,
is an arc in G*, and v;4; dominates one of the endpoints of P. If v, = vo,
then v;vg would be an arc in G*, a contradiction. Hence, v¢4+1 = v; for some
i€{l1,---,t—1}. Then v;v;41 and v;—1v:41 would be distinct arcs in G*,
a contradiction to Lemma 4.3. [ |

By Lemma 4.4 and Observation 3.3, we have

Corollary 4.5. For each w € B, let y;w be an arc in G*, then

(1) If {yf,w} dominates G + y; ¥} and i < k, then w dominates a and b.
(2) If {y;, w} dominates G + y; y; and i > 1, then w dominates a and b.
(8) Ifi=1 and {y;,w} dominates G + y; ¥y, then w dominates b.

(4) If i = k and {y;,w} dominates G + y; y;, then w dominates a. [ ]

By Corollary 4.5, we have
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Corollary 4.6,

(1) If w € B, then w dominates one of the endpoints of P
(2) If w € B and w % b, then {y},w} dominates G + y yi
(3) If w € B and w + a, then {y;,w} dominates G + y; y;

Now we prove the main result.

Lemma 4.7. If G is a 3-(y,2)-critical graph of diameter 3 with § > 2, then
G has a Hamiltonian path.

Proof. Let P be a longest dominating path in G. If V(P) # V(G), then
by Lemma 3.2, there exists y € V(G) — V(P) such that [Y| = |[N(y) N
V(P)] > 2. By Observation 3.3, y £ y;. Hence d(y,y;) = 2, v(G +
yyr) = 2. Let S be a dominating set of G + yy, with |S| = 2, then
S = {wy,ws : w1 € {y,y; }}. By Observation 3.1 and 3.3, y + e,y +b and
¥, ta, y; £, it forces that w, dominates {a,b}. Thus d(e,b) < 2. By
Observation 3.1, a £ b, we have d(a,b) = 2, 7(G + ab) =

Let S; be a dominating set of G + ab with |S;| = 2, then §; =
{wi,1, w12 : w1 1 € {a,b}}. By Observation 3.1 and 3.3, a:l:y, atyl, aty;
and by, b+ys, b:l:y,c , it forces that w o dommat.es {9,357 ,y5 }. By Obser-
vation 3.3, y £y, 'wm is distinct from y and y7. If wy 2 € V(G) - V(P),
then aP*y1yw,2y7 P~*b would be a longer dominating path(see Figure
4.2.(1)). Hence wy 2 €Y.

If wy 2 € B and w3 + b, then by Corollary 4.6(2), we have {y;},w; 2}
dominates G + y; y;. Since w; dominates y;, {y;, w12} would be a
dominating set of G, a contradiction. If wy 2 € B and 'wl 2 *a, then
by Corollary 4.6(3), we have {y;, w2} dominates G + y;y{. Since w2
dominates y;, {y7,w1,2} would be a dominating set of G, a contradiction.
Hence, if wy 2 € B, then w; 2 dominates {a,b}, {wi,1,w1,2} would be a
dominating set of G, a contradiction. So, w12 €Y - B, wi‘:,lwl‘, 2

Case 1. w;,; = a. By Observation 3.1, @ + b, hence w2 Lb. If w; 2 = 3,
then aP~yr ¥ P yryyibPy; would be a longer dominating path(see
Figure 4.2.(2)). If w1,2 = y&, then aP*y; yF P byxy would be a longer
dominating path(see Figure 4.2.(3)). If w32 = yi and 1 < ¢ < k, then
aP~yy} P~ by;y would be a longer dominating path (see Figure 4.2.(4)).

Case 2. w;,; = b. By an argument similar to the proof of Case 1, we can
get a longer dominating path (see Figure 4.2.(7)).

By Cases 1-2, w; 2 ¢ Y — B, a contradiction. Hence, V(P) = V(G), i.e.
P is a Hamiltonian path. [ |

From Theorem 1.3, Observation 1.4, Theorem 2.10, Lemma 4.7 and
Observation 1.6, we have
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Figure 4.2.

Theorem 4.8. Every connected 3-(v,2)-critical graph on more than 6
vertices has a Hamiltonian path. ]
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