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Abstract A new construction of authentication codes with arbitration
from (2v+2+1)-dimensional singular pseudo-symplectic geometry on finite
fields is given . Assuming that the encoding rules are chosen according to
a uniform probability distribution, the parameters and the probabilities of
success for different types of deceptions are also computed.
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1. Introduction and main results

To solve the distrust problem of the transmitter and the receiver in the
communications system, Simmons(!} introduced a model of authentication
codes with arbitration, we write simply A2-code defined as follows:

Let S, ET,Er and M be four non-empty finite sets, f : SxEr — M and
g: M xEgp — SU{reject} be two maps. The six-tuple (S, Er, Er, M; £, 9)
is called an authentication code with arbitration (42-code), if

(1) The maps f and g are surjective;

(2) For any m € M and er € Er, if there is an s € Ssatisfying
f(s,er) = m, then such an s is uniquely determined by the given m and
er;

(3) pler,er) # 0 and f(s,er) = m implies g(m,egr) = s, otherwise,
g(m,egr) = {reject}.

S, E7,Er and M are called the set of source states, the set of the
transmitter’s encoding rules, the set of the receiver’s decoding rules and
the set of messages, respectively; f and g are called the encoding map and
decoding map respectively. The cardinals |S|, |Er|, |Er| and |M| are called
the parameters of this code.

In an authentication system that permits arbitrations, this model in-
cludes four attendance: the transmitter, the receiver, the opponent and the
arbiter, and includes five attacks: the opponent’s impersonation attack, the
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opponent’s substitution attack, the transmitter’s impersonation attack, the
receiver’s impersonation attack and the receiver’s substitution attack.
Wan Zhexian , Feng Rongquan, You Hong etc. constructed authentica-
tion codes without arbitration from geometry space of classical groups over
finite fields (2-4. Ma Wenping, Li Ruihu Chen Shangdi etc. constructed
A2.code from geometry space of classical groups over finite fields(®=7]. In
the present paper, a new A%-code will be constructed from singular pseudo-
symplectic geometry over finite fields, the parameters and the probabilities
of successful attacks of this authentication codes are also computed.
Assume that Fy is a finite field of characteristic 2, n = 2v 4§ + land

6=1,2. Let
S
Ss1 = ( " ow )

where S5 is the (2v + ) x (2v + J) non-alternate symmetric matrix:

0 I®

0 I® © o

= Q) =
S I 0 , S2 0 1
11

The singular pseudo-symplectic group of degree 2v+6 41 over Fy is defined
to be the set of matrices

Ps2v+6+l.2v+6 (Fq) ={g: QSG,IQT = S&,l}

denoted by Ps,,, s.1.2045 (Fq) -
Let Fq(z""'”') be the (2v + § + l)-dimensional row vector space over Fy,
PS4y 502045 (Fy) has an action on F{****) defined as follows:

F‘§2"+6+n x pszu_’-&“,h“(pq) _ Fq(2u+5+l)

(122, Towps41): T) — (z1, %2 - s Top4s+0)T

The vector space Fq(2"+5+') together with this action is called the sin-
gular pseudo-symplectic space of dimension 2v + § + | over F;. An m -

dimensional subspace P of Fq(z"”“) is said to be of type (m,2s +7,s,¢€) ,
where 7 = 0,1 0r 2 and £ = 0 or 1, if PS5 P is cogredient to M(m, 2s+7, s)
and P does not or does contain a vector of the form

(0, 0--- 0, 1, Top42° ,xg,,+1+1), where § =1
e’

2v
(0,0 . ~0, 1,0,$2y+3 AR ,12,,+2+{), where § = 2

2v



corresponding to the cases € = 0 or 1, respectively. Let E be the subspace
of Fq(z""'&“) generated by ez, is41,°**,€2,45+1, then dimE = 1. Anm
-dimensional subspace P of Fq(z"""s"") is called a subspace of type (m,2s +
7,8,&, k), if

(i) P is a subspace of type (m,2s + 7, s,€) and

(i) dim(P N E) = k.
From (8] we know that the set of all subspaces of type (m,2s + 7, s,¢, k) in
F&*) forms an orbit under Ps,,,;,:4.,5(Fy). Let P is a subspace of

F*+4D | we define the dual subspace of P is

Pt ={z|z € F}z""'“l),zsé.lyT =0,Vy € P}.

2. Construction

Suppose that n = 2v+2+,2 < e <rm <y,v>5and 1 < ks < ky <.
Let U be a fixed subspace of type (3,0,0,0,1) in the (2v+2+1)-dimensional
singular pseudo-symplectic space ng"““), then U+ is a subspace of type
Qv +1,2v—-2,v—2,1,1); P, is a fixed subspace of type (r; +¥1,0,0,0, k1)
and U C Py C U?; the set of source states S = {s|s is a subspace of
type (r2 + k2,0,0,0,k2) and U C S C Pp}; the set of the transmitter’s
encoding rules Er = {er|er is a subspace of type (5,4,2,0,1),U C er and
er N Py = U}; the set of the receiver’s decoding rules Eg = {er|er is a
subspace of type (4,2,1,0,1) and U C eg}; the set of messages M = {m|m is
a subspace of type (72 + 2+ k2,4,2,0,k2) and U C m, mN B, is a subspace
of type (T2 + k2l 0, 0, 0, k2)}

Define the encoding map:

f:SxEpr— M, (s,er) >m=s+er,
and the decoding map:
g: M x Ep — sU {reject}
(m, ) — { s if eg C.m,'wheres =mn Pp.
{reject} otherwise.

We know the six-tuple (S, Er, Er, M, f,g) is an authentication code with
arbitration.

Let n; denote the number of subspaces of type (r; + k2,0, 0,0, k2) con-
tained in U+ and containing U; ny denote the number of subspaces of type
(r1+k1,0,0,0, k1) contained in U+ and containing a fixed subspace of type
(re+k2,0,0,0, k2) as above; and n3 denote the number of subspaces of type
(r1 + k1,0,0,0,k;) contained in U+ and containing U.
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Lemma 2.1 (1) n; = N(r2—2,0,0,0; 2v—2)N (k3 —1,1—1)g(ra=2=ka),

(2) ng = N(rl —79,0,0,0;20 4+ 2 - 21‘2)N(k1 —kp,l - kz)q(l_k‘)(r‘ _"’);

(3) n3 = N(r; — 2,0,0,0;2v — 2)N(ky — 1,1 — 1)g(r =2 (=k1),

Proof. (1) We can assume that s is a subspace of type (ro-+k3,0,0,0, k2)
and U c s ¢ UL. Clearly, s has a form as follows

100 0 00O O O O O 0 0 1
01 0 0 00 O O O O0 O 0 0 1

s=| 00 0 0 00 O 0 O 0 1 0 0 1
00 0 0 00 O O O O 0 Ik-1) o ka—1
00 R3 R4 00 R7 Rg Rg Rlo 0 0 R13 re—2
1 1 ro~2v-ra1 1 re=2v-ry 1 1 1 ka—1 l—kg

where (R3, R4, Rz, Rs, Rg, Ry0) is a vector subspace of type (r2 — 2,0,0,0)
in the pseudo-symplectic space Fq(z"_z) and R;3 is arbitrary. Therefore,
ny = N(rq — 2,0,0,0;2v — 2)N (kg — 1,1 — 1)g(r2=2(—ka),

(2) Suppose that P is a subspace of type (r; + k1,0,0,0, k1) containing
a fixed subspace of type (rz + k2,0,0,0,k;) as above and P c UL, It is
easy to know that P has a form as follows

10 0 00000 O O O 0 0 1
01 0 00000 O O O 0 0 1
p_|00I™® 00000 0 0 0 0 0 | r-2
“loo 0 00000 0 0 Ikd) 0 0 ks
00 0 00000 0 0 0 I*i~k) g | kk
00 O Ry,000Rs Ry Ry O 0 Riz ) ri-r
11 r9—2 v—=ra 1 1r2—2v-r1 1 ka ki—ka l—ky

where (Ry4, Rg, Ry, Ry0) is a subspace of type (r; —72,0,0,0) in the pseudo-
symplectic space Fq(2"+2"2") and R;j is arbitrary. Therefore, ng = N(ry —
79,0,0,0;20 + 2 — 27‘2)N(k1 — ko, 1l — kz)q(l-k‘)(r‘-rz).

(3) Similar to the proof of (1), we have ng = N(r; — 2,0,0,0;2v —
2)N(ky — 1,1 — 1)gtri—2 =k,

Lemma 2.2 The number of the source states is

18| = nng _ q(r2=2Q@ra—r)+ki=k)) N (kg — 1,1 — 1)N(ky — k3,1 — k2)
ng N(k,-1,1-1)

Lemma 2.3 The number of the encoding rules of the transmitter is
|ET| — q2(2v—4+l)

Proof. Since er is a subspace of type (5,4,2,0,1) and ey NPy = U,
hence |Er| = N'(3,0,0,0,1;5,4,2,0,1;2v + 2 + 1,20 + 2) = g?®/—4+D),
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Lemma 2.4 The number of the decoding rules of the receiver is

|Br| = ¢~ (g +1)

Proof. Since eg is a subspace of type (4,2,1,0,1) in the (2v + 2 + 1)-
dimensional singular pseudo-symplectic space F(2"+2+') and U C ep, hence
|Er| = N'(3,0,0,0,1;4,2,1,0,1; 2v + 2 + I, 2u+2)—q2("-2)+‘(q+1)

Lemma 2.5 For any m € M let the number of er and eg contained
in m be a and b, respectively. Then a = g%("2+k2=3) p = g(ra+ka=3) N (1, 2).

Proof. Let m be a message, from the definition of m, we may take m
as follows

I 0 0 0 00O0O O O

| 0 ™2 9 0 0000 0 O

m=1 9 0 0I?% 0000 0 0

0 0 0 0 0 0 0 0 Ik ¢

2 ro—2 v-rg 2r—2uv-ral 1 k; {—k2

If er C m, then we can assume

I® 0 0 0 000 OO 0
er = 0 0 0 0 00 OO 1 0
(thomooooomoo

2 rg=2 v—ra 2r3=2v—ral 1 1 ky—1 I—ko

where hg ,hjg arbitrarily and (h4) is nonsingular. Therefore, a = g2(r2tk2—3),
If ep C m, then we can assume

I 0 0 0 000
ep = 0 0 0 0 0O00O
0 hy O A, O 0 O
2 ro—-2v—-r32r—-2v-mry1l
where hj, hiy arbitrarily and (h}) is a 1 dimensional vector subspace of 2
dimensional vector space. Therefore, b = g(ra+k3—3) N (1, 2).
Lemma 2.6 (1) For any ey € Er, the number of eg which is incidence
with er is ¢ = N(1,2).
(2) For [any er € ER, the number of er which is incidence with eg is
d= q2u—4+ .
Proof. (1) Assume that er € Er, er is a subspace of type (5,4,2,0,1)
and er N Py = U, we may take et as follows

I 00 0 000
ec=|( 0 00 0 00O
0 00 I® 0 0 0

2 1192 v—r3 2 1r3=2v-r3 1

- O OO0
= O = O
[ = I )
SN———
N N
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If eg C er, then we can assume

I 00 0 000
er=| 0 00 0 00O
0 00 h, 00O

21r2—2v—r2 2 r2=2v-ryl

=R =X -]

00 2
10 1
00 1
(R B

where (hq) is a 1 dimensional vector subspace of 2 dimensional vector space,

hence ¢ = N(1,2).
(2) Assume that eg € ER, eg is a subspace of type (4,2,1,0,1) in the

(2v + 2 + l)-dimensional singular pseudo-symplectic space Fq(z'”'z“), we
may take egr as follows
I 00 00000O0OTO0TO0Y) 2
erp = 0 00 O0O0OOOOTI1O0 1
0O 001 0O0O0OOCOTODO 1
2 rg=2v=r31 1r=2py-rl 1 1 [-=1
If er D eg, then we can assume
I o0 o0 0 0 0 0 0 0O O 2
e = o o 0 0 O O O 0 01 0 1
Tl o o 010 0 0 0 00 O 1
0 hz h3 0 h5 hs h7 hs 00 hu 1
2 =2 v—r3 1 1 ry—=2 y-rs 1 1 1 I-1
1 0Y, . e s
where 0 hs is nonsingular and hs, h3, hg, h7, hg, h1; arbitrarily, there-
fore d = g2 4+,

Lemma 2.7 For any m € M and er C m, the number of er contained
in m and containing ep is g"2+2-3,

Proof. Similar to the proof of Lemma 2.6, we can obtain Lemma 2.7 .

Lemma 2.8 Suppose that m; and m, are two distinct messages which
commonly contain a transmitter’s encoding rule ef., s; and s; contained in
m, and my are two source states, respectively. Assume that sy = sy N 39,
dim sp =k, then3 <k <rs+kz—1and

(1) The number of e contained in m; Nmy is ¢F~3N(1,2);

(2) For any eg C m; N'my, the number of er contained in m; N'my and
containing eg is g*~3.

Proof. Since m; = s; + e, ma = s + e and m; # mg, then s; # sa.
Because U C sy, g, therefore, 3 <k <ry + kg — 1.

(1)Suppose that s} is the complementary subspace of sg in the s;, then
si=80+s; (i=1,2). Fromm; =s;+efp =so+s;+epand si=m;NP
(¢ =1,2), we have so = (m1 N Po) [ (m2 N Po) =myNmaNFPy = s1N\my =
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s20my and m; Nm;y = (31 +er)Nmg = (so+5; +eT)ﬂm2 = ((so+ep)+
sl) N my. Because so +ep C mg, my N mg = (so + eg) + (8; N'ma). While
slﬂmz C s1Nmgy = g, MmNMg = s0+eT Therefore dim (myNmy) = k+2.
From e C m; N'my , we may take m; as follows

I 0 0 0 0 00 O 2
0 0 I® 0 0 00 O 2
my = 0 0 o0 0 0 01 o0 1
0 R, 0 Ry Rs 0 0 Rg r2—2
0 0 0 O 0 0 0 Rg ka—1
2 w2 2 wp-2 1 1 1 I[-1
because the type of ms is the same as m;, therefore
I o0 0 0 0 00 O 2
0 0 I® 0 0 00 O 2
miNmg = 0 0 0 0 0 01 0 1
0 Py 0 Pa B 0 0 B r2—2
0 0 O O 0 0 0 F ka—1
2 v-2 2 wv=2 1 1 1 I-1

and

. 0 P, 0 P B 00 P\ _
dlm(0000 0 00 g)‘k'3

if for any eg C m; N'mg, then

I o 0 0 0 o0
er = 0 0 0 0 0 O
0 hy hy hy hs O
2 v—-2 2 v—2 1 1

where the number of h3 is N (1, 2) and every row of ( 0 ho 0 hg hs 0 0 hg )

. . . 0 P, 0 PL 5 00 B
is the linear combination of the base of (0 0 00 0 00 Pé)

So it is easy to know that the number of eg contained in m; N my is
k-3N(1,2)
q y2).
(2) Assume that m;Nmg has the form of (1), then for any ep C m;Nmy,
we can assume that

I 0 0 0 0 0 0 0 2

ep = 0 0 0 0 O 0 1 0 1
0 h2 h3 h4 h5 hs 0 hs 1
2 wv=2 2 wv-2 1 1 1 I-1
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If er C m; N'mg and eg C er, then er has the form as follows

I 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
O hy hs hg hs 0 0 hg
0 hy hy R, ki R, 0 h}
2 v—-2 2 v=-2 1 1 1 -1

er

LB I )

where ( ZZ ) is nonsingular and every row of (0 hj h k) hf 0 0 hf)
. . L 0 P, 0 Pb PR 00 P
is the linear combination of the base of ( 0000 000 P

then the number of er contained in m; N my and containing eg is g¥—3.

Theorem 2.1 The parameters of constructed authentication codes with
arbitration are

18] = g(r2=D@ra—r)+k1=k2) N (ky — 1,1 — 1)N(ky — ko, 1 — ky)
- N(k; -1,1-1) '

|Er| = ¢*®=4*D; |Er| =Dt (g+1); M =|S||Er|/a.

Theorem 2.2 In the A2—codes, if the transmitter’s encoding rules and

the receiver’s decoding rules are chosen according to a uniform probabil-
ity distribution, the largest probabilities of success for different types of

deceptions:

1 1 1
Pr= q2u-r3—kz+l—1; Ps = ‘6; Pr= _Q F1
1 1
Pp, = prE e Pp, = 2

Proof. (1) The number of the transmitter’s encoding rules contained in
a message is b, then the probability of opponent’s successful impersonation

attack is l{ ¢ Eglen C m} |
_ €r RleEr C M
P"fr’f‘e“ﬁ‘f{ [Er| }
b 1

“TEr| ¢ ma-Ratl-1

(2) Suppose that opponent get m; which is from the transmitter and send
my instead of m;, when s; contained in m; is different from sz contained
in mg, the opponent’s substitution attack can success. Because egp C
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er C my, thus the opponent select e’T C my , satisfying mo = s +e’T and
dim(sy [)s2) = k, then the probability of opponent’ substitution attack is

| {er € Erler Cm andeg Cm'} |

Ps = max m’&m €M
meM | {er € Erler C m} |

where k=73 4+ k; —1,P, = % is the largest.

(3) Let er be a transmitter’s encoding rules, s be a source state and
m; be a message corresponding to the source state s encoded by er. Then
the number of the receiver’s decoding rules contained in m; is ¢. Assume
that my is a distinct message corresponding to s, but my cannot be en-
coded by er. Then mj N ma contains 1 receiver’s decoding rules which
is incidence with er at most. Therefore the probability of transmitter’s
successful impersonation attack is

| {er € Erler ¢ mnNer} |

Pr= max meM. TZm
er€Er | {er € Erler C er} |
=1/(g+1)

(4) Let er be a receiver’s decoding rule, we have known that the number
of transmitter’s encoding rules containing eg is ¢*~4+! and a message has
gm2t*2=3 transmitter’s encoding rules containing eg. Hence the probability
of receiver’s successful impersonation attack is

max | {er € Er|ler C m and eg C et} |
meM

er€Eg | {er € Brler C er} |

= I/q(2v+l—-1‘3 ~k2—1)

(5) Assume that the receiver declares to receive a message mz instead
of my, when s; contained in m; is different from s, contained in ms, the
receiver’s substitution attack can be successful. Smce ep C er C my, the
receiver is superior to select eT, satisfying ep C eT C mq,thus mg = 32+eT
and dim(s; N s3) = k as large as possible. Therefore, the probability of
receiver’s successful substitution attack is

H,l&%! | {er € BErler Cm, m and eg C er}|
€

Pr, = max
B1 = cneEpmeM | {er € Erler C er C m} |

= q(k—3)/q(rg+ka—3)
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where k =713+ kz — 1, P, = % is the largest.
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