An operation based on complete graphs with
an application to the line graphs of trees

Abbas Heydari  * , Bijan Taeri * ¥
¢ Department of Mathematical Sciences, Isfahan University of Technology,
Isfahan 84156-83111, Iran

Abstract. Given a disjoint union of some complete graphs, one can define
a graph by choosing one vertex from each complete graph and making
all of these vertices adjacent. This observation leads us to define a new
operation on certain graphs. We compute characteristic polynomial of the
resulting graphs and indicate a method for computing determinant of this
matrix for obtaining characteristic polynomial of new graphs. We show that
line graphs of trees can be obtained by performing this operation on some
graphs and, as an application, we compute the characteristic polynomials
of line graphs of trees.
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1 Introduction

The interactions between algebra and combinatorics is a fruitful subject of
study, as shown by the increasing amount of literature on the subject that
has appeared in the last two decades. In particular, a considerable effort
has been devoted to the use of algebraic techniques in the study of graphs
as, for instance, the achievement of bounds for (some of) their parame-
ters, also in the study of metric parameters, such as the mean distance,
diameter, radius, topological index in terms of their adjacency or Lapla-
cian spectra [1, 2, 4, 5, 6]. In quantum chemistry, the skeletons of certain
non-saturated hydrocarbons are represented by graphs. The stability of
the molecule as well as other chemically important properties are closely
related to the graph spectrum. In particular, the calculation of the char-
acteristic polynomial of a molecular graph plays an important role in this
theory [7].
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Ka,

Figure 1: K(o,09,03,04); K* is the complete graph on V! =
{u1,U2,U3,U4}.

Many graphs can be obtained by combining two or more graphs. For
example join, composition and cartesian product are well-known operations
and several graphs can be obtained by these operations from simple graphs.
We define an operation on complete graphs as follows.

Denote by K,,, the complete graph on n vertices. Let oy, az,...,a, be
positive integers. We define a new graph K(a;,0s,...,a,) by replacing
the vertices of K, by graphs K,,, 1 <7 < n. More precisely, for 1 < i <n,
we choose an arbitrary vertex from K,,, and make all of these vertices
adjacent. Since K,,, 1 < i < n, is a complete graph the construction
of K := K(a,02,...,a,) is independent of the choice of vertices. More
formally for i = 1,2,...,n, let V; and E; be the set of vertices and edges
of Ka,, respectively. We may assume that V;NV; = @, for i # j. Let
V=UL,Viand E' =J__, E;. Foralli=1,2,...,n, choose an arbitrary
vertex u; from V; and put V! = {uj,ua,...,un}. Let E?2 = {u;u; |1 <
i# j < n}and K* = (V1,E?). The graph K(a;,02,...,a,) has the set
of vertices V = |J.,; V; and the set of edges E = E! U E? (see Figure 1).

In section 2 we obtain the characteristic polynomial of K (ay, e, .. ., ).
Then based on this operation we define a new operation on graphs and
compute the characteristic polynomials of resulting graphs. In section 3
we show that line graphs of trees can be obtained by performing this op-
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eration on some certain graphs and, as an application, we compute the
characteristic polynomials of line graphs of trees.

2 Main results

Let oy, @s,...,a, be positive integers. Throughout the paper we assume
that K := K(a1,a3,...,0,) and K* denote the complete graph (V!, E2).
We keep the above notations for later use. In this section we compute
the characteristic polynomial of K. The distance matrix of K can easily
obtained by definition. The distances of distinct vertices u € K,; and
v € K, of graph K is

1 ifi=g
du,v)={ 2 if i£jend[ueV?, vg¢Vor[ug V!, veVl
3 if itjandug Vi, vg VLl

Now let E,, , be an m xn matrix whose (1, 1) entry is 1 and other entries are
zero. If Ay, denote the adjacency matrix of complete graph Kq,, 1 <i < n,
then by suitable labelling for vertices of K (vertices of K, have consecutive
labels) the adjacency matrix of K is

Aax Eal.az E&h&a e Ea:.an

Eaz,ou Aa: Eaa,as e Ea2y°‘n

A= Eaa,m Eojas a3 T Eas,an
Ean 1= 31 Ean 2 Ean 141 Tt Aan

Let By, = Aqa, — zl,,, where z is an indeterminant variable and I, is the
identity o; X o; square matrix. Denote by |A} the determinant of the square
matrix A. Then the characteristic polynomial of K can be computed by
the following determinant:

Bcu Eﬂhaz Eax.aa et Eax 1Cn

Eaz,m Baz Eaz N Eaman

det(A —zI) = Easay  Eas,as Ba, o+ Eogon
Eamal Eamaz Ean.as e Ban

To compute the characteristic polynomial of K, first we prove the following
two lemmas. Throughout the paper A denote the matrix obtained by
deletion of the first row and column of the matrix A and A := [1] if A =

[01,1]-

277



Lemma 2.1 Let An,, Ap,,...,An, be n; X n; square matrices. If

An, Em n3 En; ms T En; Ma
Enz.m Ana nzm3 7 n2,n,
X = ng,ny Eﬂs,nz na e Eﬂs.ﬂ. s

En..rn Eﬂ,,ng En. N3 tre A"’O

then - - -
[Any| |Any] |Any| oo |An,]

|402| |4n2| IAnzl Tt |An2|

det(X) = |An3| |An3| IAnal ﬂsl

|An.| lAn.| |An.| Tt |An.|
Proof: We prove the lemma by induction on s. Suppose that the lemma
is true for all positive integers which are smaller than s. Let A;; denote the
cofactor of (3,7)th entry of A, A; denote the matrix obtained by deletion
jth column of A and A;; denote the matrix obtained by deletion ith row
and jth column of A. If A,, = [a;;] and m; =ny +ng + -+ + n; then by
the expanding det(X) with respect to the first row of X we have

n 8
det(X) = a1 Xy, + 3 Xy ooyt (1)
r=1 r=2
By definition of the matrix X and induction hypothesis, for 1 < r < n;,
we have
( :‘im)lr 0 0 0
(Enz,nx )r Aﬂz Eﬂz.ﬂa e Enzm.

X1, (- (Bnsimi)r Engny  Ang -+ Engn,

(E-'n,,n:)r En.,nz En.,ns An.

Anz E‘M ms Eﬂz.nc
Ena N2 Ana o Ens.n-
= (Anl )Ilr . . .
En. N2 En.,ns e An.
|4n2| [Anzl IA__ﬂzl e Iém'
= (4n,), |Ansl  |Ans| [Ang] - |Ans|
- n1/1lr . . - . .
Ifin,l I'A-'nal IAnc I et IA'"' '
= (An 1. F (2)
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where F' = [a4] is the square matrix of order s — 1 such that

- |4Rr+1l if r=t
= VAl i T

Now let 2 < i < s and Anl be the matrix obtained by deletion of the first
row of A,,. Then we have

/in, 0 0 ces 0 . 0
Eﬂz,nl Ann Eﬂz,na U 0 e Ene,ﬂa

_pym-atzy! _| : : - : Pl
(-1 L= | B Bpne Emms o (A1 0 Enym

E"'"ﬂ‘ E""n2 Eﬂt,ﬂs e 0 v Ana

Let I be the first column of A,, and J be the first row of (4,,)1. Then
(=1)™=1X] 1n,_,41 Can be written as

I ,im 0 e 0 0 .. 0
Enz.l 0 Aﬂ: Tt 0 Eﬁ.m+1 T Eﬂz,"-

Elsl O Elyni tte J El:"‘i-l-l T El,n,
0 . 0 . 0

E"t'-(-hl E":'+1.ﬂ2 e 0 Em+1,ni+1 e Em-n.n.

oo

. o
W

3

2

En..l 0 En..nz tre 0 En.,m+1 e An.
A, 0 e [1,0] 0 _ 0
0 An? Tt Enaini En2sn|'+l Tt Enz.n.

El,na e [El.l_’ J] El.m+1 tte El,na
0 [OaAn;] 0 0

Eﬂi+1,nz Ent-n,ni Eni+1.m+1 Enu-x,n.

= (et

0 Eﬂa-ﬂz T Eﬂnﬂi Eﬂ.,‘ni-n Tt Aﬂa
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Anz e Enzm.' Eﬂz ikl T E"’ s
En:nn: Ana tne Eﬂ:hﬂ(+1 U E"fh"‘l
N By J
- (_1)m 1 IAml En.-,na Ve [ 0 An ] Em,n.'+1 oo Em.n.
4
Em+1,n1 e Enit1,n Anis1 Tt En,-+1.m
Enppny - B, Enynetr oo An,

Therefore by induction hypothesis X; ,,,,_, ;1 is equal to

Anz fim v Aﬂz Aﬂz v Aﬂz
_ An;-; An;_l e Aﬂi-l A_‘ﬂi—l e 'A-'"i—l
-Mm“Anal _1 _1 _1 1 _1
Am+1 An-‘+1 tee Ane+1 Am+1 e A"-’+x
An, /in. An. A-ﬂ. e Aﬂa

Thus if H; = [Br;), 2 < i < s, is an square matrix of order s — 1 such that
|An,,,| i r+l=i
Bri=1{ |An.| if r+1#i and r=t
n.| i r+1#i and r#t,

then we have , _
Xl,m;_1+1 = —|Am||Hi|- (3)
Hence by (1), (2), and (3) we have

ni 8
IFI> " a1r(An i = |4n, | Y | Hil

r=1 =2

det(X)

s
= |AnIF| = 4n,| Y 1Hil

=2
'4711' |Am| |-‘§n1| Tt Iéﬂxl
|4ﬂ2| IAnzl lAnzl e 'Aﬂzl

= | 4] 1Ans] |Ans| -+ |4ny
|4n.] |An,| |An,| -+ |An,|

In the last equation the expansion of the determinant with respect to the
first row from left to right is considered. This completes the proof. w]
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In order to compute the determinant obtained in above Lemma we need
the following Lemma which is well-know (see for example [3]) but we state
our proof here.

Lemma 2.2 Let F, be the set of all permutations on the set X,, :=
{1,2,3,...,n} which have no fixed points. Then the difference between
the number of odd permutations and the number of even permutations in
F,is(-1)""Y(n-1), thatis|{c € F,, | 0 is even}|—|{oc € F, | 0 is odd}| =
(=1)*"(n~1).
Proof: We prove the Lemma by induction on . Suppose that the Lemma
is true for all positive integers which are smaller than n. Let d(n) := |{o €
F, | o is even}| — |{o € F, | 0 is odd}|. Suppose that = is even. If o € F,,,
then we can write o as a product of disjoint cycles, such that n belongs
to the last cycle. Now write each cycle in the decomposition of o as a
product of transpositions so that o = 7(m,n), where m€ X,,_; and 7 is a
permutation on X,_;. We distinguish two cases:

(a) 7 moves m and belongs to Fy,_;.

(b) T does not move m and moves all elements of X,—; — {m}.
By induction hypothesis, d(n — 1) = (=1)"~2(n — 2) = 2 — n. Thus the
difference between the number of even permutations of the form (a) and
the number of odd permutations of the form (a) in F, is n — 2, that is if
Tm = {0 € F, | 0 = 7(m,n) and 7 satisfies (a), then

[{e € Tm|ciseven }| = |{oc € Tn | 0 is odd}| =n — 2.
Now put T' = {o € F,, | ¢ = 7(m,n) and 7 satisfies (a)}. Then
{c €T |oiseven }|—[{c €T |0oisodd}| = (n—-1)(n-2).

By induction hypothesis d(n — 2) = (=1)"3(n — 3) = n — 3. Thus the
difference between the number of even permutations of the form (b) and
the number of odd permutations of the form (b) in F,, is 3 — n, that is if
Ry, = {0 € F, | 0 = 7(m,n) and 7 satisfies (b), then

|[{c € Rm|oiseven }|— |{c € Ry | 0o isodd}| =n - 2.
Now put R = {¢ € F,, | 0 = 7(m,n) and 7 satisfies (b)}. Then
[{c €R|oiseven }| - |{c € R|oisodd}| = (n-1)(n—2).

Therefore d(n) = (n—1)(n—2)+(n—1)(3—n)) = n—1 and the proof
is complete, when n is even. If n is odd the argument is similar. O

In following lemma we expand the determinant founded in Lemma 2.1
using permutations in S,,. In fact in lemma below we find the determinant
of an square matrix whose non-diagonal entries on each row are equal.
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Lemma 2.3 Let 7y, v{, i = 1,2,...,n be 2n arbitrary numbers. For
any 2 < k < n we have N1, N,, Ns,..., N, subsets with k elements of

{1,2,3,...,n}, where p = (}). Define elements a:g';), :z:g;), s z® 1<

nj?
j < p as follows
2 { if <¢ N;
T

Zij i if i€ Nj.
If r ’ ! /
O TS T
Th To Th - Th
X=1 . . . )
Th Th Th t Ta
then
n () k) _(k k
det(X) = mrorg .- + Z Z (-1)* (k- (j)zgj) (J)
k=2 j=1

Proof: By definition of the determinant of square matrices, we have

det(X) = Y sgn(0)X101)X2,0(2) *** Xno(n)s
o€Sn

where sgn(o) is the sign of the permutation o, which is 1 if o is even and —1
if o is odd, and X ; is the (%, j)th entry of the matrix X. If S,[i] denotes
the members of S,, which move i elements of {1,2,3,...,n}, then we can
write

n
det(X) = X1,1 X2, n,n+z Z sgn(0)X1,0(1)X2,02) * * * Xn,0(n)-
k=2 oS, k]

By definition of X, for 1 < i < n, we have

r if o(i) #i
Xi.a(i)={ i) #

r; if o) =1.
Now let S* be the set of restrictions of permutations o in Sy, [k] to the set
of points moved by o, that is S* = {o|n : o € Sp[k], N = {i:0(3) #i}}.
Thus if o € Syu[k] and N = {i : o(¢) # i}, then X, ,(;y =7}, for i € N and
Xiog) =i for i ¢ N. Using the notation of Lemma 2.2 for S*, we have
d(k) = (-1)*=(k - 1). Thus

Y 580(0) X101 X2,002) " Xnom) = (—1)* (k- I)Z”’(k) 5 Tag-
aeSnlk] =1
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Therefore

n (k)
det(X) = ryrorg -+ -7y + Z Z( —1)k=1(k — l)zg’;) «9;) s";)
=2 j=1

So the lemma is proved. O

Now suppose K, is a complete graph of order n and P(K,) denote the
characteristic polynomial of Ky, so P(K,) = —(z — (r — 1))(z + 1)1,
Therefore the characteristic polynomial of K can be computed by using
Lemmas 2.1 and 2.2.

Theorem 2.3 Let aj,os,...,a, be positive integers and let P;, 1 <
i < n, be the characteristic polynomial of K,,. For any 2 < k < n we
have Ny, Na, Na, ..., N, subsets with k elements of {1,2,3,...,n}, where

p=(}). Define Qﬁ'}’, Q&'}’, vo e Qf,’;), 1< j < p as follows

o = F; if i¢N;
L P, if iENj.

Then the characteristic polynomial of K = K(a,a2,...,as) is given by

n ()
PiP,Ps--- P, +ZZ( ~1)F Lk - 1)QMQP ... QY.

k=2 j=1

Proof: Suppose for 1 < i < n, A; denote adjacency matrix of complete
graph K,, and B; = A; — zl, ». If P; = det(B;) denote the characteristic
polynomial of K,,, then by Lemmas 2.1 and 2.3 we have

B, Ea: N Eax ag T Eax.an
Eaz.ax B, Eaz,as tr Eaz,an
P(G) = Eqy N3 Eaaﬂa Bs tte Eﬁaynn
Ea,,, say Ea,.,ag Ea...aa tee Bn
Pa; Pal—l Pa;—l tot -Pa;—l
Paz—l Paz Paa—l te Pag—l
-— Pas—l Paa—l Pas tte Pag—l
Po:,.-l Pa,.-l Pan-l Pa,.
= (k) k k
= PPPs--Poty > (-1 '(k-1)QF Q5 - 9F).
k=2 j=1

283



Therefore the Theorem is proved. u|

Let us denote K(o;,as,...,a5) by K(B), where 8 = (a1,as,...,a,).
Let ﬁl = (allsal2) (XX aalm): ,62 = (02110221 .. 'aQan)a ey 681 =
(a,ll,aslg,...,a,m"), where ;j, i =1,2,...,8,j=1,2,...,n; are pos-
itive integers. Suppose that for all 7 = 1,2,..., s, there is a 7 such that
a;; = 1, that is K(8;)*, which is a complete graph of order n;, has a vertex
of degree n; — 1. We define a new graph G* = K (81, B2, .., 0s,) as follows.
Choose any vertex u;, ¢ = 1,2,...,8;, of K(8;)* of degree n; — 1. The
graph G is obtained by adding the edges u;u;, where 1 < 4,5 < s; to
the union of K(8,), ..., K(Bs,). We denote by (G)* the complete graph
of order s; on the vertices {uj,us,...,us,}. We write G = K(v), where
Y= (ﬂl:ﬂ%' ")ﬁal)-

Now suppose we have vectors G;1, Bi2, . .., Bi,m; of above type, 1 <i <
s2. Put v = (B, Bi2y - -+, Bi,m )y 1 < i < 8. We have defined the graphs
G} = K(7;). Suppose that K(v;)* has a vertex of degree m; — 1 for all i =
1,2,...,82. We can define G = K(71,72,---,7s,) as follows. Choose any
vertex v, 1 = 1,2, ..., 89, from K(+;)* which have degree m; —1. Then add
the edges v;v;, where 1 <4,j < s to the union of K(71),...,K(7s,). We
can continue this process (under certain conditions as above) to construct
a graph G, for any positive integer k. (see Figure 1, with K,, replaced by
G}, the resulting graph is G2.)

Suppose we have used vectors é;,82,...,0d,, for constructing the graph
G*. By suitable labelling we can determine the adjacency matrix of the
graph G*. For this purpose in labelling the vertices of the graph the vertices
of K(4;) must have consecutive labels. If A,, is the adjacency matrix of
graph K (J;), then the adjacency matrix of G* is given by

A'll Eﬂl,ﬂz Eﬂl.ns e Eﬂ: Mg

En’ L0} An2 En? n3 tre Eﬂ? s

Eﬂs.m Ens,nz Ana Tt Eﬂam.k

Enak (L3 Enak n2 'Enuk ;ng T Anoh

Therefore characteristic polynomial of the graph G* can be obtained by
theorem 2.3. If By, = An, —zI and By, is the (1, 1) cofactor of By, then
characteristic polynomial of G* is

I‘?nl | IBﬂxl '?ﬂn I e IBnll

|Bnz|  |Bna|  |Basl | B,
P(G*) = | |Bnsl  |Bns|  |Bns | Bna|
|Bn.k I IBnak I |Bn’0k l an’k |
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Now suppose that &; = (81, 0:2,- .., 0ise_,), ¢ = 1,2,..., 8x. Let Dn, be the
adjacency matrix of Gf'l = K(8ir), 7 =1,2,...,8-1. f Cp,, = Dy, —zl,
then

Cra Enyi i e Enu;ﬂi.k_‘
En 2,741 Cn i2 ot Enez Tiay_
le! = o .‘ ,. et
En{ak_l 31 Enl"k_l ni2 Cﬂg,k_l
|qﬂi1| |éﬂix I |C:'"-i1| Tt ](_j'nu |
Iqﬂ-izl |gﬂt2| |sz| tet !qﬂ&zl
= Icnisl |an| ICnesl e ICniSI
|énhk_1 I |C—'ﬂi.k_l | Iéni‘k_l I tet |Cnisk_‘ |
By definition of B, we have
éﬂu En.-;—l,nm e Eﬂu—laﬂu,,_l
= Eﬂ': ni—1 Cﬂ{? T En'z Nisy
|Bn‘l - 12,7441 1227448
Enuk_, nir=-1 En-‘ak_l.mz Cnisk_,
= — g p— m—
|c_'n,-1 | Ic‘nnl anill Tt |an |
anizl |C_'m2| tCﬂizl Tt |C_'mz|
= lCn.‘sl |Cﬂisl 'Cmal e lCn(sl
Ién('nk_! I Ié"iak_l I Ic—'niok_l l Ut |C'n|'nk_l |

Similarly to compute |C;| , |C;| and |Cy,, | in above determinants we can
consider the components of Gf"l = K (;;) which are graphs of type G¥~2.
By performing this process & times we obtain determinants whose entries
are characteristic polynomials of complete graphs (components of graphs
of type G!). Therefore we can compute the characteristic polynomial of
G* using Lemma 2.3.

3 Line graphs
In this section we introduce an application of operation on graphs men-

tioned above. For this purpose we show that line graph of a tree can be
written as K(8,0e,...,0s), for some suitable vectors 8, Ba,...,8,. Let
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Figure 2: A subtree Gy of a tree G, whose distances between its root and
pendant vertices are equal to 2 (note that v is not a vertex of Gy).

V(G) and E(G) denote the set of vertices and edges of a graph G, respec-
tively. Recall that the line graph of G, which is denote by L(G), is a graph
such that V(L(G)) is the set of edges of G and two vertices of L(G) are
adjacent if and only if corresponding edges in the graph G have a common
vertex. Note that the line graph of an star graph is a complete graph.

Now we use induction on the number of vertices of a tree G to show that
G = K(f, B2, ...,Bs), for some vectors 81,02, ...,0s. Let uy,uz,...,u, be
all vertices which are adjacent to a same vertex u and all of their adjacent
vertices are leaves. (see Figure 2). Thus u;, ¢ = 1,2,...,r, are adjacent
to pendant vertices of G. Let G be the subtree whose edges are all edges
which are adjacent to v and w;, i = 1,2,...,7. Put d; = degg,(ui), i =
1,2,...,r. For each 0 < i < r the subtree whose edges are all edges
which are adjacent to u; is star graph, and the line graph of this subtree
is K(d;). Then clearly L(Go) = K(B), where 8 = (1,dy,...,d,). Now
let G; be the subtree of G obtained by deletion of Gy from G. Then by
induction hypothesis L(G;) = K(6i,...,0:), for some vectors fi,..., 5.
Let z,y be vertices of L(Gyg) and L(G;) corresponding to the edges uug and
uov in Go and G, respectively. By adding edge zy as a bridge between
L(Go) and L(G,), the line graph G is constructed as L(G) = (B, 8), where
0= (b1,...,05:) and the result follows.

Example 3.1 Let G be a tree with edges {1,2,3,...,10} as shown in
Figure 3. The line graph of G is given by L(G) = K((1,1,2),(1,1,1,3)).
The subgraph G, of L(G) induced by the vertices {1,2, 3,4} is K(1,1,2).
In fact we have a complete graph on two vertices {3,4} and two complete
graphs on a single vertex {1}, {2}, respectively. Then joining the vertices
3, 1, and 2 we obtain G; = K(1,1,2). The subgraph G of L(G) induced
by the vertices {5,6,7,8,9,10} is K(1,1,1,3). In fact we have a complete
graph on three vertices {8,9,10} and complete graphs on a single vertex
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Figure 3: G is a tree with line graph L(G)

{5}, {6}, {7}, respectively. Then joining the vertices 5, 6, 7 and 8 we obtain
G2 = K(1,1,1,3). Now joining vertices 1 and 2 in G} U G2 we obtain the
graph L(G) = K((1,1,2),(1,1,1,3)).

By Theorem 2.3 we can compute P(L(G)), the characteristic polynomial
of L(G). First we compute the characteristic polynomial of G; = K(1,1,2)
and G = K(1,1,1,3). We have P3 = P(K3) = —(z + 1)%(z - 2), P, =
P(K3) =2% -1, P, = P(K,) = —z and Py = P(Kp) = 1. Thus

P(L(G1))= (PP P;) — (PoPoP2 + PR PL + RyPAPy) + 2(Po P y)

=(~2)(—z)(2® - 1) = ((z* = 1) + 2(~2(~2)) + 2(~2)
=zt —42? -2z +1

P(L(Gy)) = (PP,) — (BoPy) = —z(z% = 1) — (—z) =2° + 22

P(L(Gg)) = (P1P1P1P3) - (P0P0P1P3 + Py P, PyP3; + PP P\ P, +
Py\PyPyP3 + P,PyP\Py + PP, Py P5) +
2(P0P0P0P3 + PyPyPyPs + PyPL Py Py + Po P Py Pg) -
3(PyPoPoPs)
=(—z)(—z)(—z)(-23 + 32+ 2) — 3(~z)(~z® + 3z + 2)) +
3(—z)(-z)(z® - 1)) + 2((-z* + 3z +2) +
3(—z(z? - 1))) - 3(z* - 1)
=2% -9z —10z% + 922 + 18z + 7
P(L(G1)) = (P,P\Ps) — (PoPoPs + PLPoP; + PyPyPy) + 2(PoPoPy)
= (—z)(~z)(=2® + 3z +2) -
(2% + 3z + 2) + 2(—z(z? — 1)) + 2(z% — 1)
=—x° + 623 + 422 - 5z — 4
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Therefore characteristic polynomial of L(G) is computed as:

P(L(G))=P(G1)P(G2) — P(G1)P(G,)
=210 — 1428 — 1227 + 542°% + 802°% — 352¢ — 1122% — 4522 + 122 + 7
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