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ABSTRACT. In this paper, we investigate some interesting identities
on the Euler numbers and polynomials arising from their generating
functions and difference operators. Finally we give some properties
of Bernoulli and Euler polynomials by using p-adic integral on Zp.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Z,, Q,
and C, will denote the ring of p-adic rational integers, the field of p-adic
rational numbers and the completion of the algebraic closure of Q,. The
p-adic absolute value | - |, is normally defined by |p|, = %. Let UD(Z,) be
the space of uniformly differentiable function on Z,. For f € UD(Z,), the
hosonic p-adic integral on Z,, is defined by

PN -1
. 1
M = H@duta) = Jim o 3 @), (see 11):
As is well known, the Bernoulli polynomials are defined by the generating func-
tion as follows :

t . 9t "
@) e t_ Bt _ Z Bn(z);, (see [14,15]),

n=0

with the usual convention about replacing B™ by B, (see [1-16]). In the special
case, x = 0, B,.(0) = B, are called the n-th Bernoulli numbers.
The Euler polynomials are also defined by the generating function as follows :

2

) n
ot _ E(@)t _ t
oy = = E E'..(a:)n., (see [11,12]).

n=0

(3)

In the special case, z = 0, E.(0) = E, are called the n-th Euler numbers.
In the sense of fermionic, the p-adic integral on Z, is defined by Kim as follows :

pN-1

@ 1= [ f@duae) = Jim S @17, (see 0.
» z=0

From (1) and (2), we note that
(5) I_1(f1) + I-1(f) = 2£(0),
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and
(6) I(fi)) = I(f) = f(0), (see [12-18]).
By (2), (3), (5) and (6), we get

Tt — ¢ zt _— 2
(7) /z du(z) = o, and /z’e dp-s(z) = .

Thus, from (2), (3) and (7), we have

(8) /

By (8), we easily see that

z"du_1(z) = En, and / z"du(z) = Bn.
Z,

P

©) /z (@ +9)"dp_1(3) = En(z), and /z (z+9)"du(y) = Ba(z).

In [5], we have the following identities for the Bernoulli polynomials: for m,k € N

maz{k,m) k ; m B . _j(x)
oy (()rer() B

- (_1)m+!
(k+m+1)(*™)’

mazx{k,m} k ) m
(11) Z ((J) +(—1)’+1(j)) Biym—j(x)

=¥z - 1) ((k+m)z - k),

=zFz-1)"+

k-1

(12) _f) ( k )sz.-zj(z) -1 . (=1)*+1

2j+1) 2k-2 =~ 2 (4k+2)(%)’

i=0

(%)
k k+1 ng.,.;_z,'(:z:)
13) Z((2j+1)+(2j+1)) 2%k+1-25

i=0

=2tz 1)@~ 3),

where [] is Gauss’ symbol.

In this paper, we give some new identities for the Euler polynomials arising from
their generating functions and difference operators. These identities are corres-
panding (10)-(13) in the case of Bernoulli polynomials. Finally, we give new
identities on the Bernoulli and Euler polynomials by using p-adic integral on Z,.
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2. On identities of Bernoulli and Euler numbers

Consider z as a fixed parameter and set
(14) Fo=F()= 5 + Te Z E,,(a:)—.

Thus, by (14), we get

(15) e'F. + Fr = 267,

Let us define difference operator D as D = " . Then we see that
(16) e(D+I)F: + D’*F, = 2z%e™,

where k € N and T is identity operator.
By multiplying e~* on both sides in (16), we get

(17) (D +I)*Fz + e *D*F, = 2z*e=" 1",
Let us take difference operator D™(m € N) on both sides of (17). Then we have
(18) D™D+ *F, + e~ *D*(D = )™ Fy = 22" (z — 1)™e* 1",

By multiplying e’ on both sides of (18), we get
(19) e!D™(D + I)¥F, + D¥(D = I)" F; = 2z*(z — 1)™e™

Let G[0] (not G(0)) be the constant term in a Laurent series of G(t). Then, by
(19), we get

(20)

ko (ke t ktm—j - _ _
Z(J)( o F’(")‘°‘+§(])< ~1)f (DH*™IE) [0) = 25 (e - )™
By (14), we get

(21) (D¥E) (0= En(z), (¢'D¥E() [0 = En(a).

From (20) and (21), we note that

max{k.m} k m .
(22) > ((J) Extm-s(2) + ( j)(—l)JEkm_,-(w))

=0
= 2z"(z - 1)™.
By (3), we get the following recurrence formula:
(23) Eo=1, E.(1)+ E,=200,n, (n€Zy=27ZU{0})
From (3), we note that

(24) E.(z)=(E+z)" = Z ( )E’ 2"t = Z ( ) En—ezt.

=0 &=0
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Thus, by (24), we get

n—-1
(25) d—E:i':—B(f-) = nz (n; 1) Ezzn_l_l = nEn_l(.’B).
€=0
By (23) and (25), we get
' 1 ~2En11
(26) /o En(z)dz = 27 (Bns1(1) = Bnt1) = ——7~

Let us take definite integral from 0 to 1 in (22). Then we have

maz{k,m} E m—; k ;
n o (()or)

7=0

=2(-1)"B(k+1,m+1),
where B(a, B) is beta function which is defined by

B(a.B) = /01 =11 = )P ldt = %, (a@>0,8>0).

Thus, by (27), we get
maz{k,m}
Ek+m_j+1 k jifm
—_— -1
(28) ,go k+m-j+1((j)+( av

_ 1y D+ DE(m + 1)
Tk+m+2)

Therefore, by (22), we obtain the following theorem.
Theorem 1. For m,k € N, we have

max{k,m} k m .
> (( j) Eitm-j(z) + ( j) (-1y Ek+m_,~(x))

j=0
=2zF(z —1)™.

By (28) and Theorem 1, we obtain the following corollary.

Corollary 2. For m,k € N, we have

maz{k,m} .
(29) > ((f) (-1y (’;‘)) pme

=1
— (=1™+! o _Ekimar
k+m+1)(*™) “k+m+1
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Let us take x = 0 in (10). Then we see that
maz{k,m}
k iv1[m Brim—j
30 _1)i+1 k4+m—j+1
e 2 () (5)
_ (_1)m+1

T (k+m+1)("m)
By (29) and (30), we get

maz{km}) (/) o fm Bitm—ji1 (-1)m+?
(31) > ((J) (-1 (g)) E+m—j+1 (k+m+1)(*™)

j=1
maz{k,m
_ {Z (K (-1y m Eitm—j+1 +2 Ektm+1
e J J k+m—3+1 “k+m+1

Therefore, by (31), we obtain the following theorem.

Theorem 3. For m,k € N, we have

maz{k,m
i Yk Biam-j+1_ _ Erem_j41
j/\k+m—-3j+1 k+m-j5+1

i=1

ot j k+m—-j+1 k+m—j+1
- Ex+m+1

k+m+1

Let m = k+ 1 in Theorem 3. Then we obtain the following corollary.

Corollary 4. For k € N, we have

’il k Bok+a—j _ Eaks2-;
j 2k+2—-5 2k+2-—3

j=1
k+1
iv1fk+1 Bak—j+2 Eaki2-;5
_1yit+1 i+ +2-J
+§1( n ( j )(2k—j+2+2k+2—j)
=o0.

From Theorem 3, we note that

(51 (5
k Bak—zj+2 k\ Eax-2j41
(32) 2(Z<2j—1)2k—2j+2 jz(zj)zk—zjn

i=1 =1

=2E2k+1
2k+1°

Therefore, by (32), we obtain the following theorem.
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Theorem 5. For k € N, we have

131
i k) _Bak-zj+2_ (2*] k) Ea—3j+1
2\2-1) %k -2 +2 2 ) k-2 +1
_ B

2k+1°

By (22) and (27), we get

maz{k,m} & Am
@ " e () () B

j=0

= 225"z — )™ ((k + m)z — k).

Let m = k. From (22), we have

(5]

(34) > (2';) Ezk—2;(z) = z¥(z — 1)*.

j=0
Let us take definite integral from 0 to 1 in (34). Then we have

(35) —2%] Laezier (-1)*B(k+1,k+1) = _(=D*F
= \¥) k-2 +1 ’ 2k +1) (%)’

Therefore, by (33) and (34), we obtain the following proposition:

Proposition 8. For k € N, we have
i3 /o
k k
> (2,-) Eni—2(z) = =*(z — 1)*.

j=0

By (35), we obtain the following corollary.

Corollary 7. For k € N, we have
(51
S \¥)%k-2%+1 (4k+2)(%)

From (22), we can derive the following equation:

k+1
(36) Z ((f) +(-1) (k:- )) Eok41-j(z)

1)+,

=2z*(z -
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The left hand side of (36) is given by

k+1
(37) Z ((;C) +(-1) (k + 1)) Eaks1-5(z)
(542
k k+1
=2 ((2j+ 1) - (2j+1)) Eie-2(x)
(213) + (k;; 1)) Es-2j41(x)

1544
)E2k—2j(3") + Z ((2);) + (k;; 1)) Eak-2541(z).

j=0

By (36) and (37), we get

£3
(38) > ((2’3) + (k;; 1)) Ezk—2j41(2) = *(z — 1)*(2z — 1).

j=0

Therefore, by (38), we obtain the following theorem.

Theorem 8. For k € N, we have

(5]
Z ((2,;) + (k;_; 1)) Eak—21(z) = z*(z — 1)*(2z - 1).

j=0

Let us take z = 0 in (22). Then we have

k+1
o ()

and
k+ k+1(k+1
+1( (k- 2’+1)+k+1(2j)

o ©-(5)eehl)
(";;,1) (2k — 25 +2).

I
lH

b

1
IH

1

>
+
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y (39) and (40), we get

B
K+l
(41) 0= Z (( ) +(-1y (k-;l)) Eok—j41
i=0
(1544
E ()3

(55 )

poer k+1

k+1
(2 )(2k 2j + 2) Epk-2j+1

[5)
k
=2Eak+1 + T— k+ T Z ( + )(2/0 2j + 2)E2k—2;41.

Thus, by (41), we obtain the followmg corollary.

Corollary 9. For k € N, we have

(5] k1
Expy = 2k 3 Z ( )(2k 27 + 2)Eak—2;41.

3. p-adic integral on Z, associated with Bernoulli and Euler
polynomials

Let m,k € N. Then, by (4) and (10), we see that

_ k r— 1M (_l)m+1
w n=[ @) @) +
-\ _pym=t [ k+e (=pm+t
3 R e

— myl. .\m-¢ (_1)m+1
‘;(e)( D Ek*‘+(k+m+1)("‘,:"‘)'
From (10), we have

(43)
maz{k,m}
= k _yitim 1 '
L = J=Zl ((]) +( 1) (J)) ——k+m+1-j 2, Bk+m—_7+1($)dﬂ._1(:t)

N maz{k,m} k " i 1
- fv:: J +(=1 k+m+1-3

k+m+1—j .
k+m+1-j
S ( e

=0

)Bk+m+l-j—tEt-
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Therefore, by (42) and (43), we obtain the following theorem.

Theorem 10. For m,k € N, we have

_1)m+1

= m m-¢
> (e) (=1 Brre + (k+m+1)(t™)

€=0

maz{k,m} k ; 1
= X ((J)+( 1)“( ))k+m+1—j

ij=1

k+"§~j <k+m+l—j)3k+ +1—j—eEe
m+1l—j— -

% ¢

€=0

Let

(44)
L= /z (- Dz - 3)dps(2)

k k
= ( )( b / S TREORE Sy (’;) (-1 [z T nae)

=0

= Z ( )( 1) Eakg1-1 — -z ( )(—l)eEzk_g.
=0

¢=0

From (13), we can derive the following equation (45).

(%)
w53 ((,4)+ (33h)) ety [ Bt
151
k+1 1
Z ((2]+1) (2j+1)) %k+1-25

2k+1-2j5 .
k -2
X Z (2 +:, ]) Boki1-2j-¢Eq.

&=0

Therefore, by (44) and (45), we obtain the following proposition.
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Proposition 11. For k € N, we have

k k
Z (-1)°E2k—t41 — k (-1)*Eax—¢
2 £

£=0 =0

(%]
_Z k+1 1
= 2]+l 2541 2k+1-25

2k+1-2j (2k+1—2j)3k e
2k+1-2j—¢Le.

X ¢

€=0

From (4) and (5), we can derive the following equation (46).
£
2n+1 __ 1 n+1 o
(46) /;"a: dp-1(z) = 2n+2§( y )(2n 2j +92)
x / 2 H gy ().
ZP

By (46), we get

(£
1
Eopyr = 2n ) Z (n N )(2n 27 + 2)Ean_2j41, for n€N.

Now, we get

(47) I; = 2/2. z*(z - 1)™dp(z) = 22 ( )(—l)th+k—£.

=0
From (1) and (22), we have

max{k,m}
(48) Is= Z ((l;)+( 1)1( ))/ Erym-j(z)dp(z)

j=0

maz{k,m} k+m=—3
i=0 £=0

Therefore, by (47) and (48), we obtain the following proposition.

Proposition 12. For m,k € N, we have
22 (72) (=1)'Brmsk-t
&=0
maz{k,m} k+m—j
k ; k
= Z S+ (-1 m Z +T:' Y Erim-j—eBe.
=0 J J =0
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By (1), we easily see that
(49)

2k 1 el k+1
P — —-924 2k—2j
/z,, =% dp(x) BFTDGETD jzzo(2k 2j+1) (2], l) A, x du(z).

Thus, by (49), we get

1 13) k+1
BZk = -—m j-'z":o(2k - 2] + 1) (2] + 1) sz_gj for k € N.
Let us consider the following p-adic integral on Z,:
2 [k
(50) Ii= / - 1)rduz) =S (z) (~1) Bai—t.
Z, =0

From (34), we note that
(%] 2k-2j .
k 2k - 2j
(51) Iy = ;:0 (21) 'E__:O < I )Ezk—Zj—lB[.

Therefore, by (50) and (51), we obtain the following proposition.

Proposition 13. For k € N, we have

k {}’] 2k—-2j5 2](: 2]
z ( 1) sz = Z Z 2] Ezk_zj_le.

1= j=0 1=0

For m,k € N with m, k > 2, we have
(52)
Is = 2/ 2z - 1) ((k + m)z — k) du(z)
Z

P
1

-1
~2Z (k + )( )( 1)'Brtm—t-1 — 21;2( )( 1)! Bnyk—t-2.

j=0 1=0

By (33), we get

maz{k,m} k m
(53) Is = Z (k+m—j)((.)+(—l)j(.))
= j j

k4m=j-1 .
k+m—j—1
X Z ( ml I )Ek+m—j—1—zBl-

=0
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Therefore, by (52) and (53), we can also obtain the following identity.
(53)

m-1 m-~1
-1 -1
2k+m) Y ("‘ . )(—1)'Bk+.,._z_1 -2 (m z )(—l)le+k—l—2
7=0 . 1=0

mu:{k,m}k . k ifm
= wemea () rer (7))

k+m—j—1 (k—{—m—_]—l

X ! )Ek+m—j—1—l-Bt,

=0
where m,k € N with m,k > 2.
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