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Abstract

By a defensive alliance in a graph G we mean any set S of vertices
in G such that each vertex in S is adjacent to at least as many vertices
inside S, including the vertex itself, as outside S. If, in addition, we
require that every vertex outside a defensive alliance S is adjacent to
at least one vertex in S, then S becomes a global defensive alliance.
The minimum cardinality of a global defensive alliance is the global
defensive alliance number of G. In this paper, we determine bounds
for the global defensive alliance numbers in the join, corona and
composition of graphs.
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1 Introduction

Defensive alliances in graphs, together with the other two forms (offensive
and powerful alliances), first appeared in a paper by S.M. Hedetniemi, S.T.
Hedetniemi and P. Kristiansen (see[l]). In the same paper, mathemati-
cal properties of these three alliances are being studied, and the alliance
numbers in a class of graphs, including cycles, wheels, grids and complete
graphs, are investigated. J. A. Rodriguez-Velasquez and J. M. Sigarreta in
[2], and with I. G. Yero in [3], determined tight bounds for the defensive
alliance number of line graphs in terms of degree sequences and algebraic
connectivity. Tight bounds are also obtained for complement graphs in [5].
Sigarreta, Bermudo and Fernau also proved in [5] the NP-completeness of
the decision problem underlying the defensive alliance number.

The present paper focuses on global defensive alliances, a study being
initiated by T.W. Haynes, S.T. Heditniemi and M.A. Henning [6]. In the
referred paper, bounds or exact values for the associated invariant have
been determined for special graphs including trees, complete graphs and
bipartite graphs. Further investigation on trees is done in (7] while various
mathematical properties are studied in [8].

Several applications of alliances in graphs are listed in [1]. An appli-
cation of global defensive alliances in computing networks is also being
mentioned in [6].

In this paper, we consider undirected graphs with no loops. Let G =
(V, E) be a graph of order |V| and size |E|. For purposes of emphasis, we
also write V = V(G) and E = E(G). For a given vertex v € V, the open
neighborhood of v is the set N(v) = {u: uv € E} of all vertices adjacent to
v; every vertex u € N(v) is called a neighbor of v. The degree of a vertex v
in G is degg(v) = |N(v)|, the minimum degree of a vertex v € V is denoted
4(G), and the maximum degree of a vertex in V' is denoted A(G). The
closed neighborhood of a vertex v is the set N[v] = N(v) U {v}.

For a set S C V of vertices, the open neighborhood is the set N(S) =
Uves N(v), and the closed neighborhood is the set N[S] = N(S)U S. A set
S C V is a dominating setif N[S} =V [10]. The distance dg(u,v) between
two vertices u,v € V equals the minimum length of a path joining u and
v; any such minimum length path is called a geodesic.

A nonempty set S C V is called a defensive alliance if for every vertex
v € S, |N[vJnS| 2 |[N(v)N(V\S)| A defensive alliance S is a global defensive
alliance if it is also a dominating set. The global defensive alliance number
of a graph G, denoted v,(G), equals the minimum cardinality of a global
defensive alliance in G; any global defensive alliance S of cardinality v,(G)
is called a <,-set. In this paper we determine bounds for v,(G) for joins,
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coronas and compositions of graphs.
Haynes et. al. in [9] presented, among others, the following results:

Theorem 1.1 [9] If G is a graph of order n, then v,(G) 2 @
Theorem 1.2 (9] If G is a graph of order n, then v,(G) < n — [ﬂé@]

Theorem 1.3 [9] For any graph G of order n, v,(G) = n if and only if
G=K,.

For complete graph K, and complete bipartite graph K. ,, the following
formulas can also be found in [9]):

7a(Kn)=["T“J wnd 1K) = { |

by

A graph G is said to be a complete multipartite graph if V(G) can be
partitioned into nonempty subsets Uy, Uy, ..., Up, called partite sets of G,
such that zy € E(G) if and only if zy ¢ E((Ug)) for all k = 1,2,...,n,
where (Uy) is the subgraph of G induced by Ug. In particular, if n = 2,
then G is a complete bipartite. In what follows, we consider complete
multipartite graphs having at least three nonsingleton partite sets. For
covenience, we denote by (G) the set of all partite sets U of G with
Ul 2 2.

Theorem 1.4 Let G be a complete multipartite graph of order p and with
QG) = {Ur,,Ur,,..., Uy, }, wheren > 3. Let s = Y[ 7, and let m
denote the number of odd integer subscripts r; in Q(G).

‘ £ =s,84+1,
i. fm=0, then'v..(G)={|"’p_—_a]+§, §>s+1.
) LT p=s,
G Ifm =1, then 7,(G) = { 1+ ["——J +Xa 3] P>
@i, If m > 2 and ry,7ra,...,7m are odd, then
[’?] I'Q_'I +Z;I+|_T_| I.r.l p=Ss,

7%(G) = [P‘—’J+Zr [%]+ 1+|"Hl L|, p>s, mis odd,
(23] '*'ngﬂ] [Z]+2 =14 %] %], p>s, mis even.
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Proof: First, we note that if v € Uy, then N[v] = {v} U(V(G) \ U,), and
if v e V(G) \ (U}=,Uy,), then N[v] = V(G). To prove (i), we consider
three cases: p=8, p=s+1, p > s+ 1. Suppose that p = s. For each
i=12,...,n,let S, C U, with |S,,| = }r;. Put S =U}_;S,;. Clearly,

S is a dominating set in G. Let v € Sy;. Then
IN[) N S| - [N[o] \ ] = 1.

This means that S is a global defensive alliance of G. Hence, v,(G) <
|S} = 4s. Now, suppose that W C V(G) be such that |W| < |S]. If
|WnU,.‘| <Hforalli=1,2,...,n, and if we WNU,, then

n n

INfw] N W| <1+ Zj Z Ve \W| = IN[ul \ W].

i=1,i# i=1,i

Suppose that for some j, |[W N Uy, | > 3. Let w € WNU,,. Then we have
INwjnW|<§ - |WnU, |sothat

INw]\W| = s—|W|-(r;—|[WnU,)|)
> s—%—(r,——'WnUrjl)
8
2 §"|WnUf:'|
> |Nw]nW]|.

This is impossible for a defensive alliance. Thus 7,(G) = 3s.

Suppose that p = s+ 1. Let S = UL,S,,, where S,, C U, with
|Sr;| = %. Then S is a dominating set in G. Let v € Sy;. Then

N[0S =1+ 5(s = 7) = INBI\ SI.

This means that S is a global defenswe alliance in G. Thus 7(G) < 1s.
Suppose that W C V(G) with |[W| < }s. If w € W\ UL, U,,, then

|N[w]\W|=1+s—|Wl>1+s-%s=1+%s>|W|=|N['w]nW|.

On the other hand, suppose that W C UL,U,,. Following the proof in
first case, if |[WNUy| < 3 for all i = 1,2,...,n, then for any w € W,
|Nfw)\ W| > |[N[w]nW]|. Suppose that IWnU | > 3 for some j, and
let we WNU,,. Then |[Nw]nW|<1+3% |Wn U,,j which yields

INW\W| = 1+4s=|W|=(r;—|WnU])
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> l4s—2—(r—|[WnU,))

> |N[w]nW].

> 1+§—|W0U,,.|

This means that W cannot be a defensive alliance. Thus 7,.(G) = 3

For the third case, suppose that p > s+1. Let S= U"_'fll..‘i'rJ ) where for
i=12...,n, S, C U, with |S,| = §r;, and S;_,, € V(G)\ (U, U~;)
such that IST,, +1| =[252]- Then S is a dominating set in G. Ifv € S, ,,,
then

INBIn ) = 151 = [252] + 3o 2 IV 1.

IfveSy;, 1<j<n,then

N[l 0 S| - N\ S| 2 [’%] - [”;SJ Fiz1.

Thus, S is a global defensive alliance of G, and hence, 'ya(G) < [&2] +
1s. Let W C V(G) be such that |W| < [252] + 1s. Suppose that
W\( 7.1Ur;) # 0, and let w € W\ (U}, Ur;). Then

INJw] A W| = [W| < [p;s] +%s < |N[w]\ W|.
Suppose, on the other hand, that W \ (U}, U;,) = 0. If |W N Urjl <%
forall j =1,2,...,n, and w € WNU,,, then

N nW| <1+ Y 2,

i=l#]

while

INW\W|> (p—s)+
i=1,i#j
Since p — s > 1, we have |[N[w]\ W| > |N[wJnW|. Finally, suppose
that |WnUrj| > % for some j. Let w € WNU,,. Since [Nfw]nW| <
[252] IWﬂU, | we have

Ty

NI\ W] = p—IW|~ (s~ [WnUy,)
> 14p- (252]+ 9~ 6 - W)

2
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> 1+[p—sJ+§—|WnU,j|

2
p—s] s
2 [ 2 ]+§_|W0U'i|
> |Nw]nW]|.

This means that W, in any of the three options above, cannot be a defensive
alliance in G. Therefore, 1.(G) = [25*] + 1s.

To prove (i), first we consider the case where p = s. Assume r; is
odd. Let § = UL,S,,, where Sy, C Uy, with |S;,| = [%]. Then Sisa

dominating set in G. Let v € S. Then

1, Gsr’
|NMnSM4NM\ﬂ={q :¢&L

This means that S is a global defensive alliance in G. Thus
7(G) < Y%, |%]. Suppose that W C V(G) with |W| < X0, | %]
FWnU,|<|%] foralli=1,2,...,n, and if w e WNU,,, then

n

Y. AW

i=1,i#j
n e
1]
> ¥ [3
i=1,i7#J
1 + E;:l JA#ET [%J j # 1!

N {Zs_zlzj j=1
> |Nw]nW|.

IN[w] \ W|

Suppose that [W NU,,| > | %], and thus 2 [W N Ur,| 2 rj +1, for some j.
If we WnUg,, then

IN[w]\W| - |N[w]nW|

= W= (r; = [WnU,|)]
-[Iw| - IWOU":'I +1]

p=2|W|+2|WnU,|-1-1;

> 2|WnU,,.|—r_.,

> 0.

This means that W, in any of the two options above, is not a defensive
alliance in G. Thus .(G) = i, | 3]

For the next case, suppose that p > s. Again, assume that r; is odd.
For each i = 2,3,...,n,let S, C U, with |S,,| = |%]. Let S, C Uy, with
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1S} = [%], and let S,.,, C V(G)\ (UL, Uy,) such that |S,_,,| = |232].
Let ve § = UZH!S,.. Then
_[2+ (58 ] - [B32], d#Ln+d,
Mo s -Wp\ st = {1 12 T ] T2
Thus S is a global defensive alliance in G, and thus v,(G) < 1+ I_P-;—‘gJ +
Y1 l#) Let W C V(G) with |W| < |S|. Similarly as above, if
W’\ (U2,U,,) #0, and w € W\ (U2, Uy, ), then [N[w] \ W| > [N[w] n W].

Suppose that W C U, U,,. Following similar arguments, if |[WNU,,| <
%] for all i and w € W NU,,, then |[N[w]\ W| > |[N[w] N W/|. Suppose

that [WNU,;| > | %] for some j, and let w € W N U,,. Then
IN[w]\ W| = [Nw]nW| = [P—|W|—(7‘j-|WﬂUr,|)]
~(W| =W U] +1]

> p—1-2 l”'sJ —25 [%’-J
i=1
+2|WﬂUrj| -7
p—s| |p-s
> |- 5]
> 0.
This shows that v,(G) =1+ &3] + Zg=1 %]
The proof of (iii) is straightforwad, and is omitted. |

2 On join of graphs

The join of two graphs G and H is the graph G + H with vertex set
V(G)UV(H) and edge set E(G)UE(H)U {uv:u € V(G),u € V(H)}. In
view of Theorem 1.2, we have the following lemmas.

Lemma 2.1 If G and H are graphs of orders n and m, respectively, then

%(G+H)Sm+n_min{[5(a)2+m] , [6(H;+n',}.

In particular, if H = K,,, then v,(G+H)<m+n— [ﬂ%j'ﬂ".l

The upper bound given in Lemma 2.1 is sharp. Consider, for example,
the join K,, + K,. Since K, + K, = K in,

vo(Km+Kn) = '.1"_4‘;‘_"”1-‘ - 1+[£"_+2"_‘1J =m+n— [m_*'zlj]
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Lemma 2.2 Let S C V(G) be a dominating set in a graph G. Then
N € S forallv € S if and only if S = V(G).

Proof: Suppose that S # V(G) is a dominating set in G, and let
v € V(G)\ S. Since N[S] = V(G), there exists u € S such that v € N[u].
That is, v € N[u] \ S. This means that N[u] € S. The converse is obvious.
]

Lemma 2.3 Let G be any graph and m > 1, and let S C V(G + K,,). If
S C V(G) and S is a global defensive alliance in G+ K, then S is a global
defensive alliance in G.

Proof: Since S is a dominating set in G + K, it is & dominating set in G.
Let v € S. Then

[(N[o] n V(&) N S| = |N[]N S| 2 Np]\ S| 2 |(N[]n V(G)\ 5.

Since v is arbitrary, the conclusion is established. ]

Lemma 2.4 If S is a global defensive alliance in G+Kp, and SNV (Ky) #

9, then
. {m+ |V(G)|"
— 2 .

Proof: Let v € SN V(Kp). Then N[v] = V(G + Kp) so that
S| = IN[w] N S| 2 |N[o] \ 8] = [V(G + Km) \ S|.

It follows that |S| > [-"ilZJgn] [ ]

A dominating set S in a graph G is a said to be a global strong defensive
alliance (see [6]) in G if for each v € S, [N[u]nS| > |N[u]\S|. The
minimum cardinality of a global strong defensive alliance in G is called
the global strong defensive alliance number, and is denoted by v5(G). In,
particular, 75(K,) = [2£L] [6]. Also, clearly, ¥a(Kyr) = n.

Theorem 2.5 Let G be a graph of order n. Then

min {'ya(G’), [n;—l'l} < %(G + K1) £ 7:(G), 1

and these bounds are sharp.
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Proof: Let V(K;) = {v}. Let S be a global strong defensive alliance in G.
Since v € N[S], S is a dominating set in G+ K;. Moreover, for each u € S,
IN[u]\ S| = 1+ |[(N[u]nV(G))\ S|, and thus, |[N[u]nS| > |N[u]\ S|
This means that S is a global defensive alliance in G + K. This makes the
right-hand inequality in (1).

Let S be a global defensive alliance in G+ K. Suppose that S C V(G),
and let v € S. Since v € N[u] \ S, [(N[unV(G))nS| = |[Npjn S| >
|N[u]\ S| > |[(N[u)nV(G))\ S|. This means that S is a global strong
defensive alliance in G. Thus v;(G) < |S|. Suppose that v € S. Then
IS| > [%+], by Lemma 2.4. This establishes the left-hand inequality in
(1).

That these bounds are sharp, can be seen as follows: If G = K4, then
min{7:(G), [£2]} = min{4,3} = 3 = 7a(K14) = %(G + K1)}. On the
other hand, if G is the cycle graph Cy; on n = 4 vertices, then v;(G) =2 =
7.(G + K3). In this case, v5(G) < [1'2'1] [ ]

Corollary 2.6 Let G be a graph of order n. If 74(G) < [2£L], then
7.(G + K1) = 7a(G).

Theorem 2.7 Let G be a graph of order n, and let m > 1. Then

1a(G + Kum) = min {m +1, [m;"ﬂ } @)

and this bound is sharp. If m+1<n <m+2, then 7,(G+ Km) =m+1.
Moreover, if G is noncomplete and n ¢ {m+1,m +2}, then for equality to
hold in (2), it is necessary that exactly one of the following holds:

a. S C V(G) for all v4-sets S in G+ Kn,;
b. SNV(K,,) # 0 for all v,-sets S in G + K.
Proof: Let S be a global defensive alliance in G + K,,,. Suppose that

|S] < min{m + 1, [2$2]}. In view of Lemma 2.4, § C V(G). By Lemma
2.3, S is a global defensive alliance in G. Moreover, |S| > m. Thus n > m,

which yields
n+n
|S| < [ 5 .l =n.
This means that S # V(G). By Lemma 2.2, there exists v € S such that
Np)NV(G) € S. Thus

INW]\ S| 2m+1>|S| > |NpnS|.
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This is a contradiction to the definition of S being a defensive alliance, and
inequality (2) is established.

To see that this bound is sharp, consider the following graphs: First,
the graph C3K; + K, as in Figure 2.1. For this graph, [2f2] = 4, while
m+1 = 3. In view of inequality (2), 7v.(C3K1 + K2) > 3. But since
{v1,v2,v3} is a global defensive alliance in C3K; + K3, 7.(C3K1 + K2) < 3.
Therefore, v, (C3 K1+ K3) = 3. Second, consider the graph P, + K, where

U1

(]
v3
u3
Cs:K, C3K, + K,
Figure 2.1

n=3and m = 4. Then [2}2] < m+1 so that inequality (2) implies that
Ya(Pr + Kmm) 2 [—'2*‘—'] = 4. But since S = V(K,) is a global defensive
alliance in P, + K, we have v,(P, + Knn) = 4.

Let m+1<n < m+2 Then m+1= [22]. By the first result,
Ya(G + Ki) 2 m+ 1. And to attain equality, consider S = V(Kny) U {v},
where v € V(G). Clearly, S is a dominating set in G+ K. Let u € S\ {v}.
Then

N 0S| =151 = m+1= [ 52| > [V(G-+ Ka)\ S| = N\ 51

Note, further that
INwJnS|=m+12>n—-12|Nq]\S|.

S, therefore, is a global defensive alliance in G+ K,, so that v,(G+ Kp,) <
m + 1. Combining these two inequalities, 7,(G + K») = m + 1.

Finally, to prove the last statement, suppose that G is noncomplete
and 7,4(G + K,) = min{m + 1, [242]}. Note that the hypothesis implies
that m + 1 # [22]. Suppose that m +1 < [242], and let S be a
Ya-set in G+ Km. If SNV (Kp) # 0, then m+1 = |S| > [2f2], a
contradiction. Hence, S C V(G), and so follows statement (a). Now,
suppose that [-’%m] < m+1, and let S be a ,-set in G+ K,,,. Suppose that
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S C V(G). We consider two cases: S =V(G) or S # V(G). If S = V(G),
then since G is not complete, there exists v € S such that N[v]NS # S. This
means that n > |N[v] N S| > |N[v] \ S| = m, and consequently, n > m + 1.
This case, therefore, yields [2f2] > [2+m+l] = m; + 1, a contradiction.
On the other hand, if S # V(G), then

l'm+n"l=|5,|<n___|'n;-n"'

2

This means that m < n. Writing m + 1 = [2+pl] < [242], we also
get a contradiction. Therefore, SN V(K,,) # 0. Statement (b) follows
immediately. [

Let G = H + K, where H is a connected noncomplete graph of order
n. If m+4+n =4, then H = P; and m = 1. Theorem 1.1 gives the inequality
YIT=1 ~ 1.56 < 7,(G), while Theorem 2.7 gives the estimate 2 < 7,(G).
Suppose that m + n > 5. Since

dm+n)+1<(m+n—1)(m+n)+(m+n)=(m+n)?

Va(m+n)+1-1 <m+'nS [m+n]'

2 2 2

Thus, if [42] < m + 1, then the lower bound given in Theorem 2.7 is a
better estimate for the join than the one given in Theorem 1.1.

we have

Corollary 2.8 Let G be a graph of order n. If m > n, then

l-m;-n] £ %(G+Kn) < m.
In particular, if n =m — 1 or n =m, then 7,(G + Kn) =m.
Proof: The first inequality follows from Theorem 2.7, while the second
inequality follows from the fact that V(K,,) is a global defensive alliance
in G+ K,,. |
Corollary 2.9 Let G be a graph of order n. If m > n, then

Y(G) £ %(G + Kn). (3)

Moreover, equality holds in (3) if and only if G = K.
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Proof: If m > n, then [’—'—‘ém'l 2 n 2 7,(G). The desired inequality follows
from Corollary 2.8.

To prove the last statement, suppose that v,(G) = 7,(G + Kn), and
let S be a global defensive alliance in G with |S| = ~,(G + K,,). Since
|S| = 7a(G), |S| £ n. We claim that 7,(G) = n so that by Theorem 1.3,
G = K,. Note that by Lemma 2.4, if SN V(K,,) # 0, then n > |S| >
[22] > n. If § C V(G), then n > |S| > m > n. Either case yields
7a(G) = n. Further, suppose that m > n. Since V(G) = V(K,) is not a
global defensive alliance in G + K,,, Lemma 2.4 implies that v,(G+ K,,) >
[242] > n > 7,(G). This is a contradiction. Hence m =n and G = K.
Conversely, suppose that G = K,,. By Theorem 1.3, 7,(G) = m. Since
V(Ky) is a global defensive alliance in G+ K, ¥a(G+ Km) £ m = 74(G).
This, together with inequality in (3), implies that v4(G + Kin) = 7.(G). B

The inequality in (3) may not be attained if m < n. Note, for example,
that 7, (K + K3) = 5 < 6 = 7,(Ks). Indeed, it is not always true that
if H is a subgraph of a graph G, then v,(H) < 74(G), and Corollary
2.9 provides a condition under which the desired inequality holds for some
induced subgraph H of a connected graph G.

Equality in (3) can also be attained with m < n. To see this, we revisit
the graph C3 K + K in Figure 2.1. Note that since {v,v2,v3} is a global
defensive alliance in C3K,, we have 7,(C3K;) < 3. On the other hand,
since u; ¢ N(u;) U N[v;] for ¢ # j, we have 7,(C3K;) > 3. This makes
Y2(C3K7) = 3. Indeed, for this graph, v,(C3K1 + K3) = 7.(C3K}).

Theorem 2.10 Let G be o graph of order n, and let m > 1. If A(G) < m,
then

m+n
2 .

% (G + Kn) = [

Proof: Suppose that v,(G + Km) < [242], and let S be a global defen-
sive alliance in G + Ky, with |S| = 7.(G + Km). In view of Lemma 2.4,
S C V(G). Either S = V(G) or S # V(G). Suppose that S = V(G).
Then the above assumption implies that n < [Z£2], which yields n < m.
However, note that for each v € S, m = |N[v] \ S| < |[Njv]n S| < |S| =n.
This is impossible. Now, suppose that S # V(G). By Lemma 2.2 there
exists v € S such that Nfv)NnV(G) € S. Thus, we have

IN[w]\ S| 2 m+1 > degg(v) = |[Nw]N S|.

This is a contradiction. Therefore, 7.(G + Km) > [242].

Suppose that m > n. Let | = [2f2], Then ! < m. Let S C V(Km)
such that |S| = l. Clearly, S is a dominating set in G + K,,. Moreover, for
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eachve S

INWIN S| =[S|=1>|V(G+ Kn)\ S| = N[\ S|.
This means that S is a global defensive alliance in G + K,,,. Suppose that
m < n. Thenl = [242] —m > 1. Let S* C V(G) with |S*| = I. Consider
the dominating set § = §* UV (Kp,) in G+ Ky,. If v € V(K,,), then

m+4+n

Vo] N 8] = 18] = [ ] > |N[o]\ 8.

If v € S*, then
INwjN S| 2 m+1>dege(v) > |N[v]\S|.

This shows that S is a global defensive alliance in G+Kp, with | S| = [ 2],
Therefore, 7,(G + Km) < [%1 [ ]

Example 2.11 7 (G + Kn) = [2F2] for m > 2, where G is a path or
a cycle of order n > 4, or any m-regular connected noncomplete graph of
order n.

Corollary 2.12 For every pair of positive integers m and n, with m > 2
andn > 3, there ezists a pair of connected noncomplete graphs (G, G*) such
that |[V(G)| = m+n = |V(G*)| with7a(G) = [2f2] and 7a(G*) = | 2E2|.
Proof: In view of Example 2.11, one may take G = P, + K,n. Also, if
m + n is even, then we may take G* = P, + K,.. Suppose that m +n
is odd. If m +n = 5, then we may consider the graph G* as in Figure
2.2. Note that the set {u,v} is a yo-set in G*. Thus 7,(G*) = [§].

u

Figure 2.2: Graph G* with 7,(G*) = 3]

Suppose that m +n > 7. Suppose further that m+n = 3 + 2k, k > 2.
Take G* to be the complete multipartite graph of order m + n and with

QUG*) = {Us,U,,,Up,,..., Uy}, where ry = 10 = ... = r, = 2. By
Theorem 1.4, %(G*) = |3 J+k | e | [ ]
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Theorem 2.13 Let G and H be graphs of orders n and m, respectively. If
AG)<m-—1and A(H) <n -1, then

1+6(H)+n],[1+6(G)+m]},

2 2 )

Y% (G+H) 2 max{[
and this bound is sharp.

Proof: Let S be a global defensive alliance in G+ H. If § C V(G) and
v € S, then A(G) > degg(v) = |[N[v] N S| —1 > m, a contradiction. Thus,
SNV(H) # 0. Similarly, SNV(G) # 0. Take v € SNV(G). Then

|N[w]| = m + 1 4 dege(v). Consequently, |S| > I-TL;'J(Q-] Similarly,
S| > nt1+8(H) | The conclusion follows from the arbitrary nature of S.
2

Consider the complete bipartite graph K2 = K, + K3. Note that
Ya(K2,2) = 2, which coincides with the corresponding estimate given in
(4). The given lower bound, therefore, is sharp. |

A graph G is said to be a P-graph if G has P, as an induced subgraph.

Theorem 2.14 Let G and H be graphs of orders n > 4 and m > 4, re-
spectively, such that A(G) =2 = A(H). If G and H are PH"] -graph and

P|- 2 -graph, respectively, then

o= (3] + 5]

Proof: Let ky = |2| and ky = | %], and suppose that P, and P, are
induced subgraphs of G and H, respectively. Let S = V(Py,) U V(Py,).
Clearly, S is a dominating set in G + H. If v € V(Px,), then |[N[v] N S| >
|Z|+2 > [2]+1 > |N[v]\ S| Similarly, if v € V(Fx,), then |[N[v] N S| >
|N[v]\ S|. Therefore, S is a global defensive alliance in G + H, and hence
7(G+H) < 3]+ (%]

Suppose that 7,(G + H) < |3]| + | %3], and let S C V(G + H) with
|S] = 7a(G + H). Then |SNV(G)| < |3] or |SNV(H)| < |Z]. Suppose
that |SNV(G)| < |2]. Note that either SNV(H) = @ or SNV(H) #
§. Suppose that SN V(H) = @, i.e., suppose that S C V(G). Since
S # V(G), there exists v € S such that [N[v)JN S| < 2. Since m > 4,
|IN[) N S| <m < |N[v]\ 8|, implying that S cannot be a defensive alliance
in G + H. Now, suppose that SNV (H) # 0. If SNV (H) = V(H), then
ISAV(G)| +m < |2] + [Z]. Or equivalently, |SNV(G)| < | 3] - [%]
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Let v € V(H). Since m 2 4,
IN[]n S|

IA

3+|8NV(G)|
3+ (5]~ [3F]
3-24 EJ
IV(G)\ S|
N[\ S|,

AN A

IA

a contradiciton. If @ # SN V(H) # V(H), then there exists v € SNV(H)
such that |(N[v]nV(H))N S| < 2. Since m > 4, we have |[N[vjn S| <
24+1SnV(G) <2+ 2] - [Z] < |2] <IN[v]\ S|, a contradiction. The
other case where |S N V(H)| < | 2] also leads to contradictions. Therefore,
7(G+ H) > | 3| + | %], and the conclusion follows. n

Example 2.15 For positive integers m,n > 4, Yo(Pn + Pm) = Ya(Pm +
Cn) =7(Cm + Cn) = |3] + [ 2]

3 On corona of graphs

The corona G o H of graphs G and H is the graph obtained by taking one
copy of G and |V(G)| copies of H, and then joining the ith vertex of G to
every vertex in the ith copy of H. It is customary to denote by H, that
copy of H whose vertices are adjoined with the vertex v of G. In effect,
G o H is composed of the subgraphs H, + v together with the edges of G.
Clearly, V(Go H)= | ] V(H,+v).

veEV(G)

Lemma 3.1 If S is a global defensive allinace in Go H, then SNV (H, +
v) # 0.

Proof: If SNV (H, +v) = @ and w € V(H,), then w ¢ N[S]. This is
impossible for a dominating set S in Go H. |

Lemma 3.2 In the corona Go H, if S, C V(H,) is a global defensive
alliance in H, + v, then U,ev(c)Sy s a global defensive alliance in Go H.

Proof: This immediately follows from the fact that if $ = U,ev(g)Sv, then
NuNnS=N[u NS, and Nu]\ S = N[u]\ S, for all u € S,. [ ]
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Lemma 3.3 If G is a graph of order n, then n < v,(G o H) £ nvys(H) for
any graph H.

Proof: In view of Lemma 3.1, n < 44(G o H). The right-hand inequality
follows from Theorem 2.5. [ ]

Clearly, 7.(G o K;) = |V(G)| for any graph G. On the other hand,
Yo(Pm © C4) = 2m = m~v5(Cy4). These examples show that the bounds in
Lemma 3.3 are sharp.

Proposition 3.4 For any graphs G and H, if dege(v) > |V(H)| — 1 for
allv € V(G), then v,(G o H) = |V(G)|.

Proof: By Lemma 3.3, 4,(G o H) > |V(G)|. Now, clearly § = V(G) is a
dominating set in G o H. Further, if v € S, then

IN[v] N S| =1+ degg(v) 2 [V(H)| = |N[v]\ S|.
Thus 7a(G o H) < [V(G)|. ]

Theorem 3.5 Let G be any graph andm > 1. Let S be a y,-set in Go Ky,
and let v € V(G). Ifdegg(v) <m -1, then S, = SNV ((Km)y +v) isa
Ya-set in (Km)y + v.

Proof: For convenience, put H = K,,,. First, we show that S, is a global
defensive alliance in H, +v. If S, = {v}, then

IN[p]N S| £1+dega(v) <m < N[\ §],

a contradiction. Hence, S, NV (H,) # 0. Let u € S, NV (H,). Note that
N[u] = V(H, +v). Since u € S,

IN[u] N Sy| = [N[u] N S| > [N[u] \ S| = |N[u] \ S].
Moreover, since H, + v is complete, |N[v]nSy| = |N[g]JNS,| and
N[\ Sy| = [N[u] \ Sy| for all w € V(H,). This shows that S, is a global
defensive alliance in H, + v. The minimality follows from Lemma 3.2. W
Corollary 3.8 For any graph G and m > 1,
+1
(@0 Kn) = V@A TI+ [ 222 i,

where T = {v € V(G) : degc(v) < m — 1}.
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Proof: Put H = K, and let T = {v € V(G) : degg(v) < m —1}. For
each v € T, let S, C V(H, + v) such that v € S, and |S,| = [Z]. Let
S = (V(G)\T)U (UperSy). If v € V(G)\ T, then

IN[o] N S| = 1 + dega(v) > m = [N[v] \ S].
IfueS,,veT, then

Nt 012 150 = [52] 2 1R\ s

Thus S is a global defensive alliance in G o K,,. Hence, 7,(G o H) <
IV(G\T| + [24](T).

Let S be a 7,-set in G o H. By Theorem 3.5, for each v € T,
Sy = SNV(H, +v) is a v,-set in H, +v. Since H, + v is complete,
1Sy| = [2#2]. In view of Lemma 3.1,

Z: ISvl + IS \ UveTSul
veT

D IS+ V(N T
veT

- [Q;—I] IT| + [V(C)\ T.

7a(G o H) =S|

v

The desired equality follows immediately. |

Corollary 3.7 If m 2 2 and A(G) < m — 1, then

(G oKn) =IV(@) [ 22,

Example 3.8 v4(Pr, o Kp) =7 (CrnoKp) =n ]'E‘—,;,ﬂ] form > 4.

4 On Composition of Graphs

The composition or lezicographic product G{H] of two graphs G and H is
the graph with V(G[H]) = V(G) x V(H) and (u,v)(v',v') € E(G[H)) if
and only if either uu’ € E(G) or u = v/ and vv’ € V(H). In this section, we
consider only composition G[H], where G is connected and H = K,,. The
reader may find it interesting to investigate other possible cases. It should
be noted that the symbol N{(u,v)] refers to the closed neighborhood of
(u,v) in G[H], while N[u] refers to the closed neighborhood of u in G.
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Given S C V(G[H]), the G-projection Sy of S is the set of all first
components of S. That is,

Sy={ze€eV(G):(z,y) €S for somey € V(H)}.

Lemma 4.1 In the composition G[Ky,), where G is connected and m > 1,
for every u € V(G), N[(u,v)] = N[u| x V(H) for allv € V(H).

Theorem 4.2 Let G be connected and m > 1, and let S C V(G[Kn)).
If S is a global defensive alliance in G[K,,], then Sy is a global defensive
alliance in G.

Proof: Let z € V(G)\ Sy, and let y € V(K.,). There exists (u,v) € S such
that (z,y) € N[(u,v)]. Since u # z, dg(u,z) = 1. That is, z € N[u] C
N|[Sf]. This means that Sy is a dominating set in G.

Suppose that u € Sy with |[N[u]NSy| < |[N[u]\ Sf|. Let v € V(Kn)
such that (u,v) € S. Since (N[u] \ Sf) X V(Kn) C N[(u,v)] \ S, together
with Lemma 4.1 we have

IN[(w, )] 0S| = [(N[u] x V(Km))N S|
< |(N[u) N S5) x V(Km)
= |V(Kn)|IN[u] N 5]
< [V(Km)l IN[u]\ S5l
< IN[(wv)]\ ST

Since S is a defensive alliance and (u,v) € S, this is impossible. This proves
that Sy is global defensive alliance in G. [ ]

For a global defensive alliance A in a connected graph G, we define

A°={u€e A:3ve A with ue N(v)}.

Theorem 4.3 Let G be a connected graph andm > 1. Let S C V(G[Kn)).
If S is a global defensive alliance in G[Ky,), then there exists a global defen-
sive alliance A in G such that S = [(A\ A°) x V(K )|UT, where Ty = A°.
In this case, |T| > | 2] |A°).

Proof: Let S C V(G[Ky)) be a global defensive alliance in G[K), and
put A = Sy. By Theorem 4.2, A is a global defensive alliance in G.
Define T = {(u,v) € S : u € A°}. Then Ty = A° and S C [(A\
A°) x V(Km)J]UT. Let £ € A\ A°, and suppose that there exists y €
V(K) such that (z,y) ¢ S. Since z ¢ A°, N[(z,v)| NS = {(z,u) :
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u € V(Kn)} NS and |N[(z,v)]\ S| > m for all v € V(K,,). Take
v € V(Ky,) such that (z,v) € S. Since (z,y) € S, |N[(z,v)]N S| Em—-1<
IN[(z,v)] \ S|. This contradiction implies that (4 \ 4°) x V(Kn) C S.
Therefore, S = [(A\ A°) x V(Kn)]UT.

Now, suppose that |T| < |Z]|A°|, where T, = T N ({u} x V(Kn)).
Contradiction is easily attained if [T.] < | 2] for all u € A°. But the
hypothesis implies that there exists « € A° such that

> RI<INwnal |2 X m-ImD.

veN[u)nA° veEN[u]nA°
Choose z € V(K,) such that (u,z) € T. Then, using the above result,
IN[((w,2)|NT| = [(N[u] x V(Km))NT|

= Y T

vEN[u|nA°

>, (m-IL)
vEN[u]nA°
[(N[u] x V(Km)) \ T
IN[(w,2)]\T}|.

A

I IA

This is a contradiction. Therefore, |T| > | %] |A°}. n
Corollary 4.4 For all connected graphs G and m > 1,

Ya(GlKm]) > min{m|A| - [g] |4°| : Ais a global

defensive alliance in G}.

The lower bound given in Corollary 4.4 is sharp. Verify that
7a(K2[K2]) = 2. If A is a global defensive alliance in Ky and |A] = 1,
then A° = @ and, with m = 2, m|4| - [%] [A°] = 2. If A is a global
defensive alliance in K, and |A| = 2, then A° = A and, with m = 2,
m|A| - [2]]4°] = 2.

Theorem 4.5 Let G be a connected graph andm > 1. Let AC V(G) be a
global defensive alliance in G, and for each u € A°, let T,, C {u} x V(K,,)
with the following properties:

1. If N[u] C A°, then |T,| 2> [%]; and
2 If N[u]\ A° #0, then |T,| =m for allv € N[u] N A°.
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If S =[(A\ A°) x V(Kn)]UT, where T = UyegoTy, then S is a global
defensive alliance in G[Kp,).

Proof: In view of Lemma 4.1, since A is a dominating set in G, S is a dom-
inating set in G[Ky,). If (z,y) € (A\ A°) x V(Ky,), then |N[(z,y)]| N S| =
m = |N[(z,y)]\ S|. Let (z,y) € T such that N[z] C A°. Then

IN{(z,9)] N S| |(N[z] x V(K)) N T
NGzl - [ 5]
|(N[z] x V(Km)) \ T
IN[(z,9)]\ S|
Now, let (z,y) € T such that N[z] \ A° #0.

IN[(z,9)] N S| m |N[z]n A°| + m|N[z] \ A°|
m|Nz] \ A°|
IN[(z, 9)]\ 51

Therefore S is a global defensive alliance in G[Kom). |

v v

(A

Corollary 4.6 For any connected graph G and m > 1, if AC V(G) isa
global defensive alliance in G, then AxV(Ky,) is a global defensive alliance
in G[Km).

Corollary 4.7 For all connected graphs G and m 2> 1, 7, (G[Km]) <
mYa(G).

The bound in Corollary 4.7 is sharp. Consider, for example, the graph
G[Kj)] as in Figure 4.1. The set {z,y} is a 7a-set in G so that 7,(G) = 2.

G G(K)

Figure 4.1

Similarly, {z’,y’,z",y"} is a vs-set in G[K2]. Thus 1.(G[K2]) = 4 =
2'7a(G)'
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