Product Cordial Sets of Long Grids

Ebrahim Salehi and Yaroslav Mukhin

Department of Mathematical Sciences
University of Nevada, Las Vegas
Las Vegas, NV 89154-4020
ebrahim.salehi@unlv.edu, mukhiny@unlv.nevada.edu

Abstract

A binary vertex coloring (labeling) $f:V(G)\to\mathbb{Z}_2$ of a graph G is said to be friendly if the number of vertices labeled 0 is almost the same as the number of vertices labeled 1. This friendly labeling induces an edge labeling $f^*:E(G)\to\mathbb{Z}_2$ defined by $f^*(uv)=f(u)f(v)$ for all $uv\in E(G)$. Let $e_f(i)=|\{uv\in E(G):f^*(uv)=i\}|$ be the number of edges of G that are labeled i. Product-cordial index of the labeling f is the number $pc(f)=|e_f(0)-e_f(1)|$. The product-cordial set of the graph G, denoted by PC(G), is defined by

$$PC(G) = \{pc(f) : f \text{ is a friendly labeling of } G \}.$$

In this paper, we will determine the product-cordial sets of long grids $P_m \times P_n$, introduce a class of fully product-cordial trees and suggest new research directions in this topic.

Key Words: friendly coloring, product-cordial index, product-cordial set, grid. AMS Subject Classification: 05C78

1 Introduction

In this paper all graphs G=(V,E) are connected, finite, simple, and undirected. For graph theory notations and terminology not described in this paper, we refer the readers to [6]. Let G be a graph and $f:V(G)\to\mathbb{Z}_2$ be a binary vertex coloring (labeling) of G. For $i\in\mathbb{Z}_2$, let $v_f(i)=|f^{-1}(i)|$. The coloring f is said to be friendly if $|v_f(1)-v_f(0)|\leq 1$. That is, the number of vertices colored 0 is almost the same as the number of vertices colored 1.

Any friendly coloring $f: V(G) \to \mathbb{Z}_2$ induces an edge labeling $f^*: E(G) \to \mathbb{Z}_2$ defined by $f^*(xy) = f(x)f(y) \ \forall xy \in E(G)$. For $i \in \mathbb{Z}_2$, let $e_f(i) = |f^{*-1}(i)|$ be the number of edges of G that are labeled i. The number $pc(f) = |e_f(1) - e_f(0)|$ is called the product-cordial index (or pc-index) of f. The product-cordial set (or pc-set) of the graph G, denoted by PC(G), is defined by

 $PC(G) = \{pc(f) : f \text{ is a friendly vertex coloring of } G \}.$

To illustrate the above concepts, consider the graph G of Figure 1, which has 8 vertices. The condition $|v_f(1) - v_f(0)| \le 1$ implies that four vertices be labeled 0 and the other four 1.

Figure 1: An example of product-cordial labeling of G.

Figure 1 also shows the associated edge labeling of G, where four edges have label 1 while the other 6 edges have labels 0. Therefore, the product-cordial index (or pc-index) of this labeling is 6-4=2. It is easy to see that $PC(G)=\{2,4,6,8,10\}$. The friendly colorings of G that provide the other four pc-indices are presented in Figure 2.

Figure 2: Four friendly labelings of G with pc-indices 4, 6, 8 and 10.

In what follows, whenever there is no ambiguity, we will suppress the index f and denote $e_f(i)$ by simply e(i). For a graph G = (p, q) of size q, and a friendly labeling $f: V(G) \to \mathbb{Z}_2$ of G, we have

$$pc(f) = |e_f(0) - e_f(1)| = |q - 2e_f(1)| = |q - 2e_f(0)|.$$
 (1.1)

Therefore, to find the pc-index of f it is enough to find $e_f(1)$ (or $e_f(0)$). Moreover, to determine the pc-set of G it is enough to compute $e_f(1)$ for different friendly colorings of G. Another immediate consequence of (1.1) is the following useful fact:

Observation 1.1. For a graph G of size q, $PC(G) \subseteq \{q-2k : 0 \le k \le \lfloor q/2 \rfloor\}$.

Definition 1.2. A graph G of size q is said to be fully product-cordial (fully pc) if

$$PC(G) = \{q - 2k : 0 \le k \le \lfloor q/2 \rfloor\}.$$

For example, the graph G of Figure 1 is not fully pc. However, P_n , the path of order n, is fully pc. In case of P_n , it is easy to observe that $e_f(1) = 0, 1, \dots, \lfloor \frac{n-1}{2} \rfloor$, which proves that

Theorem 1.3. For any $n \geq 2$, the graph P_n is fully product-coordial. That is, $PC(P_n) = \{n-1-2k : 0 \leq k \leq \lfloor \frac{n-1}{2} \rfloor \}.$

The different friendly labelings of P_7 that provide its pc-set are illustrated in Figure 3.

Figure 3: $PC(P_7) = \{0, 2, 4, 6\}.$

In 1987, I. Cahit [2, 3, 4] introduced the concept of cordial labeling as a weakened version of the less tractable graceful and harmonious labeling. Given a friendly labeling $f: V(G) \to \mathbb{Z}_2$ of a graph G, Cahit introduced an edge labeling $f_+: E(G) \to \mathbb{Z}_2$ by $f_+(uv) = |f(u) - f(v)|$ and defined the cordial index c(f) of f to be $|f_+^{-1}(0) - f_+^{-1}(1)|$. A graph is called cordial if it admits a friendly labeling with cordial index 0 or 1. Cahit, among other facts, proved that

- 1. Every tree is cordial;
- 2. The complete graph K_n is cordial if and only if $n \leq 3$;
- 3. The complete bipartite graph K(m, n) is cordial $(m, n \in \mathbb{N})$;
- 4. The wheel W_n is cordial if and only if $n \not\equiv 3 \pmod{4}$;
- 5. In an Eulerian graph G = (p, q) if $p \equiv 0 \pmod{4}$, then it is not cordial.

M. Hovay [9], later generalized the concept of cordial graphs and introduced A-cordial labelings, where A is an abelian group. A graph G is said to be A-cordial if it admits a labeling $f: V(G) \to A$ such that for every $i, j \in A$,

$$|v_f(i) - v_f(j)| \le 1$$
 and $|e_f(i) - e_f(j)| \le 1$.

Cordial graphs have been studied extensively. Interested readers are referred to a number of relevant literature that are mentioned in the bibliography section, including [1, 5, 8, 10, 11, 14, 19].

Product cordial labeling of a graph was introduced by Sundaram, Ponraj and Somasundaran [22]. They call a graph G product-cordial if it admits a friendly labeling whose product-cordial index is at most 1. Then Sundaram, Ponraj and Somasundaran [22, 23, 24] investigated whether certain graphs such as trees, cycles, complete

graphs, wheels, etc. are product-cordial. Later E. Salehi [15] introduced the concept of product-cordial set (or pc-set) of a graph and determined the pc-sets of certain classes of graphs such as: complete graphs, complete bipartite graphs, stars and double stars, cycles, and wheels.

2 Trees with Perfect Matching

In general, for a friendly coloring $f:V(G)\to\mathbb{Z}_2$ of a graph G, it is not necessarily true that $e_f(0)\geq e_f(1)$. For example, let n>3 and consider the coronation of the complete graph K_n with K_1 , as indicated in Figure 4.

Figure 4: A friendly coloring with e(1) > e(0).

If we color all vertices of K_n by 1 and the end-vertices by 0, then e(1) = n(n-1)/2 while e(0) = n. However, for certain graphs one can prove that the number of edges labeled 0 is bigger than the number of edges labeled 1. Trees are among such graphs as we will see in the following theorem:

Theorem 2.1. For any tree T and any friendly coloring of T, $e(0) \ge e(1)$.

Proof. The statement is true for trees of order n=1,2,3. Let T be a tree of order $n \geq 4$ and assume to the contrary that $e(1) > e(0) \geq 2$. Then at least e(1) + 1 vertices of T are labeled with 1. Since the coloring is friendly, at least e(1) vertices of T are labeled with 0. This implies that $n \geq 2e(1) + 1$ or $|E| \geq 2e(1)$. Therefore, $2e(1) \leq |E| = e(1) + e(0) < 2e(1)$, a contradiction.

Definition 2.2. A matching in a graph is a set of edges with no shared endpoints. A matching M in a graph G is said to be a perfect matching if every vertex of G is incident with an edge in M.

Note that every graph with perfect matching has even number of vertices. Moreover, if a graph G has a perfect matching M, then every pendent edge of G is in M. Another useful observation about the trees with perfect matching is that they contain at least one P_3 , the path of order 3, pendant. That is, there are vertices $u \sim v \sim w$ such that $\deg u = 1$ and $\deg v = 2$. In fact, the two end portions of the longest path of T would have P_3 pendants. Here is another example of a class of fully product-cordial graphs:

Figure 5: An example of a tree with perfect matching that is fully pc.

Theorem 2.3. Any tree T of order p with a perfect matching is fully product-cordial. That is,

$$PC(T) = \{1, 3, 5, \cdots, p-1\}.$$

Proof. Let T be a tree with perfect matching M and |M| = m. We proceed by induction on m. Clearly, the theorem is true for m = 1, 2. Suppose it is true for any perfect matching tree with |M| = m and let S be a tree with perfect matching M' such that |M'| = m + 1. Among the elements of M' there is at least one terminal edge uv of the tree S such that $u \sim v \sim w$, deg u = 1 and deg v = 2. Now if we delete the vertices u and v from S, the result would be a tree T with perfect matching M' - uv and |M' - uv| = m. Therefore, by the induction hypothesis, $PC(T) = \{1, 3, \dots, 2m-1\}$. We need to show that $PC(S) = \{1, 3, \dots, 2m-1\}$ 1, 2m+1. Consider a friendly coloring $f: V(T) \to \mathbb{Z}_2$ of T and extend it to $g:V(S)\to\mathbb{Z}_2$ by defining g(v)=0, g(u)=1. This becomes a friendly coloring of S with $e_g(1) = e_f(1)$ and $e_g(0) = 2 + e_f(0)$. Therefore, pc(g) = 2 + pc(f). That is, $2 + PC(T) = \{3, 5, \dots, 2m + 1\} \subseteq PC(S)$. To show that $1 \in PC(S)$, we choose a subtree of S with m+1 vertices and label all these vertices by 1 and other vertices of S by 0. This is a friendly labeling of S with e(0) = m + 1 and e(1) = m and has index 1.

Theorem 2.3 provides a sufficient condition for fully pc trees. However, this condition is not necessary. A simple example would be P_{2n+1} which is fully pc and does not have a perfect matching. We wish to present the following example, illustrated in Figure 6, that can easily be generalized to construct other classes of fully pc trees.

3 Grids and PC-Sets of Ladders

For any $m, n \geq 2$, the Cartesian product $P_m \times P_n$ of two paths is called a grid. The grid $P_m \times P_n$ has mn vertices and 2mn - m - n edges. Let $v_1 \sim v_2 \sim \cdots \sim v_m$ be the vertices of P_m and $w_1 \sim w_2 \sim \cdots \sim w_n$ be vertices of P_n . In what follows, for convenience, we denote the vertex (v_i, w_j) by u_{ij} , the subgraph $u_{i1} \sim u_{i2} \sim \cdots \sim u_{in}$

Figure 6: A fully pc tree with pc-set $\{0, 2, 4, \dots, 16, 18\}$.

of $P_m \times P_n$ by ρ_i (i^{th} Row), and the subgraph $u_{1j} \sim u_{2j} \sim \cdots \sim u_{mj}$ of $P_m \times P_n$ by κ_j (j^{th} Column). Note that two vertices u_{ij} and u_{lk} are adjacent if the difference between i+j and l+k is 1. This leads to our first observation:

Theorem 3.1. The grid $P_m \times P_n$ has the maximum pc-index 2mn - m - n.

Proof. Consider the friendly coloring $f: V(P_m \times P_n) \to \mathbb{Z}_2$ that is 1 on u_{ij} if i+j is even and 0 if i+j is odd. That is, $f(u_{ij}) = \frac{1+(-1)^{i+j}}{2}$. Since every two adjacent vertices have opposite colorings, the induced product-cordial edge labeling is identically 0. Therefore, pc(f) = 2mn - m - n.

The coloring that is presented in the proof of Theorem 3.1 will be referred to as alternating, by which we mean every two adjacent vertices have different colors.

Theorem 3.2. For any friendly coloring of $P_m \times P_n$ with $2 \le m \le n$, e(0) > e(1).

Proof. Since e(0) + e(1) = |E(G)| is fixed, it is enough to show that the maximum value of e(1) is less than the minimum value of e(0). Note that the maximum value of e(1) occurs when all the vertices labeled 1 are clustered (adjacent). Likewise, the minimum value of e(0) occurs when all the vertices labeled 0 are clustered. Now, let r, s and t denote the number of edges incident with two vertices that are both labeled 1, have different labeling and are both labeled 0, respectively. We consider two cases:

Case I: $4 \le 2m \le n$. Without loss of generality we may assume that all the vertices labeled 1 are vertices of the first $\lfloor n/2 \rfloor$ columns and, if n is odd, the first $\lfloor m/2 \rfloor$ vertices of the middle column are labeled 1. Thus, $r = t + 1 - (-1)^{mn}$ and $s = m + \frac{1 - (-1)^n}{2}$. Therefore,

$$e(0) - e(1) = s + t - r = m + \frac{1 - (-1)^n}{2} - 1 + (-1)^{mn} > 0.$$

Case II: $7 \le m \le n < 2m$. The conditions $m, n \ge 7$ imply that $(m-2)(n-2) \ge \frac{mn}{2}$. Without loss of generality we may assume that all the vertices labeled 1 are clustered inside the grid and consequently have degree 4. Let H be the subgraph of G induced by all edges that are incident with at least one vertex labeled 1. Then H has r+s edges. $\lfloor mn/2 \rfloor$ vertices of degree 4 and s end-vertices. Hence

edges,
$$\lceil mn/2 \rceil$$
 vertices of degree 4 and s end-vertices. Hence
$$\sum_{v \in V(H)} deg(v) = 4 \left\lceil \frac{mn}{2} \right\rceil + s = 2r + 2s \text{ or } r = 2 \left\lceil \frac{mn}{2} \right\rceil - \frac{s}{2}.$$

Also, we note that the minimum value of s occurs when all the vertices labeled 1 would form a square subgrid. Therefore,

$$s \geq 4 \sqrt{\left\lceil \frac{mn}{2} \right\rceil} \text{ and } r \leq 2 \left\lceil \frac{mn}{2} \right\rceil - 2 \sqrt{\left\lceil \frac{mn}{2} \right\rceil}.$$

Since r + s + t = |E(G)|, we have

$$\begin{split} e(0)-e(1)&=s+t-r=r+s+t-2r\\ &\geq 2mn-m-n-4\left\lceil\frac{mn}{2}\right\rceil+4\sqrt{\left\lceil\frac{mn}{2}\right\rceil}\\ &\geq 4\sqrt{\frac{mn}{2}}-m-n-2. \end{split}$$

We observe that the function $f(x,y) = 4\sqrt{xy/2} - x - y - 2$ is always positive in the region defined by inequalities $7 \le x \le y \le 2x$ which concludes that e(0) > e(1). Cases I and II do not apply to a finite number of grids, however, the result holds in general and can be verified directly for those cases.

Corollary 3.3. For any $m, n \geq 2$, the product-cordial set of $P_m \times P_n$ is $\{2mn - m - n - 2e_f(1) : f \text{ is a friendly coloring of } P_m \times P_n\}$.

Proof. Note that the number of edges of $P_m \times P_n$ is 2mn - m - n and for any friendly coloring f, pc(f) = |e(0) - e(1)| = e(0) - e(1) = 2mn - m - n - 2e(1). \square

Before stating the main result concerning grids in the next section, we consider the special case of a ladder, which illustrates the technique and provides us with a tool for the proof of the general case.

Theorem 3.4.
$$PC(P_2 \times P_n) = \{3n - 2 - 2k : 0 \le k \le \lfloor 3n/2 \rfloor - 2\}.$$

Proof. For any integer k with $0 \le k \le \lfloor 3n/2 \rfloor - 2$, we present a friendly coloring f such that $e_f(1) = k$. By Theorem 3.1, we may assume that $k \ge 1$. We consider the following three cases:

A. k = 3a + 1. Since $k \le \lfloor 3n/2 \rfloor - 2$, then $a \le \frac{n}{2} - 1$. We label all the vertices of the first a + 1 columns by 1 (note this yields k edges labeled 1), label all the vertices of the subsequent a+1 columns by 0 and alternate the coloring of the remaining vertices, as illustrated in Figure 7. That is,

$$f(v_{i,j}) = \begin{cases} 1 & \text{if } 1 \le j \le a+1; \\ 0 & \text{if } a+2 \le j \le 2a+2; \\ \frac{1-(-1)^{i+j}}{2} & \text{if } 2a+3 \le j \le n. \end{cases}$$

The coloring f is friendly and $e_f(1) = k$.

Figure 7: A friendly coloring of $P_2 \times P_{11}$ with index 7.

B. k = 3a + 2, where $0 \le a \le \frac{n}{2} - 1$. We modify the coloring of Case A on the last two columns of $P_2 \times P_n$ to obtain an extra edge labeled 1. Specifically, let f be defined by

$$f(v_{i,j}) = \begin{cases} 1 & \text{if } 1 \le j \le a+1 \text{ or } j=n; \\ 0 & \text{if } a+2 \le j \le 2a+2 \text{ or } j=n-1; \\ \frac{1-(-1)^{i+j}}{2} & \text{if } 2a+3 \le j \le n-2. \end{cases}$$

The coloring f is friendly and $e_f(1) = k$. This friendly coloring is illustrated in Figure 8.

Figure 8: A friendly coloring of $P_2 \times P_{11}$ with index 8.

C. k = 3a + 3, where $0 \le a \le \frac{n}{2} - 1$. This time we alter the coloring of Case A on the last three columns of $P_2 \times P_n$ to produce two additional edges labeled 1:

$$f(v_{i,j}) = \begin{cases} 1 & \text{if } 1 \le j \le a+1 \text{ or } j=n; \\ 0 & \text{if } a+2 \le j \le 2a+2 \text{ or } j=n-2; \\ \frac{1-(-1)^{i+j}}{2} & \text{if } 2a+3 \le j \le n-3 \text{ or } j=n-1. \end{cases}$$

The coloring f is friendly and $e_f(1) = k$. This friendly coloring is illustrated in Figure 9.

This proves that $\{3n-2-2k:0\leq k\leq \lfloor 3n/2\rfloor-2\}\subseteq PC(P_2\times P_n)$. Note that by observation 1.1, $PC(P_2\times P_n)\subseteq \{3n-2-2k:0\leq k\leq \lfloor 3n/2\rfloor-1\}$. To complete the proof, it is enough to show that $k\neq \lfloor 3n/2\rfloor-1$, which follows from Theorem 3.2.

Corollary 3.5. $P_2 \times P_n$ is not fully product-cordial.

Figure 9: A friendly coloring of $P_2 \times P_{11}$ with index 9.

Proof. It follows from the previous theorem that

$$PC(P_2 \times P_n) = \begin{cases} \{2, 4, 6, \dots, 3n-2\} & \text{if } n \text{ is even;} \\ \{3, 5, 7, \dots, 3n-2\} & \text{if } n \text{ is odd.} \end{cases}$$

4 PC Sets of Long Grids

By a long grid we mean the graph $P_n \times P_m$ with $m \geq 2n$. In this section we determine the product-cordial sets of long grids. Before stating the main result, we prove some preliminaries.

Lemma 4.1. For any grid $P_n \times P_4$ and any integer k with $0 \le k \le 2n - 2$, there is a friendly coloring such that e(1) = k.

Proof. We consider two cases:

Case I: $0 \le k \le n-1$. Label k+1 top vertices of κ_4 by 1 (note that this produces k edges labeled 1), k+1 top vertices of κ_3 by 0 and alternate coloring of the remaining vertices of $P_n \times P_4$.

Case II: $n \le k \le 2n - 2$. Label all vertices of κ_4 and k - n + 2 top vertices of κ_2 1 (note that this produces k edges labeled 1), all vertices of κ_3 and k - n + 2 top vertices of κ_1 0 and alternate coloring on the remaining vertices of the graph. In each case the coloring is friendly and e(1) = k.

Remark 4.2. Note that the above result is true for any grid $P_n \times P_m$ whenever $m \geq 4$. We simply attach $P_n \times P_{m-4}$ that has alternating coloring to $P_n \times P_4$ by joining the vertices of the last column of $P_n \times P_{m-4}$ to the corresponding vertices of the first column of $P_n \times P_4$, keeping in mind that alternating color of $P_n \times P_{m-4}$ be consistent with the coloring of the first column of $P_n \times P_4$.

Lemma 4.3. For any long grid $P_n \times P_{2m}$ and any integer k with $2mn-3n-m+1 \le k \le 2mn-n-m$, there is a friendly coloring such that e(1)=k. Moreover, the maximum value of e(1) is 2mn-m-n.

Proof. We consider four cases:

Case I: k = 2mn - n - m. The maximum value of e(1), which is 2mn - n - m, is obtained when all vertices of a subgraph $P_n \times P_m$ are labeled 1 and the remaining vertices of $P_n \times P_{2m}$ are labeled 0. Without loss of generality we may assume that the subgraph $P_n \times P_m$ is induced by the first m columns of $P_n \times P_{2m}$.

Case II: k=2mn-n-m-1. In the labeling presented in Case I, exchange the colorings of $u_{1,m}$ and $u_{2,m+1}$, which reduces the number of edges labeled 1 by one. Case III: k=2mn-n-m-a, where $2 \le a \le n$. In the labeling presented in Case I, exchange the colorings of $u_{1,m}, \ldots, u_{a,m}$ and $u_{1,m+1}, \ldots, u_{a,m+1}$, which reduces the number of edges labeled 1 by a.

Case IV: k = 2mn - 3n + m + 1 + a, where $0 \le a \le n - 1$. Label all the vertices of the first m-1 columns of $P_n \times P_{2m}$ by 1 (note that this produces 2mn - 3n - m + 1 edges labeled 1), all the vertices of m-1 subsequent columns by 0 and let the last two columns of $P_n \times P_{2m}$ have any friendly coloring of $P_n \times P_2$ that has a edges labeled 1, existence of which is ensured by Theorem 3.4. In each case, the coloring is friendly and e(1) = k.

Theorem 3.2 indicates that for any graph G and any friendly coloring f, $pc(f) = |E(G)| - 2e_f(1)$. It follows from the previous lemma that the minimum product-cordial index of $P_n \times P_{2m}$ is n.

Lemma 4.4. $PC(P_n \times P_{2n}) = \{4n^2 - 3n - 2k : 0 \le k \le 2n^2 - 2n\}.$

Proof. Note that by Corollary 3.3,

 $PC(P_n \times P_{2n}) = \{4n^2 - 3n - 2e_f(1) : f \text{ is a friendly coloring of } P_n \times P_{2n}\}.$ To prove the lemma, one has to show that for any k with $0 \le k \le 2n^2 - 2n$, there is a friendly coloring f such that $e_f(1) = k$. By Lemmas 4.1 and 4.3 it suffices to consider k with $2n - 1 \le k \le 2n^2 - 4n$. Let k = (n - 1) + (2n - 1)a + r, where $0 \le a \le n - 3$ and $0 \le r \le 2n - 2$. Consider the coloring of $P_n \times P_{2n}$ that labels the vertices as follow:

Figure 10: A typical friendly coloring of $P_n \times P_{2n}$.

- (1) Label all the vertices of the first a+1 columns by 1. The corresponding induced edge labeling will produce n-1+(2n-1)a edges that are labeled 1.
- (2) Label all the vertices of the columns a + 2 through 2a + 2 by 0.
- (3) Label the vertices of the last four columns according to the Lemma 4.1 to produce r edges with lable 1.
- (4) Finally, use alternating labeling for columns 2a + 3 through 2n 5 such that the alternation be consistent with the labels of $(2n 4)^{th}$ column.

This coloring is friendly and e(1) = k.

Theorem 4.5. For any $m \ge n$, the product-cordial set of the long grid $P_n \times P_{2m}$ is $\{4mn - n - 2m - 2k : 0 \le k \le 2mn - n - m\}$.

Proof. We proceed by induction on m. By Lemma 4.4, the statement is true for m=n. Suppose it is true for the long grid $P_n \times P_{2m}$ with $m \geq n$. We wish to show that the statement of the theorem is true for $P_n \times P_{2m+2}$.

Let f be any friendly labeling of $P_n \times P_{2m}$. We extend f to a friendly labeling g of $P_n \times P_{2m+2}$ by labeling all the vertices of column 2m+1 by 0 and all the vertices of column 2m+2 by 1. Then $e_g(1)=e_f(1)+n-1$. This implies that for any kwith $n-1 \le k \le 2mn-m-1$ there is a friendly labeling of $P_n \times P_{2m+2}$ such that e(1) = k. On the other hand, in the view of Lemmas 4.1 and 4.3 it is enough to consider those values of k that satisfy $2n-1 \le k \le 2mn+n-m$. This proves the theorem, because $[2n-1, 2mn+n-m] \subseteq [n-1, 2mn+2n-m-1]$.

Theorem 4.6. For any $m \ge n$, the product-coordial set of the long grid $P_n \times P_{2m+1}$

$${4mn+n-2m-1-2k:0\leq k\leq 2mn-m-\frac{1+(-1)^n}{2}}.$$

Proof. By Corollary 3.3, for any friendly coloring f of a grid G, pc(f) = |E(G)| - |E(G)| $2e_f(1)$. Therefore, the minimum product-cordial index of $P_n \times P_{2m+1}$ is produced by the maximum value of e(1). This maximum value is obtained when all vertices of a subgraph of $P_n \times P_{2m+1}$ induced by the vertices

 $\{u_{ij}: 1 \leq i \leq n \text{ and } 1 \leq j \leq m\} \cup \{u_{ij}: 1 \leq i \leq \lceil n/2 \rceil \text{ and } j = m+1\} \text{ are labeled } 1$ and the remaining vertices of $P_n \times P_{2m+1}$ are labeled 0. That is, the maximum value of e(1) is $2mn-m-\frac{1+(-1)^n}{2}$, hence the minimum pc-index is $n+(-1)^n$. To prove

the theorem, one has to show that for any k with $0 \le k \le 2mn - m - \frac{1 + (-1)^n}{2}$ there is a friendly coloring such that e(1) = k. By Lemma 4.1 it suffices to consider the values of k with $2n-1 \le k \le 2mn-m-\frac{1+(-1)^n}{2}$

Let f be any friendly labeling of $P_n \times P_{2m}$ such that all vertices of column 2m are labeled 1. We extend f to a friendly labeling g of $P_n \times P_{2m+1}$ by labeling all the top $\lceil n/2 \rceil$ vertices of the last column of $P_n \times P_{2m+1}$ by 1 and the remaining vertices of the last column by 0. Then $e_g(1) = e_f(1) + 2\lceil n/2 \rceil - 1 = e_f(1) + n - \frac{1 + (-1)^n}{2}$. This together with Theorem 4.5 imply that for any k with $2n - 1 - \frac{1 + (-1)^n}{2} \le k \le n$

 $2mn-m-\frac{1+(-1)^n}{2}$ there is friendly coloring of $P_m \times P_{2m+1}$ such that e(1)=k. The proof of the theorem is complete, because $[2n-1,2mn-m-\frac{1+(-1)^n}{2}] \subseteq [2n-1-\frac{1+(-1)^n}{2},2mn-m-\frac{1+(-1)^n}{2}]$. \square

$$[2n-1,2mn-m-\frac{1+(-1)^n}{2}] \subseteq [2n-1-\frac{1+(-1)^n}{2},2mn-m-\frac{1+(-1)^n}{2}].$$

Corollary 4.7. The long grid $P_n \times P_m$, $m \ge 2n$, is not fully product-cordial.

Proof. It follows from Theorems 4.5 and 4.6 that

$$PC(P_n \times P_m) = \begin{cases} \{n, n+2, \dots, 2mn-n-m\} & \text{if } m \text{ is even;} \\ \{n+1, n+3, \dots, 2mn-n-m\} & \text{if } m \text{ is odd, } n \text{ is even;} \\ \{n-1, n+1, \dots, 2mn-n-m\} & \text{if } m \text{ is odd, } n \text{ is odd.} \end{cases}$$

Examples 4.8.

- (a) The pc-set of the graph in Figure 5 is $\{35-2k: 0 \le k \le 14\}$. Because, it is a tree with perfect matching, hence it is fully product-cordial.
- **(b)** $PC(P_2 \times P_7) = \{3, 5, 7, \dots, 19\}.$
- (c) $PC(P_3 \times P_8) = \{37 2k : 0 \le k \le 17\} = \{3, 5, \dots, 37\}.$
- (d) $PC(P_4 \times P_7) = \{45 2k : 0 \le k \le 20\} = \{5, 7, \dots, 45\}.$
- (e) $PC(P_5 \times P_7) = \{58 2k : 0 \le k \le 27\} = \{4, 6, \dots, 58\}.$

5 Suggestion for Future Research

For the general grid $P_n \times P_m$, depending on the parity of m, its pc-set would *contain* the sets determined in Theorems 4.5 and 4.6. However, we might not have equality. For example, $PC(P_7 \times P_7) = \{4, 6, 8, \dots, 84\}$, while if we apply Theorem 4.6, we would only obtain $\{6, 8, \dots, 84\}$ which does not provide the smallest index 4. We wish to find a formula that would apply to all grids.

Also, in this paper, we presented a class of trees, perfect matching trees (Theorem 2.3), that are fully product-cordial. Identification of other fully pc graphs as well as finding necessary and sufficient conditions for fully pc trees would be another research direction.

6 Acknowledgments

The authors are grateful to Harris Kwong for his valuable comments and suggestions.

References

- M. Benson and S-M. Lee, On Cordialness of Regular Windmill Graphs, Congressus Numerantium 68 (1989), 49-58.
- [2] I. Cahit, Cordial Graphs: a weaker version of graceful and harmonious graphs, Ars Combinatoria 23 (1987), 201-207.
- [3] I. Cahit, On Cordial and 3-equitable Graphs, Utilitas Mathematica 37 (1990), 189-198.
- [4] I. Cahit, Recent Results and Open Problems on Cordial Graphs, Contemporary Methods in Graph Theory, Bibligraphisches Inst. Mannhiem (1990), 209-230.
- [5] N. Cairnie and K. Edwards, The Computational Complexity of Cordial and Equitable Labelings, Discrete Mathematics 216 (2000), 29-34.
- [6] G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill, Boston (2005).

- [7] R. Frucht and F. Harrary, On the Corona of Two Graphs, Aequationes Mathematicae 4 (1970), 322-325.
- [8] Y.S. Ho, S-M. Lee, and S.C. Shee, Cordial Labellings of the Cartesian Product and Composition of Graphs, Ars Combinatoria 29 (1990), 169-180.
- [9] M. Hovay, A-cordial Graphs, Discrete Mathematics 93 (1991), 183-194.
- [10] W.W. Kirchherr, On the Cordiality of Certain Specific Graphs, Ars Combinatoria 31 (1991), 127-138.
- [11] S. Kuo, G.J. Chang, and Y.H.H. Kwong, Cordial Labeling of mKn, Discrete Mathematics 169 (1997)121-131.
- [12] H. Kwong, S-M Lee and H.K. Ng, On Friendly Index Sets of 2-Regular Graphs, Discrete Mathematics 308 (2008), 5522-5532.
- [13] Y.H. Lee, H.M. Lee, and G.J. Chang, Cordial Labelings of Graphs, Chinese J. Math. 20 (1992), 263-273.
- [14] S-M. Lee and A. Liu, A Construction of Cordial Graphs from Smaller Cordial Graphs, Ars Combinatoria 32 (1991), 209-214.
- [15] E. Salehi, PC-Labeling of a Graph and its PC-Set, Bulletin of the Institute of Commbinatorics and its Applications 58 (2010), 112-121.
- [16] E. Salehi and S. De, On a Conjecture Concerning the Friendly Index Sets of Trees, Ars Combinatoria 90 (2009), 371-381.
- [17] E. Salehi and S-M. Lee, On Friendly Index Sets of Trees, Congressus Numerantium 178 (2006), 173-183.
- [18] E. Seah, On the Construction of Cordial Graphs, Ars Combinatoria 31 (1991), 249-254.
- [19] M.A. Seoud and A.E.I. Abdel Maqsoud, On Cordial and Balanced Labelings of Graphs, J. Egyptian Math. Soc. 7 (1999), 127-135.
- [20] S.C. Shee and Y.S. Ho, The Cordiality of one-point Union of n Copies of a Graph, Discrete Mathematics 117 (1993), 225-243.
- [21] S.C. Shee and Y.S. Ho, The Cordiality of the Path-union of n Copies of a Graph, Discrete Mathematics 151 (1996), 221-229.
- [22] M. Sundaram, R. Ponraj and S. Somasundaram, Product Cordial Labeling of Graphs, Bulletin of Pure and Applied Sciences 23E (2004), 155-163.
- [23] M. Sundaram, R. Ponraj and S. Somasundaram, Some Results on Product Cordial Labeling of Graphs, Pure and Applied Mathematika Sciences 23E (2004), 155-163.
- [24] M. Sundaram, R. Ponraj and S. Somasundaram, On Graph Labeling Parameters, Jornal of Discrete Mathematical Sciences & Cryptography 11 (2008), 219-229.