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Abstract

A binary vertex coloring (labeling) f : V(G) — Z; of a graph G is said
to be friendly if the number of vertices labeled 0 is almost the same as the
number of vertices labeled 1. This friendly labeling induces an edge labeling
f* : E(G) — Z; defined by f*(uv) = f(u)f(v) for all uv € E(G). Let () =
[{uv € E(G) : f*(uwv) = i}} be the number of edges of G that are labeled i.
Product-cordial index of the labeling f is the number pc(f) = |es(0) —e7(1)|.
The product-cordial set of the graph G, denoted by PC(G), is defined by

PC(G) = {pc(f) : [ is a friendly labeling of G }.

In this paper, we will determine the product-cordial sets of long grids Pm X
P,, introduce a class of fully product-cordial trees and suggest new research
directions in this topic.
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1 Introduction

In this paper all graphs G = (V, E) are connected, finite, simple, and undirected.
For graph theory notations and terminology not described in this paper, we refer
the readers to [6]. Let G be a graph and f : V(G) — Z; be a binary vertex coloring
(labeling) of G. For i € Zz, let vs(i) = [f~1(¢)|. The coloring f is said to be friendly
if Jvs(3) = v#(0)] < 1. That is, the number of vertices colored 0 is almost the same
as the number of vertices colored 1.

Any friendly coloring f : V(G) — Z; induces an edge labeling f* : E(G) — Z,
defined by f*(zy) = f(z)f(v) Yoy € E(G). For i € Zy, let e;(s) = |f*~*(i)| be
the number of edges of G that are labeled <. The number pe(f) = |es(1) — ef(0)|
is called the product-cordial index (or pc-indez) of f. The product-cordial set (or
pc-set) of the graph G, denoted by PC(G), is defined by
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PC(G) = {pc(f) : f is a friendly vertex coloring of G }.
To illustrate the above concepts, consider the graph G of Figure 1, which has 8
vertices. The condition |vs(1) — v,(0)] < 1 implies that four vertices be labeled 0
and the other four 1.

Figure 1: An example of product-cordial labeling of G.

Figure 1 also shows the associated edge labeling of G, where four edges have label
1 while the other 6 edges have labels 0. Therefore, the product-cordial index (or
pc-index) of this labeling is 6 — 4 = 2. It is easy to see that PC(G) = {2,4, 6, 8,10}.
The friendly colorings of G that provide the other four pc-indices are presented in
Figure 2.

Figure 2: Four friendly labelings of G with pc-indices 4, 6, 8 and 10.

In what follows, whenever there is no ambiguity, we will suppress the index f and
denote eg(z) by simply e(7). For a graph G = (p, g) of size g, and a friendly labeling
f:V(G) = Zy of G, we have

pe(f) = les(0) — er(1)| = lg — 2e4(1)| = lg — 2¢,(0)]. (1.1)

Therefore, to find the pc-index of f it is enough to find ef(1) ( or ef(0) ). Moreover,
to determine the pc-set of G it is enough to compute ef(1) for different friendly
colorings of G. Another immediate consequence of (1.1) is the following useful fact:

Observation 1.1. For a graph G of size g, PC(G) C {¢—-2k:0<k < |¢/2]}.
Definition 1.2. A graph G of size q is said to be fully product-cordial (fully pc) if
PC(G)={g—2k:0< k< |qg/2)}.
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For example, the graph G of Figure 1 is not fully pc. However, P,, the path of order
n, is fully pe. In case of P,, it is easy to observe that ef(1) = 0,1,--- ,[n; 1

which proves that

Theorem 1.3. For any n > 2, the graph P, is fully product-cordial. That is,
PC(P)={n-1-2k:0<k<|25!]}.

The different friendly labelings of P; that provide its pc-set are illustrated in Fig-
ure 3.
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Figure 3: PC(P;) = {0,2,4,6}.

In 1987, I. Cahit [2, 3, 4] introduced the concept of cordial labeling as a weakened
version-of the less tractable graceful and harmonious labeling. Given a friendly
labeling f : V(G) — Z; of a graph G, Cehit introduced an edge labeling f, :
E(G) — Z3 by fi(uv) = |f(v) — f(v)| and defined the cordial index c(f) of f to
be |£72(0) - f5 1(1)]. A graph is called cordial if it admits a friendly labeling with
cordial index O or 1. Cahit, among other facts, proved that

1. Every tree is cordial;

2. The complete graph K, is cordial if and only if n < 3;

3. The complete bipartite graph K(m,n) is cordial (m,n € N);

4. The wheel W, is cordial if and only if n#3 (mod 4);

5. In an Eulerian graph G = (p,q) if p = 0 (mod 4), then it is not cordial.

M. Hovay [9], later generalized the concept of cordial graphs and introduced A-
cordial labelings, where A is an abelian group. A graph G is said to be A-cordial if
it admits a labeling f : V(G) — A such that for every i,j € A,

[vf(2) — vs(4)] < 1 and |es(d) —es(5)| < 1.

Cordial graphs have been studied extensively. Interested readers are referred to
a number of relevant literature that are mentioned in the bibliography section,
including [1, 5, 8, 10, 11, 14, 19].

Product cordial labeling of a graph was introduced by Sundaram, Ponraj and Soma-
sundaran [22]. They call a graph G product-cordial if it admits a friendly labeling
whose product-cordial index is at most 1. Then Sundaram, Ponraj and Somasun-
daran [22, 23, 24] investigated whether certain graphs such as trees, cycles, complete
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graphs, wheels, etc. are product-cordial. Later E. Salehi [15] introduced the concept
of product-cordial set (or pc-set) of a graph and determined the pc-sets of certain
classes of graphs such as: complete graphs, complete bipartite graphs, stars and
double stars, cycles, and wheels.

2 Trees with Perfect Matching

In general, for a friendly coloring f : V(G) — Z; of a graph G, it is not necessarily
true that ef(0) > e;(1). For example, let n > 3 and consider the coronation of the
complete graph K, with K, as indicated in Figure 4.

Figure 4: A friendly coloring with e(1) > ¢(0).

If we color all vertices of K, by 1 and the end-vertices by 0, then e(1) = n(n —1)/2
while e(0) = n. However, for certain graphs one can prove that the number of edges
labeled O is bigger than the number of edges labeled 1. Trees are among such graphs
as we will see in the following theorem:

Theorem 2.1. For any tree T and any friendly coloring of T, e(0) > e(1).

Proof. The statement is true for trees of order n = 1,2, 3. Let T be a tree of order
n > 4 and assume to the contrary that e(1) > e(0) > 2. Then at least e(1) + 1
vertices of T are labeled with 1. Since the coloring is friendly, at least e(1) vertices
of T are labeled with 0. This implies that n > 2e(1) + 1 or |E| > 2e(1). Therefore,
2¢(1) < |E| = e(1) + e(0) < 2¢(1), a contradiction. a

Definition 2.2. A matching in a graph is a set of edges with no shared endpoints.
A matching M in a graph G is said to be a perfect matching if every vertex of G is
incident with an edge in M.

Note that every graph with perfect matching has even number of vertices. More-
over, if a graph G has a perfect matching M, then every pendent edge of G is in
M. Another useful observation about the trees with perfect matching is that they
contain at least one P;, the path of order 3, pendant. That is, there are vertices
u ~ v ~ w such that degu = 1 and degv = 2. In fact, the two end portions of the
longest path of T would have P; pendants. Here is another example of a class of
fully product-cordial graphs:
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Figure 5: An example of a tree with perfect matching that is fully pc.

Theorem 2.3. Any tree T of order p with a perfect matching is fully product-

cordial. That is,
PC(T)=1{1,3,5,-- ,p—-1}.

Proof. Let T be a tree with perfect matching M and |M| = m. We proceed by
induction on m. Clearly, the theorem is true for m = 1,2. Suppose it is true for any
perfect matching tree with |[M| = m and let S be a tree with perfect matching M ’
such that [M'| = m + 1. Among the elements of M there is at least one terminal
edge uv of the tree S such that v ~ v ~ w, degu = 1 and degv = 2. Now if
we delete the vertices u and v from S, the result would be a tree T with perfect
matching M’ — uv and |M’ — uv| = m. Therefore, by the induction hypothesis,
PC(T) = {1,8,---,2m — 1}. We need to show that PC(S) = {1,3,---,2m —
1,2m + 1}. Consider a friendly coloring f : V(T) — Z; of T and extend it to
g: V(S) = Z; by defining g(v) = 0, g(u) = 1. This becomes a friendly coloring of
S with e4(1) = ey(1) and ez{0) = 2 + e¢(0). Therefore, pc(g) = 2 + pc(f). That is,
2+ PC(T) ={3,5, - ,2m + 1} C PC(S). To show that 1 € PC(S), we choose a
subtree of S with m + 1 vertices and label all these vertices by 1 and other vertices
of S by 0. This is a friendly labeling of S with e(0) = m + 1 and e(1) = m and has
index 1. a

Theorem 2.3 provides a sufficient condition for fully pc trees. However, this condi-
tion is not necessary. A simple example would be Ps,+1 which is fully pc and does
not have a perfect matching. We wish to present the following example, illustrated
in Figure 6, that can easily be generalized to construct other classes of fully pc
trees.

3 Grids and PC-Sets of Ladders

For any m,n > 2, the Cartesian product P,, x P, of two paths is called a grid. The
grid Py, x P, has mn vertices and 2mn — m — n edges. Let vy ~vg ~--- ~ v, be
the vertices of Py, and w; ~ wy ~ -+ ~ wy be vertices of P,. In what follows, for
convenience, we denote the vertex (v;, w;) by u;j, the subgraph uy; ~ sz ~ - -+ ~ ujn
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Figure 6: A fully pc tree with pc-set {0,2,4,---,16,18}.

of P x P, by p; (i*® Row), and the subgraph u;; ~ ugj ~ + -« ~ up; of P X P, by
% (j** Column). Note that two vertices u;; and uy are adjacent if the difference
between 7 4+ j and ! + k is 1. This leads to our first observation:

Theorem 3.1. The grid P, x P, has the mazimum pc-indez 2mn — m — n.

Proof. Consider the friendly coloring f : V(Pn x P,) — Z that is 1 on uy; if

—1)i+i
i+ 7 is even and 0 if ¢ + j is odd. That is, f(u;;) = -IM— Since every two
adjacent vertices have opposite colorings, the induced product-cordial edge labeling
is identically 0. Therefore, pe(f) = 2mn —m —n. o

The coloring that is presented in the proof of Theorem 3.1 will be referred to as
alternating, by which we mean every two adjacent vertices have different colors.

Theorem 3.2. For any friendly coloring of P X P, with2 < m < n, e(0) > e(1).

Proof. Since e(0) + e(1) = |E(G)| is fixed, it is enough to show that the maximum
value of (1) is less than the minimum value of e(0). Note that the maximum value
of (1) occurs when all the vertices labeled 1 are clustered (adjacent). Likewise, the
minimum value of e(0) occurs when all the vertices labeled 0 are clustered. Now,
let 7, s and t denote the number of edges incident with two vertices that are both
labeled 1, have different labeling and are both labeled 0, respectively. We consider
two cases:

Case I: 4 €< 2m < n. Without loss of generality we may assume that all the
vertices labeled 1 are vertices of the first |n/2] columns and, if n is odd, the first
[m/2] vertices of the middle column are labeled 1. Thus, r =t + 1 — (—1)™" and

s=m+ 1_—(_;_1): Therefore,

8(0)—6(1)=s+t—r=m+1_—(2——1)n_l+(_l)mn>0'

CaseIl: 7 < m < n < 2m. The conditions m,n > 7 imply that (m—2)(n—2) > B2,
Without loss of generality we may assume that all the vertices labeled 1 are clustered
inside the grid and consequently have degree 4. Let H be the subgraph of G induced
by all edges that are incident with at least one vertex labeled 1. Then H hasr +s

edges, [mn/2] vertices of degree 4 and s end-vertices. Hence
n

vevzm)deg(v) =4[%-' +s=2r+2s O”.___2[mT'I _%'
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Also, we note that the minimum value of s occurs when all the vertices labeled 1
would form a square subgrid. Therefore,

O o O

Since r + s + t = |E(G)|, we have

e0)-e(l)=s+t—r=r+s+t-2r

We observe that the function f(z,y) = 44/zy/2 -z — y — 2 is always positive in the
region defined by inequalities 7 < x < y < 2z which concludes that e(0) > e(1).

Cases I and II do not apply to a finite number of grids, however, the result holds
in general and can be verified directly for those cases. o

Corollary 3.3. For any m,n > 2, the product-cordial set of P x Py, 18
{2mn —m —n — 2e4(1) : f is a friendly coloring of P, x P,}.

Proof. Note that the number of edges of Py x P, is 2mn — m — n and for any
friendly coloring f, pe(f) = |e(0) — e(1)] = e(0) — (1) =2mn—m —n—2¢(1). O
Before stating the main result concerning grids in the next section, we consider the
special case of a ladder, which illustrates the technique and provides us with a tool
for the proof of the general case.

Theorem 3.4. PC(P; x P} ={3n -2-2k:0< k < |3n/2] - 2}.

Proof. For any integer k with 0 < k < |3n/2] — 2, we present a friendly coloring f
such that e(1) = k. By Theorem 3.1, we may assume that k > 1. We consider the
following three cases:

A. k=3a+1. Since k < [3n/2] — 2, then a < § — 1. We label all the vertices of
the first a + 1 columns by 1 (note this yields &k edges labeled 1), label all the
vertices of the subsequent a+1 columns by 0 and alternate the coloring of the
remaining vertices, as illustrated in Figure 7. That is,

1 if 1<j<a+1;
flvig) = 0 . if a+2<5<2a+2
( ‘7) 1_(__1)x+1 ) .

— if 2a+3<j<n.

The coloring f is friendly and e;(1) = k.

345



g v
a+i a+l

Figure 7: A friendly coloring of P, x P; with index 7.

B. k= 3a+2, where 0 < ¢ <  —1. We modify the coloring of Case A on the
last two columns of P, x P, to obtain an extra edge labeled 1. Specifically,
let f be defined by

1 if 1<j<a+lorj=mn
fluig) = (; (1) if a+2 £j<2a+20rj=n-1;
— if 224+3<j<n-2.

The coloring f is friendly and es(1) = k. This friendly coloring is illustrated
in Figure 8.

Figure 8: A friendly coloring of P, x P;; with index 8.

C. k= 38a+3, where 0 < a < % — 1. This time we alter the coloring of Case A
on the last three columns of P» x P, to produce two additional edges labeled

1
1 if 1<j<a+1lorj=mn;
flug) = 0 if a+2<j<2a+20rj=n-2
" 1—(=1)"7 , .
—5 if 2¢+3<j<n-3orj=n-1.
The coloring f is friendly and e;(1) = k. This friendly coloring is illustrated
in Figure 9.

This proves that {3n —2—-2k:0 < k < |3n/2] — 2} € PC(P; x P,). Note that by
observation 1.1, PC(P; x P,) C {3n —2 -2k : 0 < k < |3n/2] — 1}. To complete
the proof, it is enough to show that k # |3n/2] — 1, which follows from Theorem
3.2. a

Corollary 3.5. P, x P, is not fully product-cordial.
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Figure 9: A friendly coloring of P» x P;; with index 9.

Proof. 1t follows from the previous theorem that

{2,4,6,...,3n -2} if niseven;

PC(Py x P,) = {{3’5’7,...,311-2} if nis odd.

4 PC Sets of Long Grids

By a long grid we mean the graph P, x P,, with m > 2n. In this section we
determine the product-cordial sets of long grids. Before stating the main result, we
prove some preliminaries.

Lemma 4.1. For any grid P, x P; and any integer k with 0 < k < 2n — 2, there
is o friendly coloring such that e(1) = k.

Proof. We consider two cases:

Casel: 0 < k <n—1. Label k+1 top vertices of k4 by 1 (note that this produces k
edges labeled 1), k+1 top vertices of k3 by 0 and alternate coloring of the remaining
vertices of P, x Py.

Case II: n < k < 2n — 2. Label all vertices of x4 and k — n + 2 top vertices of xg
1 (note that this produces k edges labeled 1), all vertices of k3 and k — n + 2 top
vertices of k; 0 and alternate coloring on the remaining vertices of the graph. In
each case the coloring is friendly and e(1) = k. m]

Remark 4.2. Note that the above result is true for any grid P, x P, whenever
m > 4. We simply attach P, x Pp,—4 that has alternating coloring to P, x P4 by
joining the vertices of the last column of P, x Pp,_4 to the corresponding vertices
of the first column of P, x P, keeping in mind that alternating color of P, x Py—4
be consistent with the coloring of the first column of P, x P,.

Lemma 4.3. For any long grid P, X Py, and any integer k with 2mn—3n—m+1 <
k < 2mn — n — m, there is a friendly coloring such that e(1) = k. Moreover, the
mazimum value of e(1) is 2mn —m —n.

Proof. We consider four cases:

Case I: £ = 2mn — n - m. The maximum velue of e(1), which is 2mn — n —m, is
obtained when all vertices of a subgraph P, X P, are labeled 1 and the remaining
vertices of P, x Py, are labeled 0. Without loss of generality we may assume that
the subgraph P, x P,, is induced by the first m columns of P, X Pop,.
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Case II: k = 2mn — n — m ~ 1. In the labeling presented in Case I, exchange the
colorings of u1 m, and ug m41, which reduces the number of edges labeled 1 by one.
Case III: £ = 2mn — n — m — a, where 2 < a < n. In the labeling presented in Case
I, exchange the colorings of u m,...,usm and Uy m41,- .., %a,m+1, Which reduces
the number of edges labeled 1 by a.

Case IV: k =2mn —-3n+m+1+a, where 0 < a <n —1. Label all the vertices of
the first m — 1 columns of P,, X Pay, by 1 (note that this produces 2mn—3n—m+1
edges labeled 1), all the vertices of m — 1 subsequent columns by 0 and let the last
two columns of P, x P, have any friendly coloring of P,, x P, that has a edges
labeled 1, existence of which is ensured by Theorem 3.4. In each case, the coloring
is friendly and e(1) = &. (m]

Theorem 3.2 indicates that for any graph G and any friendly coloring f, pe(f) =
|E(G)| — 2e4(1). It follows from the previous lemma that the minimum product-

cordial index of P, x Py, is n.
Lemma 4.4. PC(P, x Pp,)={4n? —3n -2k : 0 < k < 2n? — 2n}.

Proof. Note that by Corollary 3.3,

PC(P, x Pp,) = {4n® — 8n — 2e4(1) : f is a friendly coloring of P, x Pp,}.
To prove the lemma, one has to show that for any & with 0 < k < 2n? — 2n, there
is a friendly coloring f such that ef(1) = k. By Lemmas 4.1 and 4.3 it suffices to
consider k with 2n —1 < k < 2n%2 —4n. Let k = (n — 1) + (2n — 1)a + r, where
0<a<n-3and0<r < 2n-2. Consider the coloring of P, x P, that labels
the vertices as follow:

1 0 alt

a+1 a+l 1
Figure 10: A typical friendly coloring of P, x Py,

(1) Label all the vertices of the first a+1 columns by 1. The corresponding induced
edge labeling will produce n — 1 + (2n — 1)a edges that are labeled 1.

(2) Label all the vertices of the columns a + 2 through 2a + 2 by 0.

(3) Label the vertices of the last four columns according to the Lemma 4.1 to
produce r edges with lable 1.

(4) Finally, use alternating labeling for columns 2a + 3 through 2n — 5 such that
the alternation be consistent with the labels of (2n — 4)*" column.

This coloring is friendly and e(1) = k. ()}

_ Theorem 4.5. For any m > n, the product-cordial set of the long grid P, X Por, is
{4mn-n—-2m—2k : 0 <k < 2mn - n - m}.
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Proof. We proceed by induction on m. By Lemma 4.4, the statement is true for
m = n. Suppose it is true for the long grid P, x P, with m > n. We wish to show
that the statement of the theorem is true for P, x Papya.

Let f be any friendly labeling of P, x Pym. We extend f to a friendly labeling g of
P, X P42 by labeling all the vertices of column 2m + 1 by 0 and all the vertices
of column 2m + 2 by 1. Then e,(1) = ef(1) + n — 1. This implies that for any k
with n —1 < k < 2mn — m — 1 there is a friendly labeling of P, x P42 such that
e(1) = k. On the other hand, in the view of Lemmas 4.1 and 4.3 it is enough to
consider those values of k that satisfy 2n — 1 < k < 2mn + n — m. This proves the
theorem, because 2n - 1,2mn+n—m| C [(n—1,2mn+2n ~m —~ 1]. 0

Theorem 4.6. For any m > n, the product-cordial set of the long grid Pp X Popq

is

—1)n
{dmn+n-2m-1-2k : 0<k<2mn-m— 1—+—(2—1—)-}
Proof. By Corollary 3.3, for any friendly coloring f of a grid G, pe(f) = [E(G)| -
2e4(1). Therefore, the minimum product-cordial index of P, X Pam41 is produced
by the maximum value of e(1). This meximum value is obtained when all vertices
of a subgraph of P, X P41 induced by the vertices
{uij:1<i<nand1<j<m}ufu;:1<i< [n/2] and § = m+1} are labeled 1
and the remaining vertices of P,, X Pzp+1 are labeled 0. That is, the maximum value
14+ (-1)"

2
the theorem, one has to show that for any k with 0 < k < 2mn - m -
there is a friendly coloring such that e{1) = k. By Lemma 4.1 it suffices to consider
- n

the values of k with 2n — 1 < ksZmn—m—}—%l—)—.
Let f be any friendly labeling of P, x Pom such that all vertices of column 2m are

labeled 1. We extend f to a friendly labeling g of P, x P41 by labeling all the top
[n/2] vertices of the last column of P, X Pzm4 by 1 and the remaining vertices of

, hence the minimum pc-index is n+{(—1)". To prove
14+ (-1)»

of e(1) is 2mn-m - ———

the last column by 0. Then eg(1) = ef(1) + 2[n/2] — 1 =ep(l) +n — u
_1\n
This together with Theorem 4.5 imply that for any k with 2n—1— —1+—(2-Q- <k<
—_ n
2mn—m — }+—(L)- there is friendly coloring of P, X Pem4; such that e(1) =
The proof of the theorem is complete, because
n —~1\» —_1\n

2n-1,2mn—-m— —ﬂ]CP 1+—(21)—,2mn—m—li-(-2i-]. o

Corollary 4.7. The long grid P, x P, m 2 2n, is not fully product-cordial.
Proof. 1t follows from Theorems 4.5 and 4.6 that

{n,n+2,...,2mn—n-m} if m is even;
PC(Pax Pp)=<{n+1,n+3,....2mn-n—m} if m is odd, n is even;
{n-1,n+1,....,2mn-n-m} if misodd, nisodd.

Examples 4.8.
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(a) The pc-set of the graph in Figure 5 is {35 — 2k : 0 < k < 14}. Because, it is a
tree with perfect matching, hence it is fully product-cordial.

(b) PC(P; x P;) ={3,5,7,--- ,19}.

(c) PC(Pyx Ps) ={37—-2 : 0< k <17} = {3,5,.--,37}.
(d) PC(Py x Py) = {45—2k : 0 < k < 20} = {5,7,-- ,45}.
(e) PC(Pyx Py)={58—2k : 0< k <27} = {4,6,--- ,58}.

5 Suggestion for Future Research

For the general grid P, x Pp,, depending on the parity of m, its pc-set would contain
the sets determined in Theorems 4.5 and 4.6. However, we might not have equality.
For example, PC(P; x P;) = {4,6,8,...,84}, while if we apply Theorem 4.6, we
would only obtain {6,8,...,84} which does not provide the smallest index 4. We
wish to find a formula that would apply to all grids.

Also, in this paper, we presented a class of trees, perfect matching trees (Theorem
2.3), that are fully product-cordial. Identification of other fully pc graphs as well
as finding necessary and sufficient conditions for fully pc trees would be another
research direction.
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