Large sets of $K_{2,2}$ -decomposition of complete bipartite graphs*

Guohui Hao
College of Mathematics and Information Science
Hebei Normal University
Shijiazhuang 050024, P.R. China
ghhao720@163.com

Abstract: Let H, G be two graphs, where G is a simple subgraph of H. A G-decomposition of H, denoted by G- $GD_{\lambda}(H)$, is a partition of all the edges of λH into subgraphs (called G-blocks), each of which is isomorphic to G. A large set of G- $GD_{\lambda}(H)$, denoted by G- $LGD_{\lambda}(H)$, is a partition of all subgraphs isomorphic to G of H into G- $GD_{\lambda}(H)$ s. In this paper, we determine the existence spectrums for $K_{2,2}$ - $LGD_{\lambda}(K_{m,n})$.

key words: large set; $K_{2,2}$ -decomposition; complete bipartite graph

1 Introduction

A complete multigraph of order v and index λ , denoted by λK_v , is a graph with v vertices, where any two distinct vertices x and y are joined by λ edges $\{x,y\}$. Let $\lambda K_{n_1,n_2,\dots,n_h}$ be a complete multipartite graph whose vertex set X consists of h disjoint sets X_1,\dots,X_h , where $|X_i|=n_i$ and any two vertices x and y from different sets X_i and X_j are joined by exactly λ edges $\{x,y\}$.

^{*}Research supported by NSFC Grant 11171089, NSFC Grant 10901051, NSFH Grant A2010001481 and Science Foundation Of Hebei Normal University.

Let H, G be two graphs, where G is a simple subgraph of H. An G- $GD_{\lambda}(H)$ is a partition of all the edges of λH into subgraphs (called G-blocks), each of which is isomorphic to G. The G- $GD_{\lambda}(H)$ is named as G-decomposition (or G-design) of H. For $H = K_n$ and some simple graphs of G, such as cycle C_k , path P_k , star S_k , k-cube, the graphs with at most five vertices and some graphs with six vertices, the existence of these G-decompositions has been solved(see [2]).

A large set of G- $GD_{\lambda}(H)$, denoted by G- $LGD_{\lambda}(H)$, is a partition of all subgraphs isomorphic to G of H into G- $GD_{\lambda}(H)$ s. For $\lambda = 1$, the index 1 is often omitted.

A Steiner triple system of order n, denoted by STS(n), is a pair (X, \mathcal{B}) , where X is an n-set and \mathcal{B} is a collection of triples (called blocks) on X such that every pair from X appears exactly in one block of \mathcal{B} . It is easy to see that an STS(n) is just a C_3 - $GD(K_n)$ and a large set of Steiner triple system LSTS(n) is just a C_3 - $LGD(K_n)$. The existence has been solved by J. Lu and L. Teirlinck (see [6-8]). From then on, the existence problems of large set of G- $GD_{\lambda}(H)$ have been widely researched, see [1,3-5,9-14].

A subgraph H of G is called a spanning subgraph of G if V(H) = V(G). A λ -fold F-factor of G, is a spanning subgraph of G, which can be partitioned into copies of F (called F-blocks), such that each vertex of V(G) appears exactly in λ F-blocks. A λ -fold F-factorization of G is a set of edge-disjoint λ -fold F-factors of G, whose edge sets partition the edges of G. For $\lambda = 1$, it is called an F-factorization of G. Particularly, if F is just an edge of G, then the F-factor is called a one-factor of G, and the corresponding F-factorization is called a one-factorization of G.

A k-cycle, denoted by (x_1, x_2, \dots, x_k) , is a subgraph of K_v , which consists of $k (\leq v)$ distinct points x_1, x_2, \dots, x_k and k edges $\{x_1, x_2\}, \dots, \{x_{k-1}, x_k\}, \{x_k, x_1\}$. When k = v, it is called a Hamilton cycle of K_v . A k-cycle system of order v and index λ , $CS(v, k, \lambda)$, is a collection C of k-cycles of K_v , such that each edge of K_v appears exactly in λ members of C. In particular, a CS(v, v, 1) is called a Hamilton cycle decomposition of K_v .

Lemma $1.1^{[2]}$ For $n \geq 1$, there exist a one-factorization of K_{2n} and a

Hamilton cycle decomposition of K_{2n+1} .

In this paper, we will investigate the existence of $K_{2,2}$ - $LGD_{\lambda}(K_{m,n})$ and obtain its existence spectrum.

2 Main Constructions

A $K_{2,2}$ - $GD_{\lambda}(K_{m,n})$ consists of $\frac{\lambda mn}{4}$ $K_{2,2}$ -blocks, each of which consists of four vertices of degree 2. An $K_{2,2}$ - $LGD_{\lambda}(K_{m,n})$ consists of $\frac{(m-1)(n-1)}{\lambda}$ disjoint $K_{2,2}$ - $GD_{\lambda}(K_{m,n})$ s. So, we have the following results.

Theorem 2.1 There exists a $K_{2,2}$ - $LGD_{\lambda}(K_{m,n})$ only if $4|\lambda mn, 2|\lambda m, 2|\lambda n$ and $\lambda|(m-1)(n-1)$.

Therefore, in order to determine the existence spectrum for $K_{2,2}$ - LGD_{λ} $(K_{m,n})$, it is enough to construct $K_{2,2}$ - $LGD(K_{2m,2n})$, $K_{2,2}$ - $LGD_2(K_{2m+1,2n})$, $K_{2,2}$ - $LGD_4(K_{4m+1,2n+1})$ and $K_{2,2}$ - $LGD_4(K_{4m-1,2n+1})$ for any positive integers m and n.

Theorem 2.2 There exists a $K_{2,2}$ - $LGD(K_{2m,2n})$ for any positive integers m and n.

Proof. By Lemma 1.1, there exist one-factorizations

$$\begin{split} \mathcal{P}_i &= \{\{a_{i,k}, b_{i,k}\} : 0 \leq k \leq m-1\}, 1 \leq i \leq 2m-1, \\ \mathcal{Q}_j &= \{\{c_{j,l}, d_{j,l}\} : 0 \leq l \leq n-1\}, 1 \leq j \leq 2n-1 \end{split}$$

of K_{2m} on Z_{2m} and of K_{2n} on Z_{2n} respectively. Take the point set of $K_{2m,2n}$ as $Z_{2m} \bigcup \overline{Z}_{2n}$. Define the following collections of $K_{2,2}$ -blocks of $K_{2m,2n}$, where $i \in Z_{2m}^* = Z_{2m} \setminus \{0\}, j \in Z_{2n}^*$.

$$A_i^j = \{[a_{i,k}, b_{i,k}; \overline{c}_{j,l}, \overline{d}_{j,l}] : 0 \le k \le m-1, 0 \le l \le n-1\}.$$

Then the following collections form a $K_{2,2}$ - $LGD(K_{2m,2n})$:

$$\{\mathcal{A}_{i}^{j}: i \in \mathbb{Z}_{2m}^{*}, j \in \mathbb{Z}_{2n}^{*}\}.$$

Firstly, each \mathcal{A}_{i}^{j} is just a $K_{2,2}$ - $GD(K_{2m,2n})$. And the total number of \mathcal{A}_{i}^{j} is (2m-1)(2n-1), as expected. Below we only need to verify that each $K_{2,2}$ -block in the form $Q = [a,b;\overline{c},\overline{d}]$ of $K_{2m,2n}$ on $Z_{2m} \cup \overline{Z}_{2n}$ appears in one \mathcal{A}_{i}^{j} .

Since $\{\mathcal{P}_i: 1 \leq i \leq 2m-1\}$ and $\{\mathcal{Q}_j: 1 \leq j \leq 2n-1\}$ are one-

factorization of K_{2m} on Z_{2m} and one-factorization of K_{2n} on Z_{2n} respectively, for the edges $\{a,b\}$ and $\{c,d\}$, there exist $i \in Z_{2m}^*, j \in Z_{2n}^*$, such that $\{a,b\} = \{a_{i,k},b_{i,k}\} \in \mathcal{P}_i$ and $\{c,d\} = \{c_{j,l},d_{j,l}\} \in \mathcal{Q}_j$. So, $Q \in \mathcal{A}_i^j$.

Theorem 2.3 There exists a $K_{2,2}$ - $LGD_2(K_{2m+1,2n})$ for any positive integers m and n.

Proof. By Lemma 1.1, there exists a Hamilton cycle decomposition

$$\mathcal{P}_i = (a_{i,0}, a_{i,1}, \cdots, a_{i,2m}), 1 \leq i \leq m,$$

of K_{2m+1} on Z_{2m+1} . And there exists a one-factorization

$$Q_j = \{\{c_{j,l}, d_{j,l}\} : 0 \le l \le n-1\}, 1 \le j \le 2n-1$$

of K_{2n} on Z_{2n} . Take the point set of $K_{2m+1,2n}$ as $Z_{2m+1} \bigcup \overline{Z}_{2n}$. Define the following collections of $K_{2,2}$ -blocks of $K_{2m+1,2n}$:

$$A_i^j = \{ [a_{i,k}, a_{i,k+1}; \overline{c}_{j,l}, \overline{d}_{j,l}] : 0 \le k \le 2m, 0 \le l \le n-1 \},$$

where $i \in \mathbb{Z}_{m+1}^*, j \in \mathbb{Z}_{2n}^*$ and the index k+1 is taken modulo 2m+1. Then the following collections form a $K_{2,2}$ - $LGD_2(K_{2m+1,2n})$:

$$\{\mathcal{A}_{i}^{j}: i \in \mathbb{Z}_{m+1}^{*}, j \in \mathbb{Z}_{2n}^{*}\}.$$

Firstly, since each \mathcal{P}_i is a Hamilton cycle, each \mathcal{A}_i^j is just a $K_{2,2}$ - GD_2 $(K_{2m+1,2n})$. And the total number of \mathcal{A}_i^j is m(2n-1), as expected. Below we only need to verify that each $K_{2,2}$ -block in the form $Q = [a,b;\overline{c},\overline{d}]$ of $K_{2m+1,2n}$ on $Z_{2m+1} \cup \overline{Z}_{2n}$ appears in one \mathcal{A}_i^j .

Since $\{\mathcal{P}_i: 1 \leq i \leq m\}$ is a Hamilton cycle decomposition on Z_{2m+1} and $\{\mathcal{Q}_j: 1 \leq j \leq 2n-1\}$ is a one-factorization on Z_{2n} , for the edges $\{a,b\}$ and $\{c,d\}$, there exist $i \in Z_{m+1}^*, j \in Z_{2n}^*$, such that $\{a,b\}$ appears in \mathcal{P}_i and $\{c,d\}$ appears in \mathcal{Q}_j . So, $Q \in \mathcal{A}_i^j$.

Theorem 2.4 There exists a $K_{2,2}$ -LGD₄ $(K_{4m+1,2n+1})$ for any positive integers m and n.

Proof. By Lemma 1.1, there exist Hamilton cycle decompositions

$$\mathcal{P}_i = (a_{i,0}, a_{i,1}, \cdots, a_{i,4m}), \ 1 \le i \le 2m,$$

$$Q_j = (b_{i,0}, b_{i,1}, \cdots, b_{i,2n}), \ 1 \le j \le n$$

of K_{4m+1} on Z_{4m+1} and of K_{2n+1} on Z_{2n+1} respectively. Take the point set of $K_{4m+1,2n+1}$ as $Z_{4m+1} \bigcup \overline{Z}_{2n+1}$. Define the following collections of $K_{2,2}$ -blocks of $K_{4m+1,2n+1}$:

$$A_i^j = \{ [a_{i,k}, a_{i,k+1}; \overline{b}_{i,l}, \overline{b}_{i,l+1}] : 0 \le k \le 4m, 0 \le l \le 2n \},$$

where $i \in Z_{2m+1}^*, j \in Z_{n+1}^*$ and the indices k+1, l+1 are taken modulo 4m+1 and 2n+1 respectively. Then the following collections form a $K_{2,2}$ - $LGD_4(K_{4m+1,2n+1})$:

$$\{\mathcal{A}_i^j: i \in Z_{2m+1}^*, j \in Z_{n+1}^*\}.$$

Firstly, since each \mathcal{P}_i and Q_j is a Hamilton cycle, each \mathcal{A}_i^j is just a $K_{2,2}$ - $GD_4(K_{4m+1,2n+1})$. And the total number of \mathcal{A}_i^j is 2mn, as expected. Below we only need to verify that each $K_{2,2}$ -block in the form $Q = [a, b; \overline{c}, \overline{d}]$ of $K_{4m+1,2n+1}$ on $Z_{4m+1} \cup \overline{Z}_{2n+1}$ appears in one \mathcal{A}_i^j .

Since $\{\mathcal{P}_i: 1 \leq i \leq 2m\}$ and $\{\mathcal{Q}_j: 1 \leq i \leq n\}$ are Hamilton cycle decompositions of K_{4m+1} and K_{2n+1} respectively, for the edges $\{a,b\}$ and $\{c,d\}$, there exist $i \in Z^*_{2m+1}, j \in Z^*_{n+1}$, such that $\{a,b\}$ appears in \mathcal{P}_i and $\{c,d\}$ appears in \mathcal{Q}_j . So, $Q \in \mathcal{A}_i^j$.

Theorem 2.5 There exists a $K_{2,2}$ - $LGD_4(K_{4m-1,2n+1})$ for any positive integers m and n.

Proof. Similar to Theorem 2.4, we can get the proof.

3 Conclusion

Theorem 3.1 There exists a $K_{2,2}$ -LGD $_{\lambda}(K_{m,n})$ if and only if $4|\lambda mn, 2|\lambda m, 2|\lambda n, \lambda|(m-1)(n-1)$ and $m, n \geq 2$.

Proof. By Theorem 2.1, we only need to prove the sufficiency.

If 4|mn, then we have

Case 1: if m = 2s + 1, then n = 4t and $2|\lambda|(m-1)(n-1)$.

By Theorem 2.3, there exists a

$$K_{2,2}\text{-}LGD_2(K_{2s+1,4t}) = \{(Z_{2s+1} \cup \overline{Z}_{4t}, A_i) : 1 \le i \le s(4t-1)\}.$$

Define

$$\mathcal{B}_k = \bigcup_{i=k}^{(k+1)\frac{\lambda}{2}} \mathcal{A}_i, \ 0 \le k \le \frac{2s(4t-1)}{\lambda} - 1,$$

then $\{(Z_{2s+1} \cup \overline{Z}_{4t}, \mathcal{B}_k) : 0 \le k \le \frac{2s(4t-1)}{\lambda} - 1\}$ is just a $K_{2,2}$ - $LGD_{\lambda}(K_{2s+1,4t})$. Case 2: if m = 4s, then $\begin{cases} 2|n, \lambda|(m-1)(n-1); \\ 2|n, 2|\lambda|(m-1)(n-1). \end{cases}$ By Theorem 2.2, there exists a

$$K_{2,2}\text{-}LGD(K_{4s,2t}) = \{(Z_{4s} \cup \overline{Z}_{2t}, A_i) : 1 \le i \le (4s-1)(2t-1)\}.$$

Define

$$\mathcal{B}_k = \bigcup_{i=k\lambda+1}^{(k+1)\lambda} \mathcal{A}_i, \ 0 \le k \le \frac{(4s-1)(2t-1)}{\lambda} - 1,$$

then $\{(Z_{4s} \cup \overline{Z}_{2t}, \mathcal{B}_k): 0 \leq k \leq \frac{2s(4t-1)}{\lambda} - 1\}$ is just a $K_{2,2}$ - $LGD_{\lambda}(K_{4s,2t})$.

By Theorem 2.3, there exists a

$$K_{2,2}\text{-}LGD_2(K_{4s,2t+1}) = \{(Z_{4s} \cup \overline{Z}_{2t+1}, A_i) : 1 \le i \le (4s-1)t\}.$$

Define

$$\mathcal{B}_k = \bigcup_{i=k \, \frac{\lambda}{\lambda}+1}^{(k+1)\frac{\lambda}{2}} \mathcal{A}_i, \ 0 \le k \le \frac{(4s-1)2t}{\lambda} - 1,$$

then $\{(Z_{4s} \cup \overline{Z}_{2t+1}, \mathcal{B}_k): 0 \le k \le \frac{(4s-1)2t}{\lambda} - 1\}$ is just a $K_{2,2}$ - $LGD_{\lambda}(K_{4s,2t+1})$.

Case 3: if m = 4s + 2, then n = 2t and $\lambda | (m-1)(n-1)$.

By Theorem 2.2, there exists a

$$K_{2,2}\text{-}LGD(K_{4s+2,2t}) = \{(Z_{4s+2} \cup \overline{Z}_{2t}, A_i) : 1 \le i \le (4s+1)(2t-1)\}.$$

Define

$$\mathcal{B}_k = \bigcup_{i=k, k+1}^{(k+1)\lambda} \mathcal{A}_i, \ 0 \le k \le \frac{(4s+1)(2t-1)}{\lambda} - 1,$$

then $\{(Z_{4s+2}\cup\overline{Z}_{2t},\mathcal{B}_k):0\leq k\leq \frac{(4s+1)(2t-1)}{\lambda}-1\}$ is just a $K_{2,2}-LGD_{\lambda}(K_{4s+2,2t})$.

If $4 \not| mn$, then we have

Case 1': if 2 /mn, then m = 2s + 1, n = 2t + 1 and $4|\lambda|(m-1)(n-1)$.

By Theorem 2.4 and Theorem 2.5, there exists a

$$K_{2,2}\text{-}LGD_4(K_{2s+1,2t+1}) = \{(Z_{2s+1} \cup \overline{Z}_{2t+1}, A_i) : 1 \le i \le st\}.$$

Define

$$\mathcal{B}_k = \bigcup_{i=k}^{(k+1)\frac{\lambda}{4}} \mathcal{A}_i, \ 0 \le k \le \frac{4st}{\lambda} - 1,$$

then $\{(Z_{2s+1} \cup \overline{Z}_{2t+1}, \mathcal{B}_k) : 0 \le k \le \frac{4st}{\lambda} - 1\}$ is just a $K_{2,2}$ - $LGD_{\lambda}(K_{2s+1,2t+1})$.

Case 2': if 2|mn, then m = 2s + 1, n = 2t and $2|\lambda|(m-1)(n-1)$.

By Theorem 2.3, there exists a

$$K_{2,2}\text{-}LGD_2(K_{2s+1,2t}) = \{(Z_{2s+1} \cup \overline{Z}_{2t}, \mathcal{A}_i) : 1 \leq i \leq s(2t-1)\}.$$

Define

$$\mathcal{B}_k = \bigcup_{i=k}^{(k+1)\frac{\lambda}{2}} \mathcal{A}_i, \ 0 \le k \le \frac{2s(2t-1)}{\lambda} - 1,$$

then $\{(Z_{2s+1} \cup \overline{Z}_{2t}, \mathcal{B}_k): 0 \le k \le \frac{2s(2t-1)}{\lambda} - 1\}$ is just a $K_{2,2}$ - $LGD_{\lambda}(K_{2s+1,2t})$.

References

- D. Bryant, Large sets of hamilton cycle and path decompositions, Congr. Numer. 135(1998), 147-151.
- [2] C. J. Colbourn, J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Inc., Boca Raton, 2006.
- [3] Q. Kang, Y. Zhang, Large set of P₃-decompositions, J. Combin. Des. 10(2002), 151-159.
- [4] Q. Kang, H. Zhao, Large sets of hamilton cycle decompositions of complete bipartite graphs, European J. Combin. 29(2008), 1429-1501.
- [5] J. Lei, Completing the spectrum for $LGDD(m^{v})$, J. Combin. Des. 5(1997), 1-11.
- [6] J. Lu, On large sets of disjoint Steiner triple systems I-III, J. Combin. Theory Ser. A, 34(1983), 140-182.
- [7] J. Lu, On large sets of disjoint Steiner triple systems IV-VI, J. Combin. Theory Ser. A, 37(1984), 136-192.
- [8] L. Teirlinck, A completion of Lu's determination of the spectrum for large sets of disjoint Steiner triple systems, J. Combin. Theory Ser. A, 57(1991), 302-305.
- [9] Y. Zhang, On large sets of P_k -decompositions, J. Combin. Des. 13(2005), 462-465.
- [10] H. Zhao, Q. Kang, Large sets of hamilton cycle and path decompositions, Discrete Math. 308(2008), 4931-4940.
- [11] H. Zhao, Q. Kang, On large sets of almost hamilton cycle decompositions, J. Combin. Des. 16(2008), 53-69.

- [12] H. Zhao, Q. Kang, Large sets of Hamilton cycle and path decompositions of complete bipartite graphs, Graphs and Combinatorics, DOI: 10.1007/s00373-011-1088-0.
- [13] H. Zhao, Q. Kang, Large sets of almost hamilton cycle decompositions of complete bipartite graphs, submitted.
- [14] H. Zhao, F. Fan, Large sets of P_3 -decompositions of complete mutipartite graphs, to appear in Ars Combin.