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Abstract

Let G be a graph of order n, and let a and b be integers such that
1< a < b, and let g(z) and f(z) be two nonnegative integer-valued
functions defined on V(G) such that e < g(z) < f(z) < b for each
z € V(G). Then G has a (g, f)-factor if the minimum degree 6(G) >
(6—1)2-(a+1)(b-o—2) n> Sa_ﬂ)é:__rb;z and max{da(a:) de(v)} 2 &b?—ﬂ.':
for any two nonadJacent vertices T and y in G. Furthermore, it is
showed that the result in this paper is best possible in some sense.
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1 Introduction

The graphs considered in this paper will be finite and undirected simple
graphs. Let G be a graph. We denote by V(G) and E(G) the set of
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vertices and the set of edges, respectively. For any z € V(G), we denote
by dg(z) the degree of z in G and by Ng(z) the set of vertices adjacent
to  in G. We write Ng|z] for Ng(z) U {z}. For S C V(G), we define
Ng(8) = UzesNg(z), and G[S] is the subgraph of G induced by S. The
minimum degree of vertices in G is denoted by §(G). Let S and T be disjoint
subsets of V(G). We denote by eg(S, T') the number of edges joining S and
T. For a subset S C V(G), We denote by G — S the subgraph obtained
from G by deleting the vertices in S together with the edges incident to the
vertices in S.

Let g(z) and f(z) be two nonnegative integer-valued functions defined
on V(G) such that g(z) < f(z) for each z € V(G). A (g, f)-factor of graph
G is a spanning subgraph F of G such that g(z) < dr(z) < f(z) for each
z € V(G) (Where of course dr denotes the degree in F). If g(z) = a and
f(x) = b for each x € V(G), then a (g, f)-factor of G is called an [a, b)-
factor of G. If g(z) = f(z) = k for each z € V(G), then a (g, f)-factor of G
is called a k-factor of G. The other terminologies and notations not given
in this paper can be found in [1].

Many authors have investigated (g, f)-factors [2-5], factorizations [6].
The following results on k-factors and [a, b]-factors are known.

Theorem 1 "] Let k be a positive integer, and G be a graph of order n
with n > 4k — 5, kn even, and §(G) 2 k. Then G has a k-factor if the
degree sum of each pair of nonadjacent vertices is at least n.

Theorem 2 [¥] Let k > 3 be an integer and G be a connected graph of order
n with n > 4k — 3, kn even, and 6(G) 2 k. If for each pair of nonadjacent
vertices z,y of V(G)

mex{de(z), do(v)} 2 5,
then G has a k-factor.

Theorem 3 [9 Let G be a graph of order n, and let a and b be integers such
that 1 < a < b. Then G has an [a,b]-factor if §(G) > a, n > 2a + b+ 2252
and
an

>

max{dg(x),dc(y)} = a+b

for any two nonadjacent vertices x and y in G.

Theorem 4 19 Let aand b be integers such that 1 < a < b, and let G be
a graph of order n with n > &(ﬂ'zl(fj_b:_ll’ and 6(G) 2 a. If

an
INe(2) U No(w)| 2 2
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for any two nonadjacent vertices z and y of G, then G has an [a, b]-factor.

Theorem 5 111 Let aand b be integers such that 2 < a < b, and let G be a
graph of order n withn > 6a+b. Put A = “T‘l. For any subset X C V(G),
we suppose

Ne(X)=V(©)  if IXI2 I3 );
ING(X)| > L+ IX] if 1X] < |

Then G has an [a, b]-factor.

or
1+/\J

Theorem 6 (12l Let 1 < a < b be integers and G a graph of order n >

2("'1)("";1()6(1"1")6)("“'1) - L_i.(@_y_l“*'b “'f""'l . Suppose that §(G) = a and

+b

for any two nonadjacent vertices z and y of V(G) such that Ng(z) N
Ne(y) # @. Then G has an [a, b]-factor.

Theorem 7 (12 Let 1 < a < b be integers and G a graph of order n >

(°'1)(“+2,(,‘1";;’)(“+b"1) - (°+2((z':’iz)’_1). Suppose that §(G) > a and

max{d(z), do@)} > 1

for any vertices x and y of G with d(z,y) = 2. Then G has an [a, b]-factor.

2 The Proof of Main Theorem

In this paper, we mainly prove the following theorem about the existence
of a (g, f)-factor, which is an extension of Theorem 1 and Theorem 2 and
Theorem 3. We extend Theorem 1 and Theorem 2 and Theorem 3 to
(g, f)-factors.

Theorem 8 Let G be a graph of order n, and let a and b be integers with
1 <a<b, and let g(z) and f(z) be two nonnegative integer-valued func-
tions defined on V(G) such that a < g(:c) < f(z) < b for each x € V(G).

Then G has a (g, f)-factor if §(G) > S=W=(eth-a=2) ,, , (a+b)(atb1)

and 1
max{dg(z),de(y)} > (a;_|_22

for any two nonadjacent vertices z and y in G.
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In order to prove our main theorem, we depend heavily on the following
theorem, which is a special case of Lovdsz's (g, f )-factor theorem.

Theorem 9 (1%l Let G be a graph, and let g(x) and f(z) be two nonnegative
integer-valued functions defined on V(G) such that g(z) < f(z) for each
z € V(G). Then G has a (g, f)-factor if and only if

6c(S,T) = £(S) + de-s(T) — 9(T) 20
for all disjoint subsets S and T of V(G).

The Proof of Theorem 8. Suppose that G satisfies the conditions
of Theorem 8, but has no (g, f)-factor. Then, by Theorem 9, there exist
disjoint subsets S and T of V(G) such that

6c(8,T) = £(5) + de-s(T) — g(T) < —1. (1)
We choose subsets S and T such that |T'| is minimum.
We first prove the following claims.

Claim 1. dg-gs(z) <g(zr) <b—1foreach z € T.

Proof. Suppose that there exists a vertex z € T such that dg_g(z) 2
g(z). Then the subsets S and T — {z} satisfy (1), which contradicts the
choice of T. Therefore,

dg-s(z) <g(z) <b-1 (2)

for each z € T
Claim 2. |T|>a+2.
Proof. If |T| < a+ 1, then by (1) and since |S| + dg-s(z) > de(z) >
5(G) > E=L=(el®=0=2) > _ ) for each z € T we obtain
8c(S,T) = f(S) +da-s(T) — 9(T)
(e +1)|S| +dg-s(T) = (b - 1)|T|
|IT(|S| + dg-s(T) - (b - 1)|T)|
(18| +dg-s(z) - (b~ 1)) 2 0,

z€T

which is a contradiction. So |T'| > a + 2.

Since T # @, let hy = min{dg_s(z)|z € T}, and let z; € T be a vertex
such that dg_g(z1) = h;. According to (2), we get

-1

vV v v

0<h <b-2
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In the following, We shall consider two cases and derive a contradiction in
each case.
Casel. T = NT[ml}.

In view of Claim 2 and |T| = |Np[z]| £ de—s(z1)+1=h1+1< b1,
we have
hy>a+1 3)

and
b>a+3. 4)

According to (1), (3), (4), [T| £ b-1, |S| + hy = |S| + dg-s(z1) =
de(z1) 2 6(G) 2 (b'l)z_%ﬂ)(b'“—z) , and the definition of h;, we obtain

6c(S,T) = f(S) +dg-s(T) — 9(T)
(a+1)|S| +de-s(T) — (b—1)|T|
(a+1)|S| + ha|T| ~ (b - 1)IT|
(@a+1)|S] = (b—h1 =1)[T)

—1)2 — —_a —
(a+ 1)((5 1) (Z-T_ i)(b a—2)

—h1) = (b—hy —1)(b—1)

> (b—a=2hi—(a+1)(b—a—2)>0.

-1

v iv v

v

This is a contradiction.
Case 2. T 75 NT[ZBl].
It is clear that T\ N7[z;] # &. Then we define
he = min{dg_s(z)|z € T\ Nr[z1]},
and let z; € T\ Np[z;] be a vertex such that dg_s(z2) = he. Note that
OS hl Shz Sb—z hold

Obviously, two vertex z; and zo are not adjacent. In view of the con-
dition of the theorem, we get that

(b—1)n
2 —r
max{dg(z1),do(22)} 2 = (5)
Claim 3. |S|+hy > &40,

Proof. If |S|+hy < &2}, then we get |S] + hy < |S|+ hy < S5,
and this implies dg(z;) < 5'%'_123 and dg(z2) < "a— +1 %, This contradicts
(5).
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By Claim 3, we obtain
1)n

(b-
> —
812 =5

— ha.

Case 2.1. hy=0.

(6)

Clearly, hy = 0. According to (1), (6), and |S| + |T} < n, we get that

-1 6c(5,T) = £(S) + de-s(T) — g(T)
(a+1)[8] + dg-s(T) — (b—1)[T}
(a+1)|S] - (- D)IT|

(a+1)[S| = (6 —1)(n —1|S])
(a+bd)|S|=(b—-1)n

(a+b)%—2—n—(b—1)n=o,

hvIvVIVIV

v

which is a contradiction.

-1

Case 2.2. 1<hy<b-2.
By (1), (6), and |S| + |T| < n, and |Np[z;]| < k1 + 1, we obtain

2 0e(S,T) = f(S) +dg-s(T) - g(T)

2 (a+1)|S]+de-s(T) - (b—1)|T|

2 (a+1)|S| + h1|Npfzi]| + ho(|T| = [N7[z1]]) — (b - 1)|T|

= (a+1)|S|+ (h1 — ha)|Nr[z1]| — (b — ha — 1)|T|

> (a+1)|S]+ (k1 = h2)|N7[z1}| — (b= k2 — 1)(n — |S])

= (a+b-h2)|.S’| +(h1 —hz)INT[:Bl”—- (b—-hg—l)n

> (@tb=ha) (G — )+ (= ) 1) = (b= Py =

Let F(h1, ko) = (a+b—ha) (Lo —ho)+(hy —ho)(hy +1) — (b—ho —1)n.
Then we have

—13> F(ha, o).
If2< hy <b—2, we have
Fiy(hihe) = 2ha =200 (i)~ (b +1) 41

1
— okt %)ﬁ (@+b) = (b +1)
o . (a+b)(a+b—1)
> 2hg—hy; -2 (Since n > o
> hy—hy 20
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Since h; < hy, then we have
F(hy, ko) 2 F(hy, hy). (8)

In view of (7) and (8), we obtain

21 > F(hl,h1)=(a+b—h1)((ba—1)n—hl)—(b—hl—l)n

Fb
Rt LR

> h% —h; 20, (Since hy > 0 is an integer)

v

that is a contradiction.
If hy = hg =1, then we get

l)n

bk = (a+5-1)(C= 1)~ 6-2)n

= (“—+M—(a+b)+1

a+b
(a+b)(a+b—1))
a+1

> 0, (Since n >

which contradicts (7).
If hy =0, hy = 1, then we have

Fwhy) = @ro-nEE -

> -1, (Since n >

1)-1-(b-2)n

(a+b)(a+b—1)
a+1

)

which contradicts (7).

From the argument above, we deduce the contradictions. Hence, G has
a (g, f)-factor.
Completing the proof of Theorem 8.

Remark 1. Let us show that the condition max{dg(z),dc(y)} >
ﬁﬂlﬂ in Theorem 8 can not be replaced by max{dg(z),dc(y)} = b’l L
1. Assumeb = a + 1, and define g(z) = e and f(z) = b for each:z: €

V(G). Let G = (4, B) be a complete bipartite graph such that |A| = at
and |B| = bt + 1, where t is any positive integer. Then it follows that

n=|A|+|B}=(a+b)t+1 and
(b-1)n
Ta+b

(b-1)n

a+b -1

> max{d¢(z),de(y)} =at = (b - 1)t > ———
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for any subset {z, y} of B. However, G has no [a, b]-factor since bj4| < a|B]|,
i.e., G hasno (g, f)-factor. In this sense, the condition max{dg(z),dc(y)} =

ﬁb—;—fgﬂ is the best possible.

Remark 2. As b > a+ 1, I guess the condition max{dg(z),de(y)} >
Q;lem in Theorem 8 can be improved. Furthermore, the problem is worth
investigating.
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