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Abstract: Let H, G be two graphs, where G is a simple subgraph
of H. A G-decomposition of H, denoted by G-GD,(H), is a
partition of all the edges of AH into subgraphs (called G-blocks),
each of which is isomorphic to G. A large set of G-GDy(H),
denoted by G-LGDy(H), is a partition of all subgraphs isomorphic
to G of H into G-GDy(H)s. In this paper, we determine the
existence spectrums for K3 2-LGD(Km n).
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1 Introduction

A complete multigraph of order v and index A, denoted by AK,, is a graph
with v vertices, where any two distinct vertices 2 and y are joined by A
edges {z,y}. Let MK, n,,..n, be a complete multipartite graph whose
vertex set X consists of h disjoint sets Xy,---, Xy, where |X;| = n; and
any two vertices z and y from different sets X; and X; are joined by exactly
A edges {z,y}.
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Let H,G be two graphs, where G is a simple subgraph of H. An G-
GD,(H) is a partition of all the edges of AH into subgraphs (called G-
blocks), each of which is isomorphic to G. The G-GDy(H) is named as
G-decomposition (or G-design) of H. For H = K,, and some simple graphs
of G, such as cycle Cy, path Pk, star Sk, k-cube, the graphs with at most
five vertices and some graphs with six vertices, the existence of these G-
decompositions has been solved(see [2]).

A large set of G-G D (H), denoted by G-LGD)(H), is a partition of all
subgraphs isomorphic to G of H into G-GD)(H)s. For A = 1, the index 1
is often omitted.

A Steiner triple system of order n, denoted by ST'S(n), is a pair (X, B),
where X is an n-set and B is a collection of triples (called blocks) on X
such that every pair from X appears exactly in one block of B. It is easy to
see that an ST'S(n) is just a C3-GD(K,,) and a large set of Steiner triple
system LSTS(n) is just a C3-LGD(K,). The existence has been solved by
J. Lu and L. Teirlinck (see [6-8]). From then on, the existence problems of
large set of G-G D) (H) have been widely researched, see [1,3-5,9-14].

A subgraph H of G is called a spanning subgraph of G if V(H) =
V(G). A X-fold F-factor of G, is a spanning subgraph of G, which can
be partitioned into copies of F* (called F-blocks), such that each vertex of
V(G) appears exactly in A F-blocks. A A-fold F-factorization of G is a set
of edge-disjoint A-fold F-factors of G, whose edge sets partition the edges
of G. For A =1, it is called an F-factorization of G. Particularly, if F is
just an edge of G, then the F-factor is called a one-factor of G, and the
corresponding F-factorization is called a one-factorization of G.

A k-cycle, denoted by (z1,z2,:-,2y), is a subgraph of K, which con-
sists of k (< v) distinct points ;, z3, - - -, 2 and k edges {z1,z2}, -+, {1,
zk}, {Tk, 1}. When k = v, it is called a Hamilton cycle of K,. A k-cycle
system of order v and index A, CS(v,k, )), is a collection C of k-cycles
of K,, such that each edge of K, appears exactly in A members of C. In
particular, a CS(v,v,1) is called a Hamilton cycle decomposition of K,,.

Lemma 1.11 For n > 1, there exist a one-factorization of Ky, and a
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Hamilton cycle decomposition of Kop41-

In this paper, we will investigate the existence of K3 2-LGDx(Km,n)

and obtain its existence spectrum.

2 Main Constructions

A Ky 3-GDy(Km,n) consists of "—"’1‘-3 K 2-blocks, each of which consists
of four vertices of degree 2. An K3 2-LGDx(Km,n) consists of gm—'%'l'—lz
disjoint K2,2-GDx(Kmn)s. So, we have the following results.
Theorem 2.1 There exists a K22-LGD\(Kmn) only if 4|Amn, 2|Am, 2|An
and A|(m — 1)(n - 1).
Therefore, in order to determine the existence spectrum for K3 2-LG D),
(Km,n), it is enough to construct K 3- LGD(Kam,2n), K2,2-LGD2(Kam41,20 )
K2,2-L0D4(K4m+1'2n+1) and Kz,z-LGD4(K4m_1,2n+1) for any positive in-
tegers m and n.
Theorem 2.2 There ezists a K2 2-LGD(Kapm 2n) for any positive integers
m and n.
Proof. By Lemma 1.1, there exist one-factorizations
Pi= {{aik bik}:0< k<m-1}1<i<2m -1,
Qj ={{cj,¢,d,-'1}:0_<_l§n—1},1 <jL<2n-1
of Ko, on Zs,, and of Ky, on Zp, respectively. Take the point set of
Kom2n 88 Zom|JZ2n. Define the following collections of K3 a-blocks of
Kom an, where i € Z3,, = Zy,,\{0}, 7 € Z3,.
Al = {[@i ks bi k381, dig] 1 0Sk<m-1,0<1<n—1}.
Then the following collections form a K3 2-LGD(Kam 2n):
{Al i€ Z3,,7€ 23}

Firstly, each A is just a K2 2-GD(K2m,2n). And the total number of A
is (2m — 1)(2n — 1), as expected. Below we only need to verify that each
K3 2-block in the form Q = [a,b;E,d] of Kom 2n on Zom U Zan appears in
one Al

Since {P; :1 £ i <2m—1}and {@; : 1 < j < 2n — 1} are one-
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factorization of Kom on Zs, and one-factorization of Ko, on Zy, respec-
tively, for the edges {a,b} and {c,d}, there exist i € 23,,,7 € Z3,, such
that {a,b} = {ai,bix} € P; and {c,d} = {cj1,dj:} € Q;. So, Q€ Al. =

Theorem 2.3 There exists a K3 2-LGDa(Kam41,20) for any positive inte-

gers m and n.

Proof. By Lemma 1.1, there exists a Hamilton cycle decomposition
Pi = (ai 0,01, 1 0i2m), 1 £E<m,
of Kom+1 on Zom41. And there exists a one-factorization
Q= {{ej1dj}:0<1<n—-1}1<j<2n-1
of Kan on Za,. Take the point set of Kom+1,2n 85 Zom41|JZ2n. Define
the following collections of K3 2-blocks of Kom+1,2n:
Al = {[@ik, @i k41380, dig) 1 0< k< 2m,0< 1< n—1},
wherei € Z;, . ,,j € Z3, and the index k+1 is taken modulo 2m+1. Then
the following collections form a K3 2-LGDa(Kom+1,20):
{Al:i€Zy,,,5€23,).

Firstly, since each P; is a Hamilton cycle, each A;’ is just a K3 2-GD,
(K2m+1,2n)- And the total number of .Af is m(2n — 1), as expected. Below
we only need to verify that each K3 z-block in the form Q@ = [a, b;E,d] of
Kom41,2n 00 Zamy1 U Zas appears in one A

Since {P; : 1 < i < m} is a Hamilton cycle decomposition on Zzpmy1
and {Q; : 1 < j < 2n—1} is a one-factorization on Za,, for the edges {a, b}
and {c,d}, there exist i € Z,,,,j € Z3,, such that {a,b} appears in P;
and {c,d} appears in Q;. So, Q € AJ. ]

Theorem 2.4 There ezists a K3 2-LGDy(Kymi1,2n+1) for any positive
integers m and n.
Proof. By Lemma 1.1, there exist Hamilton cycle decompositions

Pi =(ai0,0i1,  *,8iam), 1 1< 2m,

Qj = (bi,0,bi,1,-bi2n), 1< <n
of K4m41 on Zgm41 and of Kanyy on Zo,yy respectively. Take the point
set of Kam+1,2n+1 85 Zgm+1l) Z2ns1. Define the following collections of
Kz_g-blocks of K4m+1,2n+11
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Al = {{aik, @i k41 05,0, 55,041) 1 0 < k < 4m, 0 < 1 < 20},
where i € Z3,,,1,5 € Z;,,; and the indices k + 1,/ + 1 are taken modulo
4m + 1 and 2n + 1 respectively. Then the following collections form a
K3,2-LGD4y(Kgm+1,2n+1):
{Al1i€ Zgnynid € Zh ). .

Firstly, since each P; and Q; is a Hamilton cycle, each A] is just a Kj o-
GDy(K4m+1,2n+1). And the total number of .Af is 2mn, as expected. Below
we only need to verify that each K3 s-block in the form Q = [a, b; E,E] of
Kim+1,2n+1 00 Zgms1U Zan41 appears in one Al

Since {P; : 1 < i £ 2m} and {Q; : 1 £ i £ n} are Hamilton cycle
decompositions of Kym+1 and Kon41 respectively, for the edges {a,b} and
{c,d}, there exist i € Z3,,,,5 € Z;41, such that {a,b} appears in P; and
{c,d} appears in Q;. So, @ € Af-' . .

Theorem 2.5 There ezists a Ko 2-LGD4(Kym—1,2n+1) for any positive

integers m and n.

Proof. Similar to Theorem 2.4, we can get the proof. n

3 Conclusion

Theorem 3.1 There ezists a Ko 2-LG D) (K5 ) if and only if 4| dmn, 2|]Am,
2|An, Aj(m —1)}{(n — 1) and m,n > 2.
Proof. By Theorem 2.1, we only need to prove the sufficiency.
If 4{mn, then we have
Case 1: if m = 2s + 1, then n = 4¢ and 2|A\|(m — 1)(n — 1).
By Theorem 2.3, there exists a
K3,2-LGDy(K2a41,4e) = {(Z2041U Z 1, Ai) : 1 < i < s(4t — 1))
Define

(k+1)§\
Bi= U A, 0<k<ZO=10_ g
i=k$+1

then {(Z2541UZ4:, Br) : 0 < k < M%%'—12--1} is just aKz,z-LGDA(K2a+1-,4t)-
o 2in, “M(m —1)(n — 1)
Case 2: if m = 4s, then { 2 fn, 2[A|(m—1)(n—1).
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By Theorem 2.2, there exists a
K2,2-LGD(K43,2¢) = {(Z“ U-Zzg,A;) :11<i< (48— 1)(2t - 1)}
Define

(k+1)A
B= U A, 0<ks@=lED_
i=kA+1

then {(Z4sUZ2:, Bi): 0 <k < 22D _ 1} ig just a K 3-LGDA(K4s,2t)-
By Theorem 2.3, there exists a
K32-LGD5(Kys,2t41) = {(Z4s U Zae41, Ai) 1 1 <6 < (48 — 1)t}
Define
(k+1)%
Bi= U A, 0gkgle2 g
i=k4+1

then {(Z4sUZ2¢41, Bx) : 0 <k < 2502 11 is just a Kp 0 LG D (Kas,2041)-
Case 3: if m = 4s+ 2, then n =2t and A|[(m - 1)(n —1).
By Theorem 2.2, there exists a
Kz,z-LGD(KM.q.z,zt) = {(Z43+2 U-Z-zg,Ai) 11<i<(ds+ 1)(2t - 1)}

Define
(k+1)A

Be= U A, 0gkglsti®D) g
then {(Zgsta U Zae,By) : 0 < k < (NED 93 g just a Kyp-

LGD»(K1s42,21)-

If 4 Jmn, then we have
Case 1': if 2 fmn, then m = 2s+1,n = 2t + 1 and 4|A\|(m —1)(n - 1).
By Theorem 2.4 and Theorem 2.5, there exists a
K22-LGD4(Kas41,2041) = {(Z2s41 U Zae41, Ai) : 1 < i < st}

Define

(k+1)%
Bk= U A«',Oskﬁ%—l,
i=k3+1

then {(Z2541UZ2¢41,Bk) : 0< k < 5";‘—1} is just 8 K3 2-LG D (Kas+1,2t+1)-
Case 2': if 2|mn, then m = 2s + 1,n = 2t and 2|A\|(m — 1)(n —1).
By Theorem 2.3, there exists a
K29-LGD2(K2s41,2t) = {(Z2641 U Z3, As) : 1 <0 < s(2t — 1)}

Define
(k+1)%

Bi= |J A, 0<k< 23D 9

i=k$+1
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then {(Zas4+1UZ02, Be) : 0 < k < 22D 1} s just a Ky 3-LG Dy (Kzo41,2¢)-
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