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Abstract. Let Pyy; denote a path of length k and let Cj de-
note a cycle of length k. A triangle is a cycle of length three.
As usual K,, denotes the complete graph on n vertices. It is
shown that for all nonnegative integers p and g and for all pos-
itive integers n, K, can be decomposed into p copies of P4 and
q copies of C3 if and only if 3(p+q) = e(K,), p # 1 if n is odd,
and p > § if n is even.

1 Introduction

All graphs considered here are finite and undirected, unless otherwise noted.
For the standard graph-theoretic terminology the reader is referred to [2].

As usual K, denotes the complete graph on n vertices. A complete m-
partite graph with m-partition (V4,Va,...,V,,) and |V;| = n; is denoted by
Ky, na,...n - In the case m = 2 we speak about complete bipartite graphs;
if m = 3 we get, by analogy, complete tripartite graphs. Let Py, denote
a path of length k and let Cy denote a cycle of length k. A triangle is a
cycle of length three. Let L = {Hy,Ha,...,H,} be a family of subgraphs
of G. An L-decomposition of G is an edge-disjoint decomposition of G into
positive integer o; copies of H;, where ¢ € {1,2,...,r}. Furthermore, if
each H; (i € {1,2,...,7}) is isomorphic to a graph H, we say that G has
an H-decomposition. The existence of & decomposition of the complete
graph K, into triangles is equivalent to the existence of a Steiner triple
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system of order n (STS(n)). It is not difficult to see that the necessary
condition for such a decomposition to exist is that n = 1 or 3 (mod 6). This
condition was proved to be sufficient by Kirkman [10]. An automorphism of
a STS (V, B) is a bijection & : V — V such that {a,b,c} € B if and only if
{a(a), a(b),(c)} € B. A STS(n) is cyclic if it has an automorphism that
is a permutation consisting of a single cycle of length n. In 1939, Peltesohn
[12] proved that for all n =1 or 3 (mod 6) except n = 9, there exists a
cyclic STS(n).

A Cy-packing of a graph G is a set of edge-disjoint Ci’s in G. A Cg-
packing C of G is mazimum if |C| > |C’| for all other Cj-packings C’ of
G. The leave L of a Ci-packing C is the subgraph induced by the set of
edges of G that do not occur in any Cj, of the packing C. There is a paper
by Hanani [7] in which the leaves for the maximum Cjs-packings of K, are
summarized.

Path decomposition of graphs and cycle decomposition of graphs have
both been studied extensively and so it is natural to consider the problem
of L-decompositions of K, where L is a combination of paths and cycles.
In [16), we proved that necessary conditions for decomposing K,, into p
copies of Pr4+1 and g copies of C; are that pk 4+ ¢l = e(K,), p# 1if nis
odd, and p > % if n is even. Besides, when k = and k is even, we gave
some sufficient conditions for such a decomposition to exist. Especially, we
obtained necessary and sufficient conditions for the existence of a decom-
position of K, into p copies of P; and g copies of C4. In this paper we
use the same arguments in the proof for the existence of a cyclic STS(n)
and the results on the leaves for the maximum Cs-packings of K, to prove
that those necessary conditions mentioned in [16] are also sufficient for the
existence of a decomposition of K, into p copies of P4 and g copies of C3
(see Theorem 3.5 and Theorem 4.8).

There are several papers concerned with a decomposition of a complete
graph into triangles and some other subgraph or subgraphs. Bryant and
Maenhaut [4] proved necessary and sufficient conditions for a decomposition
of K, into p triangles and ¢ Hamilton cycles. Horak et al. [9] solved
the problem of finding 2-factorizations of K, into p triangle factors and
g Hamilton cycles for several infinite classes of order n. Rees [13] proved
necessary and sufficient conditions for a decomposition of K, into p triangle
factors and g 1-factors. Finally, there is a paper by Fu and Rodger [6] in
which necessary and sufficient conditions for a decomposition of AK,, into
p triangles and g 1-factors are proved.
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2 Preliminaries

In this section we will introduce some known results concerned with path
decomposition and cycle decomposition. Also, we give some useful lemmas
and theorems which will be used for proving the main theorem. Let us first
introduce two results on Py ;-decomposition and Cj-decomposition of K,
as follows.

Theorem 2.1 (Tarsi [19]). Let k and n be positive integers. K, has a
Py y1-decomposition if and only if n > k+1 and n(n — 1) =0 (mod 2k).0

Theorem 2.2 (Alspach, Gavlas and Sajna [1, 15]).

(1) Let n and k be positive integers. K,, has a C).-decomposition if and only
ifn is odd, 3 < k <n, and n(n — 1) = 0 (mod 2k).

(2) Let n and k be positive integers such that n is even and let I is an
1-factor of K. K, —1I has a C-decomposition if and only if3 <k <n
and n(n — 2) =0 (mod 2k). ]

When 7 is odd, the following theorem gave a necessary condition for
decomposing complete graphs K, into paths and cycles.

Theorem 2.3 (Shyu [16, Theorem 2.2])). Let n, I, and k be positive inte-
gers such that n is odd and n > maz{l,k + 1}. If K, can be decomposed
into p copies of Py, and g copies of C for nonnegative integers p and q,
then pk + gl = e(K,) and p # 1. O

When n is even, the following theorem gave a necessary condition for
decomposing complete graphs K, into paths and cycles.

Theorem 2.4 (Shyu [16, Theorem 2.4]). Let n, !, and k be positive inte-
gers such that n is even and n > maz{l,k +1}. If K, can be decomposed
into p copies of Pry1 and q copies of C for nonnegative integers p and g,

then pk + gl = e(K,) andp > 3. O

For our discussion we need the following notations. Let Tz ... Tty de-
note the path Py with vertices z,, o, ..., Zx4+1 and edges 120, 2223, ...,
ZpTr+1 and let (21, 2,. .., 2k ) denote the cycle C), with vertices z1, zo,. ..,
zi and edges z1Ts, T2Z3, ..., Tka1ZTk) TkT1-

The following two lemmas will give sufficient conditions for decomposing
an edge-disjoint union of cycles into Pi41's and C's.

Lemma 2.5 Let k and n be positive integers such that k > 3 and n >
2. Suppose that for i € {1,2,...,n}, C® denotes the cycle of length k
(@1 262s 0 T w)- F Ty =T@n = =2@ay, T2 € V(CY)
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forie {1,2,...,n -1}, and x(19) ¢ V(CW) fori € {2,3,...,n}, then
Uii C® can be decomposed into p copies of Pry1 and q copies of Ci for
each pair p, g of nonnegative integers such thatp+q=n andp # 1.

Proof. The case, p =0, lS trivial. For any positive integer p such that 2 <
p < n, by assumption, ,_1 C® can be decomposed into p paths of length
k below: z(1,2)Z(1,3) - - - Z(1,6)Z(1,1)Z(2,2)s Z(2, 2)23(2 3) - T(2,k)T(2,1)T(3,2)1 + + *»

Z(p,2)T(p,3) - - .x(p,k)z(p,l)m(l 2). Since U:'_l C%) can be viewed as an edge-
disjoint union of (J_, C) and |J. o1 C®, it implies that |J._, C) can
be decomposed into p copies of Pk.,,l and n — p copies of Cj. O

The above lemma is used in the following.

Lemma 2.6 Let ny < ng < -+ £ n, , m and k be positive integers
such that m > 2, k > 3, ny > 2 and ny > 3. Suppose that C) 45 a
cycle of length k for i € {1,2,...,m} and j € {1,2,...,nn}. If forie
{1,2,...,m}, there ezists a vertex z; such that V(C ’))nV(C’(' ) = {z;}
forl < s <t <y, then U, (UG, C9)) can be decomposed into p copies
of P41 and g copies of Cy for each pair p, ¢ of nonnegative integers such

thatp+q=>) =, ni andp # 1.

Proof. The case, p =0, is trivial and so suppose that 2 < p < 3% n;.
Let ngp = 0. Now assume Z‘ —oni<p< Z,_l n; forsome!l € {0,1,...,m—
1}. We consider three cases as follows.

If p— Yi_oni # 1, by Lemma 2.5, then U, (Ur, C%9)) can be de-
composed into Y +_, n; copies of Piy1; Uit C+19) can be decomposed
into p — 2:=0 n; copies of Pxyy and nyyy — (p — Ze=o n;) copies of Cj
for 2 < p— Tt ni < nuy1. By assumption, U7, +2(UjL, C9) can be
decomposed into 3 i~ , 7 copies of Cy (note that U, ,(Uj%, C%9) is
a null graph when { =m —1).

If p— Y on: = 1 and n; > 2 (note that in this case ! > 1), by
Lemma 2.5 again, then |J}Z 1(U , Ct49)) can be decomposed into Y"i—g 7
copies of Pey1 (note that |Jio) Un‘ C49)) is a null graph when ! = 1);
UiL, €49 can be decomposed into n; — 1 copies of Pi4, and one copy of
Cr; ;2 CU+19) can be decomposed into 2 copies of Prt1 and 4 — 2
copies of Ci. By assumption, Uj~;, (U7, C©9) can be decomposed into
S 142 1 copies of Ci (note that Ui~ , (UL, C%7) is a null graph when
l=m-1).

Ifp— E‘_on, =1 and n; = 2 (note that in thiscase 1 <l <m -1
and ny = --+ = n; = 2), by Lemma 2.5 again, then [J} 1(U , C9)) can

be decomposed into Y i—4 n; copies of Pi4y (note that U‘~1(U ' Cd))
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is a null graph when ! = 1); U C(m) can be decomposed into 3 copies
of Pr4+1 and n,, — 3 copies of Ck. By assumption, ;" (U}, C¢9) can
be decomposed into 377" n; copies of Cy.

In each case mentioned above, we have that U,“I(U"‘ C("’)) can be
decomposed into p copies of Pyy1 and g copies of Cj for each pair p, q of
nonnegative integers such that p+g =3[~ n; and p # 1. 0O

In the following theorem we will give the necessary and sufficient con-
ditions for the existence of a decomposition of a complete tripartite graph
with equal parts into p copies of P, and g copies of Cs.

Theorem 2.7 Let p and q be nonnegative integers and let n be a positive
integer such that n > 3. There ezists a decomposition of Knnn into p
copies of Py and q copies of C3 if and only if 3(p + q) = e(Knnn) and
p#1L

Proof. (Necessity) Condition 3(p + q) = e(Kpnnn) is trivial. On the
contrary, suppose that p = 1. Let P denote the only path of length 3 in
the decomposition. It follows that the end vertices of P have odd degree
2n—-1in K, p n — E(P). Therefore, Ky, n » — E(P) can not be decomposed
into cycles. We obtained a contradiction.

(Sufficiency) Suppose that (X,Y, Z) is the tripartition of Ky n n, where
X ={z0,21,..- o1}, Y = {t0,%1,.- ., ¥n-1} 80d Z = {20, 21, ..., Zn—1}.
For i, j € {0,1,...,n — 1}, we use C*9) to denote the cycle of length 3
(Zi, Y5, zigj-1); the subscnpts of z;'s are taken modulo n. It is not difficult
to see that those n? copies of Cj3 a.re edge disjoint. Since 3(p + q) =
e(Knnn)= (2)122 we have p+q = n? and hence {C(+)|4,j =0,1,...,n—
1} is a C3-decomposition of K, n. On the other hand, since for i€
{0,1,...,n =1}, V(CG*) N V(C("")) ={zri}for0<s<t<n-1,by
Lemma 2.6, U'.""I(U"'1 C(9) can be decomposed into p copies of Py and

i=0
g copies of Cj3 for eax:h pair p, ¢ of nonnegative integers such that p+q = n?
and p # 1. This completes the proof. a

3 The case when n is odd

In this section we will use the same argument in the proof for the existence
of a cyclic STS(n) to prove that when n is odd, K,, can be decomposed
into p copies of P and ¢ copies of C3 for each pair p, g of nonnegative
integers such that 3(p + ¢) = e(K,) and p # 1.

Before proving the main theorem, we need to show three special cases
for decomposing complete graphs into Py’s and C3’s. We first show that
K7 can be decomposed into p copies of P4 and g copies of C3 for each pair
P, q of nonnegative integers such that 3(p + ¢q) = e(K7) and p # 1.
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Lemma 3.1 If p and q are nonnegative integers such that p+q =7 and
p# 1, then Ky can be decomposed into p copies of Py and q copies of Cs.

Proof. Let V(K7) = {z1,z2,...,27}. We exhibit that K7 can be decom-

posed into p copies of P, and g copies of Cj, for each pair p, g of nonnegative

integers such that 3(p+¢q) = (}) (i.e. p+g=7) and p # 1 as follows:

(1) p=0 and ¢ = 7: By Theorem 2.2 (1), we are done.

(2) p=2 and q = 5: z5x123%7, T7T2T6Ts5, (1, T2, Z4), (T1,Ts,T7),
(z2,%3,Zs), (T3, T4, Te), (Z4,T5, Z7)-

(3) p=3 and q = 4: 1,Z7T6T5, T5T1T3T7, T7T2T6Z1, (T1, T2, T4),
(z2, 3, Z5), (73,74, Ts6), (T4, Z5,27).

(4) p =4 and g = 3: z1T6T2%7, T4TsTeT7, T4T7T1T5, TTTT3T1, (T1, 22, Z4),
(x2, I3, 35)’ (33’ Z4, 1"6)'

(5) p="5 and q = 2: 2oT374Ts5, T2TsT127, T3T1T6T5, TITET7T4, T4T6T2TT,
(11, Z2, 234), ($3y T, 37)-

(6) p=6 and g = 1: ToT3T4Ts, T2T5T1T7, T3IT1T6Z7, T3TELTL4, T4T6Z2TT,
T5TeT3T7, (xla T2, .’D4)~

(7) p="T and ¢ = 0: By Theorem 2.1, we are done. O

Next, we will show that K¢ can be decomposed into p copies of P,
and g copies of C; for each pair p, ¢ of nonnegative integers such that

3(p+g) = (3) and p 2 3.

Lemma 3.2 If p and q are nonnegative integers such that p+q =5 and
p > 3, then K¢ can be decomposed into p copies of Py and q copies of Cs.

Proof. Let V(Kg) = {z1,z2,...,26}. We exhibit that K¢ can be decom-
posed into p copies of P4 and g copies of C3, for each pair p, ¢ of nonnegative
integers such that 3(p+q) = (g) (i.e. p+ ¢ =2>5) and p > 3 as follows:
(1) p=3 and ¢ = 2: z,26%2%5, ToT4Z3T6, T3T5T1Z4, (T1,T2,T3),

(z4, 5, T6)-
(2) p=4 and g = 1: 21262925, T2T4T6T6, T3L6ZT1T4, T5L4T3Te, (T1, T2, T3).
(3) p=>5 and ¢ = 0: By Theorem 2.1, we are done.

Finally, we will show that Kg can be decomposed into p copies of P,
and ¢ copies of C3 for each pair p, ¢ of nonnegative integers such that

3(p+q) =e(Ky) and p # 1.

Lemma 3.3 Ifp and g are nonnegative integers such that 3(p+q) = e(Kp)
and p # 1, then Ko can be decomposed into p copies of Py and q copies of
Cs.

Proof. Sincep# landp+¢g=12, weget 0 <p <12 and p# 1. Let
us first prove that the theorem holds for 0 < p < 9 and p # 1. It is easily
seen that Ko can be viewed as an edges-disjoint union of one copy of K333
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and three copies of K3 (note that K3 = C3). By Theorem 2.7, K333 can
be decomposed into p copies of P; and 9 — p copies of C3 for 0 < p < 9
and p # 1 and hence Ky can be decomposed into p copies of Py and 12 —p
copies of C3 for 0 < p <9 and p # 1. For p = 12, by Theorem 2.1, we are
done and so the remaining cases are p = 10 and p = 11. It is not difficult
to see that Ky can be viewed as an edges-disjoint union of Kg, Ks,3 and
K3 . By Lemma 3.2, K¢ can be decomposed into ! copies of Py and 5 —{
copies of C3 for 3 <! < 5. It is easily seen that K33 can be decomposed
into 3 copies of P;. Since Kg 3 can be viewed as an edge-disjoint union of
two copies of K73 3, we have that K¢ 3 can be decomposed into 6 copies of
P,. Therefore, Kg can be decomposed into p copies of P4 and 12 — p copies
of C3 for 9 < p < 11. This completes the proof. O

Before going into more detail, we need the following notation and the-
orem for our discussion. The label of an edge ij of K, with vertex set
{0, 1,..., n =1} is the number min{|j — 4|, n — |j — i|}. The label of
any edge is thus one of the numbers 1,2,...,|2]. If n is odd, then there
are n edges of label 4 for i € {1,2,..., 1‘-;—1} Suppose that C is the cycle
(i1,%2,...,%) in K,. For an integer t, we use C 4t to denote the cycle
(i3 +t,ia +t,...,ix +t), where (i; +t)’s are taken modulo n. It is easily
seen that the labels of C + ¢ and of C are the same.

Let n be a positive integer. A set M consisting of 2n integers is
called a Skolem set of order n if it can be written in the form M =
{a1,b1,a2,b2,... ,an,bn}, where b; = a; + i for i € {1,2, - ,n} We in-
troduce a theorem concerned with the existence of a Skolem set of order n
below.

Theorem 3.4 (Skolem [17], O’Keefe [11], Rosa [14], Hilton [8], Colbourn

and Mathon [5],) Suppose that n is a positive integer.

(1Y ffn=00r1 (mod 4), then {1,2,...,2n} is a Skolem set.

(2)Ifn=20r3 (mod4), then {1,2,...,2n —1,2n + 1} is a Skolem set.

(3)fn=1o0r2 (mod4) andn#1, then {1,2,...,n,n+2,n+3,...,
2n,2n + 2} is a Skolem set.

4Ifn=00r3 (mod4), then {1,2,...,n,n+2,n+3,...,2n+1} isa
Skolem set. a

In the proof of Theorem 3.5 the arguments concerned with the proof
of the existence of a cyclic C3-decomposition of K,, are essentially given
by Peltesohn [12], Skolem ([17], O'Keefe [11], Rosa [14], Hilton [8], Col-
bourn and Mathon [5] (see 7.31-37 [3]), but we include them again here for
completeness.
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Theorem 3.5 Let p and g be nonnegative integers and let n be a positive
odd integer. There exists a decomposition of K,, into p copies of Py and g
copies of C3 if and only if 3(p + q) = e(K,) and p# 1.

Proof. (Necessity) By Theorem 2.3, we are done.

(Sufficiency) By assumption, we have that 6|n(n — 1) and so n > 3.
Since n is odd, it implies that n will be either 6k + 1 or 6k 4 3, where k is
a nonnegative integer. The case, n = 3, is trivial. Thus we assume n > 7
(i.e. k> 1). Now we consider two cases below.

Case 1. n=6k+ 1.
Suppose that V(K,) = {0,1,2,...,6k}. In this case there are n edges of
label i for ¢ € {1,2,...,3k}. Note that by definition, the labels 3k and
3k + 1 are the same. By Theorem 3.4 (1) and (2), either {1,2,...,2k}
or {1,2,...,2k — 1,2k + 1} is a Skolem set. Write the Skolem set as
{a1,b1,a2,b2,...,ak,bx}. It follows that the triples {3, a;+k,b;+k} for i €
{1,2,...,k} form a decomposition of the set {1,2,...,3k} or {1,2,...,3k—
1, 3k+1} Let C® denote the cycle (0,3, b; +k). Since b; +k = (a; +k) +1,
we have that (0,1, b; + k) consists of edges with the labels ,a;+k, b; +k and
80 U' "1 C® consists of edges with the labels 1,2,...,3k or 1,2,...,3k —
1,3k+1. It 1mphes that K,, can be decomposed into n copies of U, 1 c
as follows: U5, CW, U (CH) +1),..., U,_I(C(‘) +(n—1)). For k >
3, since for j e {0,1,...,n =1}, V(C(") +7)NV(CH +j) = {j} for
1<s<t<kby Lemma 2.6, Ug—O [Ut_l(C(‘) + j)] can be decomposed
into p copies of P and q copies of C3 for each pair p, ¢ of nonnegative
integers such that 3(p + ¢) = e(Kek+1) (ie. p+ g = (6k + 1)k) and
p# 1. For k = 2, since for j € {0,1,...,n — 1}, (CM +5) U (C?® + )
can only be decomposed two copies of P4 or two copies of C3, we have
that |J -, [U,_I(C(‘) + j)] can be decomposed into p copies of P; and
(6k+1 J)k p copies of C3 for nonnegative even integer p such that 0 <
P < (6k + 1)k. On the other hand, since (U,__1 COYY(UZ,(CH +1))=
(0,1,b; +2) U (0,2,b2 + 2) U (1,2,b, + 3) U (1,3,bs + 3), by Lemma 2.5,
0,1,b0 +2)U (1,2, b +3)U (1,3, by + 3) can be decomposed into three
copies of Py and so (0,1,b; +2)U(0,2,b2 +2)U(1,2,b; +3)U(1,3,b2+3)
can be decomposed into three copies of P; and one copy of Cs. It is im-
plies that U;‘_'ol [U,(C® + j)] can be decomposed into p copies of Py
and (6k + 1)k — p copies of C3 for nonnegative odd integer p such that
3 < p < (6k + 1)k. Therefore, for k > 2, Kgr+1 can be decomposed into
p copies of P, and g copies of Cj for each pair p, g of nonnegative integers
such that p + ¢ = (6k + 1)k and p # 1. As to the remaining case, k = 1,
by Lemma 3.1, we are done.

Case 2. n =6k 4+ 3.
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The proof is similar to Case 1. Suppose that V(K,) = {0,1,2,...,6k +
2}. In this case there are n edges of label i for i € {1,2,...,3k + 1}.
Note that by definition, the labels 3k + 1 and 3k + 2 are the same. " By
Theorem 3.4 (3) and (4), either {1,2,...,k,k+ 2,k +3,...,2k + 1} or
{1,2,...,k,k+2,k+3,...,2k,2k + 2} is a Skolem set. Write the Skolem
set as {a1,b1,a2,bs,...,ak,bx}. It follows that the triples {¢,a; + k,b; + k}
fori € {1,2,...,k} form a decomposition of the set {1,2,...,2k, 2k+2, 2k+
3,...,8k+1} or {1,2,...,2k, 2k+2,2k+3, ..., 3k, 3k +2}. Let C® denote
the cycle (0, ,b; + k). Since b; + k = (a; + k) + i, we have that (0,1,b; + k)
consists of edges with the labels i, a; +k, b; + k and so J£., C® consists of
edges with the labels 1,2,...,2k, 2k+2,2k+3,...,3k+10r1,2,..., 2k, 2k+
2,2k+3,...,3k, 3k+2. Let B denote the cycle (0, 2k+1, 4k+2). It is easy
to see that all edges in (0, 2k + 1,4k + 2) have label 2k + 1. It implies that
K, can be decomposed into n copies of U C® and 2k +1 coples of B as
follows: (J¥_ ,C9, U L (CO+1), ..., U,_I(C’(‘) +(n-1)), U,_o (B +1).
For k > 2, since for j € {0,1,...,n—1}, V(C®) +-5)nV(C® +j) = {4} for
1 5 s<t<kand V(C(’)+J)O(B+J) {7} for 1 < s < k, by Lemma 2.5,
[U,“I(C’(,) +7)]U(B+j) can be decomposed into p copies of P, and g copies
of C3 for each pair p, ¢ of nonnegative mtegers such that p+g¢=%k+1 and
p#1. If k > 2, by Lemma 2.6, then [U,_o UL (CO +)]UIUZ, (B + )]
can be decomposed into p copies of Py and (6k + 3)k + 2k + 1 — p copies of
C3 for 0. < p < (6k+3)k+2k+1and p# 1. Note that (6k+3)k+2k+1 =
(Bk+1)(2k+1) = Q""‘—s%(s—"ﬂ. Therefore, Kgi+3 can be decomposed into
p copies of Py and g copies of Cj for each pair p, ¢ of nonnegative integers
such that p+¢ = gﬁ—"'a%@k—"'zl and p # 1. As to the remaining case, & = 1,
by Lemma 3.3, we are done. O

4 The case when 7 is even

In this section we use the results on the leaves for the maximum Cjs-packings
of K,, to prove that when n is even, K, can be decomposed into p copies
of P4 and g copies of Cy for each pair p, ¢ of nonnegative integers such
that 3(p + g) = e(K,) and p > 3. Therefore, we first introduce a theorem
concerned with the leaves for the maximum Cj-packings of K, as follows.

Theorem 4.1 (Hanani, Stanton and Rogers (7, 18]) Let n be a positive
integer.
(1) Ifn=1o0r 3 (mod 6), then K,, can be packed with 3-cycles which

has empty leave.
(2) Ifn=00r 2 (mod 6), then K,, can be packed with 3-cycles which

has leave an 1-factor.
(3) Ifn=4 (mod 6), then K, can be packed with 3-cycles which has
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leave L, where L is a verter-disjoint union of K13 and a matching
with 5 — 2 edges.

(4) If n=5 (mod 6), then K, can be packed with 3-cycles which has
leave Cy. O

By Theorem 2.1 and Theorem 2.4, we obtain a theorem below.

Theorem 4.2 Let p and g be nonnegative integers and let k be a positive
odd integer. There ezists a decomposztzon of K41 into p copies of Pt
and q copies of Cy. if and only if p = 5L and ¢ =0.
Proof. (Necessity) By Theorem 2.4, we have that p + q = gﬂ'—ll and
p>4! andsop=45 and ¢=0.

(Sufficiency) By Theorem 2.1, K+ can be decomposed into sk—ﬂ& =
1 copies of Pey1- O

For our discussion, we need to show the following five lemmas for de-
composing graphs into P4’s and Cj3’s below.

Lemma 4.3 Suppose that H is a complete tripartite subgraph K333 of
K. If p and q are nonnegative integers such that p+q = 13 and p > 6,
then Ko — E(H) can be decomposed into p copies of Py and q copies of Cs.

Proof. Suppose that V(K12) = {x1,z2,...,212}. Let the triparti-

tion of H be ({z1,z2,23},{%4,%5,%6}, {z7,78,2Z0}). We first show that

K3 — E(H) can be decomposed into 6 copies of Py and 7 copies of C;

as follows: P(l) 1321229, P (2 . T4TeT10T3, P () : T7Z9x11%6, P 4)

TaT12T1711, PO : 2521024712, PO : 221127210, C : (21, 22, 710), c®

(1‘2,&‘3,1'11), c® . (1‘4,275,3?11), C® : (5,26, 712), c®; (z7, 78, Z12),
) : (z8, 9, T10), c : (T10, 115 Z12)-

Since VEC(”) n V(C(s)) =V(CD) n V(CM) =v(C®) nV(CM)=
{zlo}, V(C 2)) ] V(C(s)) = {xn} and V(C(4)) N V(C(s)) = {.’L‘lg} by
Lemma. 2.6, |J]_, C® can be decomposed into p copies of P; and ¢ copies
of C3 for each pair p, g of nonnegative integers such that p + ¢ = 7 and
p # 1. On the other hand, PAUCM) can be decomposed into two copies of
P, below: za71210T3 and T4z6Z1022. Therefore, (U C'(‘))U(U6 , P@))
can be decomposed into p copies of P; and g copies of 03 for eac pa.ir D,
g of nonnegative integers such that p+¢ =13 and p > 6. O

Lemma 4.4 If p and q are nonnegative integers such that p+q =15 and
p > 5, then Kyo can be decomposed into p copies of Py and q copies of Cs.

Proof. Let V(Kyo) = {z1,%Z2,...,210}. We first show that Kjo can
be decomposed into 5 copies of P; and 10 copies of C; as follows: P(1) :
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T1T7T10%4, P(2) T ToT10T8T 5, P(3) . T3T9T7Tg, P(4) T T7T8T9T10, P(S) :
z8Z174%9, CV : (71, 22,73), CP : (24,25,26), C® : (z1,25,710), CW :
(1,26, 29), C® : (z2,74,27), C® : (z2,285,29), CV : (22, 76,7s), C® :
($3,24,$3), c® ($3,I5 1'7), cu 0 (.’133,:35, le)

Since V(C(l)) NV(C®) = {z;}, V(C’(z)) NV(CW) = {zg}, V(CB)N
V(C®) = V() nV(CT) = V(CO)nV(CT) = {z3} and V(C®) N
V(C®) =V (CE)nV(C19) =vV(CO)Nn V(C(w)) {z3}, by Lemma 2.6,
Ui2, €% can be decomposed into p copies of Py and g copies of Cj for
each pair p, ¢ of nonnegative integers such that p + ¢ = 10 and p # 1.
On the other hand, P®) U CM can be decomposed into two copxes of P
below: zgzjzox3 and z3z174z9. Therefore, (U C('))U(U P(’)) can
be decomposed into p copies of P; and g copies of C’3 for ea.ch pair p, q of
nonnegative integers such that p+ ¢ =15 and p > 5. a

Lemma 4.5 Suppose that H is a complete subgraph K4 of K10 and K is
a complete subgraph Kj of K1 such that H and K are verter disjoint. If
p and g are nonnegative integers such that p+ q = 12 and p > 3, then
Ko — E(HUK) can be decomposed into p copies of P; and q copies of Cs.

Proof. Let V(Kyo) = {z1,%2,...,Z10}. Suppose that V(H) = {z7, zs, %,
zy0} and V(K) = {z4,z5,26}. We first show that Ko — E(H U K) can
be decomposed into 3 copies of Py and 9 copies of C3 as follows: P(1) :
T176T1024, PP : zaz37776, P®) @ T3212725, CV) : (-’Bl T, Z10), CP :
(z1,Z4,28), CP : (21,25, 79), C“‘ : (%2,%4,27), C® : (22, 25, 28), C©) :
(22, T6, T9), C\7 : (23,24, To), C® : (23,5,210), C® : (23, T6, T5).

Since V(CM)NV(C@) V(c<1))nV(c<3)) ZV(C)NV(CH)= {z1},
V(CW) nV(CO®)) =V ([CHW)nV(C®) =V(C®) N V(C®)= {z;}, and
V(IC) nV(C®) =v(CM) nV(C®) =V(C®) N V(CO)= {z3}, by
Lemma 2.6, |J;_,; C¥ can be decomposed into p copies of Py and g copies
of C3 for each pair p, g of nonnegative integers such that p + g = 9 and
p # 1. On the other hand, PMUCW® can be decomposed into two coples of
P, below: 17671072 and zoz17T1024. Therefore, (U‘_l O('))U(U P(J))
can be decomposed into p copies of P4 and ¢ copies of C3 for eac! pair D,
g of nonnegative integers such that p+¢ =12 and p > 3. O

Lemma 4.6 Suppose that H is a complete subgraph K4 of Kyo. Ifp and ¢
are nonnegative integers such that p+q =13 and p > 3, then K10 — E(H)
can be decomposed into p copies of Py and g copies of Cs.

Proof. Let V(K1) = {z1,22,...,Z10}. Suppose that V(H) = {z7, zs, T,
Z10}. We first show that K9 — E(H) can be decomposed into 3 copies of
P; and 10 copies of C3 as follows: PW) : z,z6z1074, P® : zox32776,
P® : g3ziz725, CW) : (21,22, %10), CP : (21,24, 28), CP : (71,75, 70),
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c¥ . (x2, T4, 77), C c® . : (z2,75,28), C c® . : (z2, 76, T9), C cm (x3, %4, T9),
C® : (z3,z5,10), C : (z3,6,25), C* 0, : (x4, 25, Tp).

Since V(C(l))nV(C’(Z)) V(C’(l))nV(C("')) =V(CNNV(C®)= {z:},
V(W) nV(C®) =V(CW) nV(C®) =V(C®) N V(CO®)= {z;}, and
V(C(7)) NV(C®) = {z3}, V(C®) nV(C19) ={z¢}, by Lemma 2.6,
Ui2, € can be decomposed into p copies of Py and g copies of Cj for
each pair p, g of nonnegative integers such that p + ¢ = 10 and p # 1.
On the other hand, P(y UCM) can be deoomposed into two c0p1es of Py
below: z;z6z10T2 and z3x,T10T4. Therefore, (le C(‘))U(U L P9 can
be decomposed into p copies of P, and g copies of C3 for each pair p, g of
nonnegative integers such that p+¢ =13 and p > 3. 0O

Lemma 4.7 Suppose that H is a complete bipartite subgraph K33 of K3
and K is a complete bipartite subgraph K3 4 of K13 such that H and K are
vertex disjoint. If p and q are nonnegative integers such that p+q = 19
and p > 5, then K13 — E(H U K) can be decomposed into p copies of Py
and q copies of Cs.

Proof. Let V(Ki3) = {z1,Z2,...,T13}. Suppose that the bipartition of H
is ({z1, 2,73}, {z4, %5, 76}) and the bipartition of K is ({z7, zs, Ze}, {Z10,
T11,T12,Z13}). We first show that Ki3 — E(H U K) can be decomposed
into 5 copies of Py and 14 copies of Cs as follows: PO : zyzeza1,3, P®) :
T2%725Z10, PO : 3292876, PW : 1471371212, PO : zp2873711, CW !
(z1,210,%11), C OF (332,1311,2712), c®: (z‘a,xm,xls), c@ . (3:4,1810,1612),
c® (235,-’011,5613), C® : (zg,x10,%13), CT (1?1 z2,78), C
(532:33313710) CO® : (z3,1, Sc'r), cto . 5584,1‘5,229), CUY ; (z5, 74, T12),
C(1?) : (z, 234,.’311), CU3) : (x4, x7, 28), CUY : (xg, 29, T7).
Since V(COYNV(CM) = {2}, V(CP)nV(C®) = {x5}, V (C®n

V(C(g)) = {z3}, V(CW) nv(cto) —V(C(4)) N v (Cct3)) —V(C(m)) N

V(CUMN= {z4}, V(CGE) N V(CHD) = {5}, and V(CO)nV(C1D) =
V(CO)NV(CAD) = V(CUD)NV(CU)= {z¢}, by Lemma 2.6, |12, C)
can be decomposed into p copies of P, and g copies of Cj for each pair p, ¢
of nonnegative integers such that p+¢ = 14 and p # 1. On the other hand,
PO yC™ can be decomposed into two copies of P4 below: z;zsz29 and
29Z1Z2T13. Therefore, (U,_l CH)U(5~, PY) can be decomposed into p
copies of Py and ¢ copies of C3 for each pair p, ¢ of nonnegative integers
such that p+ ¢ =19 and p > 5. . O

Now we prove the main theorem of this section.

Theorem 4.8 Let p and q be nonnegative integers and let n be a positive
even integers. There erists a decomposition of K,, into p copies of Py and
q copies of Ca if and only if 3(p+ q) = e(K,) andp > 5.
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Proof. (Necessity) By Theorem 2.4, we have that 3(p + ¢) = e(K,,) and
P23
(Sufficiency) By assumption, we have that 6|n(n—1). Since n is even, it
implies that n will be either 6% or 6k 4 4, where k is a nonnegative integer.
If n = 4, by Theorem 4.2, then we are done and so assume k > 1. Now we

consider two cases below.

Case 1. n = 6k.

If k=1 (ie. n =6), by Lemma 3.2, we are done and so assume k > 2.
Suppose that V(Kn) = {Il,xz,...,ZGk}. Let X; = {-'33:'—2;333:‘—1,33:'}
for i € {1,2,...,2k}. Let G be the complete graph Ky, with vertex
set {X1,Xo,...,Xor}. Suppose that I denotes the 1-factor with edge set
{X2i-1X2i| i = 1,2,...,k}. Since 2k is even, it follows that 2k will be
either 6¢, 6t + 2 or 6t + 4, where ¢ is a nonnegative integer.

When 2k = 6t or 6t + 2, we have that 3|2—k—(2§—"21. By Theorem 2.2 (2),
G — I(=2 Ko — I) can be decomposed into %(26"—_21 copies of Ca. On the
other hand, for i € {1,2,...,k}, the edge of I, X5;_3 X2, can be viewed as
the complete graph K¢ with vertex set {Zgi—s, Tgi4,...,Zei} and the Cs,
(Xi, X, Xm), can be viewed as the complete tripartite graph K333 with
tripartition ({T3i-2,T3i—1,T3:}, {T3j-2, T3j—1, T35}, {T3m-2, Tam—1,T3m})-
It implies that Kgr can be decomposed into k copies of K¢ and MZ;:—_?Z
copies of K3 33.

When 2k = 6t + 4, by Theorem 4.1 (3), G — E(H) can be decomposed
[M%(MJ copies of C3, where H is the subgraph of Ky, induced by
the set of edges {X3i—1 X2 i =1,2,...,k — 2} U {Xok-3Xok, Xak—2Xok,
Xak—1Xai}. By the same argument mentioned above, for i € {1,2,...,k—
2}, the edge of H, X5;_1Xo;, can be viewed as the complete graph Kg with
vertex set {Zgi—s,Z6i—4,-..,Z6i}; the Cs, (X;, X, Xm), can be viewed as
the complete tripartite graph K333 with tripartition ({z3i—2,Z3i—1,%3:},
{:st._z, 31, :L‘aj}, {xam_z, ZT3m—1, $3m}); the star K1,3 induced by the set
of edges { X2x—3 X2k, Xox—2Xok, Xok—1X2k } can be viewed as the graph K —
E(M), where K is the complete graph K2 with vertex set {Tex—11,Zek—10,
...,Zex} and M is the complete tripartite graph K333 with tripartition
({z6k-11) T6k—10, T6k—9}, {T6k—8) Tek—7; T6k—6}, {T6k—5) Tok—a, Tok—3}). It
implies that Kgr can be decomposed into k — 2 copies of K, [Eﬂ"’:—-zlj
copies of K333, and K — E(M).

By Lemma 3.2, K¢ can be decomposed into p copies of P; and q copies
of Cj3 for each pair p, ¢ of nonnegative integers such that 3(p + ¢) = e(Ks)
(i.e. p+¢=25) and p > 3; by Theorem 2.7, K3 3 3 can be decomposed into
p copies of P4 and g copies of Cj for each pair p, q of nonnegative integers
such that 3(p + q) = e(K3,3,3) (ie. p+¢=9) and p # 1; by Lemma 4.3,
K — E(M) can be decomposed into p copies of P; and g copies of C; for
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each pair p, ¢ of nonnegative integers such that 3(p + q) = e(K — E(M))
(i.e. p+ g = 13) and p > 6. Therefore, K¢ can be decomposed into p
copies of P; and q copies of C3 for each pair p, ¢ of nonnegative integers
such that 3(p + ¢) = e(Kex) and p > 3k.

Case 2. n =6k + 4.
If k=1 (ie. n=10), by Lemma 4.4, we are done and so assume k > 2.
Suppose that V(Kn) = {.’1:1,222, . ,msk+4}. Let X; = {:L‘3¢_2,$3i_1,.’l}3;}
for i € {1,2,...,2k} and X2k+1 = {xek-{-l,$6k+2,$6k+3;$6k+4}- Let G
be the complete graph Kok, with vertex set {X1, X2,...,Xok+1}. Since
2k + 1 is odd, it follows that 2k + 1 will be either 6¢ + 1, 6t + 3 or 6t + 5,
where ¢ is a nonnegative integer.

When 2k+1 = 6t+1 or 6t+3, we have that 3|Qﬁ2—lp—k~ By Theorem 2.2

(1), G(= Kak+1) can be decomposed into Q"—"(;M copies of C3. Let D be
an arbitrary Cs-decomposition of G. It is easy to see that the vertex Xox+1
is contained in k& members of D. Without loss of generality we assume that
those k copies of C3 are denoted by (Xai—1, Xoi, Xox+1) fori € {1,2,...,k}.
On the other hand, (X, X2, X2x+1) can be viewed as the complete graph
Ko with vertex set {z),2,Z3,Z4, Z5, %6, Tek+1, Tok+2> T6k+3, Tek+4}; foT
i€ {2,3,...,k}, (Xa2i-1, Xai, Xok+1) can be viewed as the graph K —E(M),
where K is the complete graph Kjo with vertex set {Zgi—s,Zgi—4,- - -, T6i,
Tek+1, Tok+2> Tok+3, Tok+4) and M is the complete graph K4 with ver-
tex set {Zek+1,Tok+2,Tok+3, Tek+a}. I Xowt1 ¢ V((Xi, X, Xm)), then
(Xi, X;j, Xmm), can be viewed as the complete tripartite graph K333 with
tripartition ({T3i—2, Z3i—1,Zai}, {Taj-2, T3j-1, 235}, {T3m=2, T3m-1,T3m})-
It implies that Kgx+4 can be decomposed into one copy of Ko, k—1 copies
of KlO - E(K4), and L&.ZM -k COpieS of K3’3,3.

By Lemma 4.4, K)o can be decomposed into p copies of P4 and q copies
of C3 for each pair p, ¢ of nonnegative integers such that 3(p+q) = e(K10)
(i.e. p+g = 15) and p > 5; by Lemma 4.6, K10— E(K4) can be decomposed
into p copies of P; and g copies of C3 for each pair p, ¢ of nonnegative
integers such that 3(p + q) = e(K1o — E(K4)) (i.e. p+g=13) and p > 3;
by Theorem 2.7, K3,3,3 can be decomposed into p copies of P4 and g copies
of Cj for each pair p, ¢ of nonnegative integers such that 3(p+¢) = e(K33,3)
(i.e. p+q=29) and p # 1. Therefore, Kgx+4 can be decomposed into p
copies of P, and g copies of C3, for each pair p, ¢ of nonnegative integers
such that 3(p + ¢q) = e(Kex+4) and p > 3k + 2.

When 2k+1 = 6t+5, by Theorem 4.1 (4), G— E(H) can be decomposed
I_S“_‘*E)éﬁ!_‘*‘_“lj — 1 copies of C3, where H is the Cy, (Xok—1, X2k-2, Xok,
Xok+1). Let D* be an arbitrary Cs-decomposition of G — E(H). It is
not difficult to see that the vertex Xgx41 is contained in k — 1 members
of D*. Without loss of generality we assume that those k — 1 copies of
C; are denoted by (X2i—1,X2:, Xokt+1), for ¢ € {1,2,...,k —1}. On the
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other hand, for ¢ € {1,2,...,k — 2}, (Xgi—1, X2i, Xok41) can be viewed
as the graph K* — E(M*), where K* is the complete graph Ko with
vertex set {Zgi—s,Tei—d, .. -, L6i, Tok+1, T6k+2) Tek+3, Tok+a} and M* is the
complete graph K4 with vertex set {Zek+1,Tek+2) Tok+3, Tek+4}- The cycle,
(X2k—3, X2k—2, X2k+1), can be viewed as the graph U—E(VUM?*), where U
is the complete graph Ko with vertex set {Zex—11, Zek~10, - - - » T6k—6; Tk+1,
Zek+2) Tek+3, Tek+4} and V is the complete graph K3 with vertex set {zgx—s,
Tek—7, 361:—6}- If Xok+1 ¢ V((Xi,Xj, Xm)), then (X,-,Xj,Xm) can be
viewed as the complete tripartite graph K333 with tripartition ({z3:—2,
T3i-1,Z3i}, {$3j—2,1?3j-1,$3j}, {z3m-2,%T3m—1,Z3m}). Finally, let A de-
note the complete graph K3 with vertex set {zex—s, T6k~7,- .., Tek+a}; B
denote the complete bipartite graph K33 with bipartition ({Zex—s, Tex—4,
Tek—3}, {Tek—2, Tek—1,Tsk}) ; and C denote the complete bipartite graph
K34 with bipartition ({Zex—s, Zex—7, Tek—6}, {Tek+1) Tek+2, Tek+3, Tek+4})-
The cycle, (Xak—1, X2x—2, Xok, Xok+1), can be viewed as the graph A —
E(BuUC). It implies that Kgr+4 can be decomposed into A — E(BU C),
U - E(VUM?*), k—2 copies of K10 — E(Ky), and | ZEED2E | _ k copies of
K333.

By Lemma 4.7, A — E(B U C) can be decomposed into p copies of Py
and g copies of C; for each pair p, ¢ of nonnegative integers such that
3p+q)=eA- EBUC)) (i.e. p+¢q=19) and p > 5; by Lemma 4.5,
U—-E(VUM?*) can be decomposed into p copies of P, and g copies of C;5 for
each pair p, g of nonnegative integers such that 3(p+¢) = e(U—-E(VUM?*))
(i.e. p+g=12) and p > 3; by Lemma 4.6, K;o— E(K,) can be decomposed
into p copies of P; and ¢ copies of Cs for each pair p, ¢ of nonnegative
integers such that 3(p + q) = e(Kyo — E(K,)) (ie. p+g=13) and p > 3;
by Theorem 2.7, K3 3,3 can be decomposed into p copies of P4 and g copies
of C3 for each pair p, q of nonnegative integers such that 3(p+g) = e(K3,3,3)
(i.e. p+g=29) and p # 1. Therefore, Kgr.q can be decomposed into p
copies of Py and g copies of Cj3, for each pair p, ¢ of nonnegative integers
such that 3(p + ) = e(Ker+4) and p > 3k + 2. [}
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