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Abstract

Let 7 be a finite projective plane of order n. Consider the substructure
7n+2 Obtained from 7 by removing n + 2 lines (including all points on
them) no three are concurrent. In this paper, firstly, it is shown that
7n+2 is 8 B— L plane and it is also homogeneous. Let PG(3,n) be a finite
projective 3—space of order n. The substructure obtained from PG(3,n)
by removing a tetrahedron that is four planes of PG(3,n) no three of them
are collinear is a finite hyperbolic 3—space (Olgun-Ozgir [10]). Finally, we
prove that any two hyperbolic planes with same parameters are isomorphic
in this hyperbolic 3—space. These results are appeared in the second
author’s Msc thesis.
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1 Preliminary Definitions and Propositions

An incidence structure is an ordered triple of sets (P, L, o), where PN L = §,
oCPxL For XinPandlin L, Xolisread "X is on I".

Definition 1.1 (Bumcrot [5]) A lnear space is an incidence structure
(P, L, o) satisfying azioms below:

L1) Each two distinct points are on ezactly one line.
L2) Each line is on at least two points.

If S = (P, L,o) is a linear space, we define, as usual,
v=|P|, b=|L]|
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where || denotes cardinality. For each point X and line I of S, let

r(X) [{teL:Xol}
k() HX€eP:Xol}|

If v is finite then we say S is finite. For finite S we define,

km = min{k(l):le€ L}
kv = max{k(!):le L}
T = min{r(X):X € P}
ry = max{r(X): X € P}

S is regular and is said to have order (k,r) if km =kyy =k and r,, =rpr =r.

Definition 1.2 (Batten [2]) A projective plane is a linear space satisfying az-
ioms below:

P1) Any two lines meet.
P2) There exists a set of four points no three of which are collinear.

Definition 1.3 (Hughes-Piper [8]) Let (P,L,0) and (P',L’,0") be a.ny two
incidence structures. f is colled a homomorphism from (P, L, o) to (P',L',0)
if

f:PuUL-P UL

satisfies properties below:

i) fP)CP

i) fL)cr

iii) VXeP, leLand Xol= f(X)o f(l)
If fis a bz_yectzon, then the homomorphism f is called isomorphism. (P,L,0)
and (P L o ) are called isomorphic if there is an isomorphsim from (P, L,o)
to (P',L o) and denoted by

(P,L,o)=(P,L,o)

Here if we take (P, L,0) instead of (P',L', o'), then f is called a collineation
or an automorphism of (P,L,o).

Theorem 1.1 (Hughes-Piper [8]) Let 7 be a Desarguesian projective plane.
Then a group of collineations of 7 is transitive on quadruples of points no three
of them are collinear.

A three dimensional projective space is called a projective 3—space. It is
well known that any plane of a projective 3-space is a Desarguesian projective
plane.

Definition 1.4 (Graves [6]) Let H = (P,L,0) be a linear space. Then H is
a hyperbolic plane (B — L plane) if it satisfies azioms below:
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H1) Through each point X not on a line b there pass at least two lines not
meeting b.

H?2) There exists a set of four points no three of which are collinear.

H3) If a subset of & contains three points not on a line and contains all the
lines through any pair of its points, then that subset contains all the points of
.

Theorem 1.2 (Bumcrot [5]) Any finite linear space satisfying:

"') ™m 2 kp +2

is a hyperbolic plane.

Definition 1.5 Let H be any hyperbolic plane. Then H is called homogeneous
in the sense of Graves [6] if for each pair of points there is a collineation carrying
the first in to the second.

Definition 1.6 (Bose [4]) A partial geometry (v, k, t) as a system of undefined
points and lines and undefined relation "incidence"” satisfying azioms Al through
A4 below:

A1) Any two points are incident with no more than one line.

A2) Each point is incident with v lines.

A3) Each line is incident with k points.

A4) If a point P is not incident with the line l, there pass through P ezactly
t lines (t > 1) intersecting l.

Now suppose that there exists a projective plane of order n = 2k which
posseses an oval consisting of 2h + 2. One can classify the lines of such a
plane into two categories. The first category consists of lines, henceforth called
secants, including two points of the oval. The second category consists of lines,
henceforth called nonintersectors, not including any points of the oval. If we
remove the points of the oval from the lines of the first category then each of
the two categories of lines separately forms a partial geometry. Each of these
partial geometries include all the points of the orginal projective plane except
of the points of the oval.

Any Desarguesian plane of order n = 2™, m a positive integer, has a hyper-
oval or a dual hyperoval (Seiden [16)).

Any B — L plane obtained by Seiden in [16] is called a partial B — L plane.

Proposition 1.3 (Seiden [16]) The dual of the partial geometry formed by
the nonintersectors of a hyperoval in a projective plane of even order 2h, h > 3,
is a partial B — L plane.

Proposition 1.4 (Seiden {16]) The partial B — L planes obtained from De-
sarguesian planes are homogeneous in the sense of Graves [6], provided that the
oval used for their construction consists of a conic and its center, i.e. the point
of intersection of the tangents to the conic.
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R. C. Bose showed in (3] that, if the 2™ + 1 points of a nondegenerate conic
are represented by the equation

ax? + by +c2® + fyz+ grz+ hzy =0

then the (2™ + 2) —nd point of the oval, the center of the conic, can be rep-
resented by the coordinates (f, g, k). We note that three points of the conic
together with its center determine the conic uniquely.

Also, an important property of Desarguesian planes to be used here is that
their collineations are transitive on quadrilaterals and therefore on quadrangles.

2 Main Results
2.1 A Model of A Finite Homogeneous Hyperbolic Plane

Let m be projective plane of order n and M be lines set including lines of 7 no
three are concurrent, |[M| = m. Consider the structure 7, obtained from 7 by
removing lines of M (including all points on them). It is known that =, is a
hyperbolic plane under certain conditions (Bumecrot [5]). In proposition 2.1, the
following question of Bumcrot is answered:

" Is there a finite projective plane 7 and a set of lines M with |M| = m such
that m,, is a regular hyperbolic plane? "

Proposition 2.1 Let 7 be a finite projective plane of even order n > 8. mp4a
obtained from w by removing n+ 2 lines (including all points on them) such that
no three are concurent, i.e. a dual hyperoval, is an (3,n+1)—regular hyperbolic
plane.

Proof. It is clear that 7,2 is a linear space. First, we will show that 7,2 is
an (3,n + 1)—regular plane. There are n + 1 lines passing through each point
of Ty42, which means that .42 is point regular. On the other hand, since each
line of 7,42 is also a line of 7, each line of 7,42 intersects with each line of dual
hyperoval at 22 distinct points. Thus mn42 is

n+l-(22) = %
line regular. Now, we will show that 7,2 is a hyperbolic plane. We have
Ic,n=kM=§ ve rm=ry=n+1
and n > 8. Therefore, we obtain
nt12242 ve Z(Z-1)2n+1
Then 7,42 is a hyperbolic plane by Theorem 1.2. =

Proposition 2.2 The m ;2 obtained from a Desarguesian plane is homoge-
neous in the sense of Graves [6], provided that the dual hyperoval used for their
construction consists of a dual conic and its azis.
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Proof. Consider the Seiden partial B — L plane. Note that transitivity on this
plane is seen on lines, not on points. Although, it is known that a linear space
which is line transitive is also point transitive (Batten [2]). Our aim is to show
that the homogenity of m,+2 by using the homogeneity of Seiden partial B — L
plane. Remember that, any Desarguesian projective plane of order n = 2™, m
a positive integer, has a hyperoval or a dual hyperoval. If the 2™ 4+ 1 lines of a
nondegenerate dual conic are represented by the equation

az? +by? +c? + fyz+gxz+ hay =0

then the 2™ 4- 2—nd line of the dual hyperoval, the axis of the dual conic, can be
represented by the coordinates [f, g, k). Thus, it is observed that any such dual
conic is uniquely determined by its three lines and the axis. It is clear that any
collineation of 7.2 is a collineation of = which leaves the dual conic invariant.
The collineation can also be characterised as a collineation mapping the first
into the second of each pair of quadrilaterals which consist of any three lines of
the conic and the axis.

Let z, y be any lines of 7,42. If we obtain a collineation of mn42 such
that it carries = to y, then the proof is finished. To find such a collineation we
start with axis of the dual conic denoted by a. Any line of the projective plane
intersects with the axis a. Consider points P = za ve P’ = ya. A line of mp42
is also a line of w. On the other hand, any line of 7,42 is concurrent with any
two lines of dual hyperoval. Thus, there exist other lines belonging to the dual
conic, which pass through P and P’ denote by I3 and lg respectively. Let [y, lo,
la, ls be any lines of the dual conic. There exist the points @ and Q' on z and
y, respectively, such that the lines I, ls, = are concurrent at @ and the lines
Ly, lo, y are concurrent at Q. The collination mapping the quadrilateral formed
by lines I3, l4, a and ls to that formed by 3, l2, a and lg carries the line = to
the line y. Since z and y are arbitrary, the collineations are transitive on lines.
It is also known that line transitivity implies point transitivity, thus, 7,2 is
homogeneous and the proof is completed.
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2.2 A Model of A Finite Hyperbolic 3—Space

Proposition 2.3 (Olgun-Ozgiir [10]) S = PG(3,n) = (P, L, o) be a finite
projective 3-space of order n, D is any set of some projective planes of S, satis-

Jying:

C. The intersection of D and any projective plane in S does not belong to
D contains non-concurrent three lines. Let P) and L; be points set and lines
set belong to planes of D respectively. Then

Sp=(P\ P, L\L;, oN(P\ P) x(L\ L))

is a finite hyperbolic 3—spaces if
45d5n+%(1—\/4n+5)

with |D| = d.

Proposition 2.4 Any two hyperbolic planes of Sp in the meaning of Proposi-
tion 4.1 with the same parameters are isomorphic if and only if there ezists an
isomorphism from one to the other mapping the removed substructure of one to
the removed substructure of the other.

Proof. The proof is similar to the Lemma 3.11 in HUGHES-PIPER [8]. m

Proposition 2.5 Any two hyperbolic planes with same parameters are isomor-
phic in the hyperbolic 3—space obtained from PG(3,n) by removing a tetrahedron
that is four planes of PG(3,n) no three of them are collinear.

Proof. When a tetrahedron is removed from PG(3,n) (ie. d =4, in [10]),
Sp has three different types of planes.

Type I: Planes passing through only one vertex of the tetrahedron. Each
of these planes has four removed lines which three of them are concurrent.

S 7]

I,/B c" o\',
Figure 2.5.1

Type II: Planes passing through any edge of the tetrahedron. Each of these
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planes has three removed lines which are non-concurrent.

S,

2

4
B C L
l,/ \’z '
Figure 2.5.2

Type III: Planes not passing through any vertex of the tetrahedron. Each of
these planes has four removed lines no three of them are concurrent.

Sp

Figure 2.5.3
It is enough to give the proof for planes in type I. Because the proof in other
cases are completely similar to type L. Let 1rD and 1r , be any hyperbolic planes
of Sp of type L. Let {),ls,13,l4 and l1 ,12,l3 ,14 be lines removed from 1r and
T respectively. There exists an isomorphism « from « to 7 sincew 7. Let
a(l;) =1;,4=1,2, 3, 4. So there exists acolmea.tlon B of «' such that 8(l;) = l, ,
i=1, 2, 3, 4, since the collineations of 7 is transitive on quadnlaterals Thus,

B o« is an isomorphism from 7 to n such that Boa)(l) = l, ,1=1,2,3,4.

7p

Figure 2.5.4

That is mp = 11';3,. Thus, the proof is completed. m
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