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ABSTRACT. Recently, Chu [5] derived two families of termi-
nating 2 Fi (2)-series identities. Their g-analogues will be estab-
lished in this paper.

1. INTRODUCTION

Following Bailey [3], define the hypergeometric series by

bly B

! F[aO: a, °°°, OQar
o b, K (b )k - (bs)e

z| = o (a0)k(ar)k -+~ (@r)k &
|- % ,

where the shifted factorial is given by

n-1

@o=1 and ()= [[(@+i) for n=1,2,-..
i=0
Define the symbol X (n) by
X(n) = 1_"'_(#

2010 Mathematics Subject Classification: Primary 05A19 and Secondary
33D15.

Key words and phrases. Hypergeometric series; Terminating 2Fj(2)-series
identity; Basic hypergeometric series; g-Analogue.

Corresponding author®. Email address: weichuanan@yahoo.com.cn.

ARS COMBINATORIA 107(2012), pp. 361-368



Then two known results(cf. Prudnikov et al. [13, Entries 7.3.8.2 and 7.3.8.6])
can be stated as

znrgzﬂ—pﬁﬁ X(m), (1)
- (342)n

Based on (1) and (2), Chu [5] derived, by series rearrangement, two families of
terminating 2 F1(2)-series identities:

[ —n, = _ (1=22=n)m x~ (—m)i(—n): (3)= ]
2Fi 22 —m 2] = 0-20m g;i!(l-zz_n),- (%.,.;);_,. X(n—13), (3)

[z, —n 2]=(1+:c+2n)mi (—m)i(z)s (22, @

2F

[—m = 2n +2m)m Zd(I+z+2n) (Dn
.‘-n’ z = - l i(_m)i(—n)i(2$~l)i (%)"-i .

2Fy |2z +m 2] -;(2) i1(2z +m)i(z—3): (%+w-?;)2’__‘ X(n—1), (5)
(2, —n o] _ (1) (Cm)i(@)i(=2n-1); (H5H)

2Fy _:t - 21:1 2] - ;(5) ! (Z—;n)‘(—:—%)i (")n—i : (0 <m< n): (6)

where m is a nonnegative integer.

We point out that (3) and (5) are both contiguous versions of (1), and (4) and
(6) are both contiguous versions of (2). Considering that (3)-(6) are related
to Kummer’s 2F1(—1)-series identity(cf. Bailey (3, p. 9]), Choi et al. [4] and
Vidunas [21] which provided contiguous generalizations of it should be mentioned.
In addition, Ibrahim et al. [7], Rakha et al [15, 16, 17] and Vidunas [22] that
offered contiguous versions of known formulas should also be attended.

Following Bailey (3], define the basic hypergeometric series by

a0, a1, -, ar| 1 _ o= (00i@)k(a159)k o (ari )k k
1+r¢’[ by, -+, by ,q’z] _kz;;, @ Qelbr; k- (s

where the g-shifted factorial is given by

n=1

(z;9)o=1 and (z;q)n= H(l —zq¢') for n=1,2,...
£=0

Then the terminating q-Watson formula due to Andrews (1] and the terminating
g-Watson formula due to Jain {8, Eq. 3.17] can respectively be stated as follows:

q rq "a, /¢, =\ (@ 2)?(‘] a/c; 2)'9'
4¢3[ 9va, —gv/a, ¢ l J c? (¢%a;q?) 3 (aci¢%) 3 X(n), (7
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Setting a = 0 and ¢ = ? in (7), we obtain the following g-analogue of (1):
2
ghz,—z| | _ =n (g;9 )§
s |73 77 |wa] = = g X O ©)
Taking a = 0 and ¢ = z in (8), we get the following g-analogue of (2):

31 [m ;_ 2n ,q,q] %E;;T{))f. (10)

Based on (9) and (10), we shall establish, by series rearrangement, g-analogues
of (3)-(6) in the next section.

2. TERMINATING 3¢1(q)-SERIES IDENTITIES

Theorem 1. For a complez number z and two nonnegative integers m and n,
there holds the following q-analogue of (3):

-z _ (ql'"/x"'m)m n ™ a)i(g™™q): [q\¢
3""[ ziq |“"’] = S @eE . 4O ,Z;(q,q)f(ql-n/zz a5 (2)
(0:9%) azs X
*(a=? q’)-- (n=1).

Proof. Letting b — ¢*~" and ¢ — ¢'~"/2? for the g-Vandermonde formula(cf.
Gasper and Rahman [6, p. 14]):

o[ o] -z

we gain the following equation:

k_,. 1-k /.2,
21 [q | aq ] _ gk=mm (¢*=*/2% q)m

1_"/ z (@ "/z% q)m”
Then we have the following composite series:
- (™ Qe(z Dr(~2;0)k &
91 [ z q Iq' ] kz._.o @@ ™ °
- i (@ @r(zi (=i (¢ /=% @ 14m
= (@ak(z%9)k (a/2% q)m
_ = @9k k(=i )k (687 @) gHmn gt
B ,czﬂ (@ Dr (2?5 9)k (9/2% q)m 241 [ "‘/m q’q]
_ e k(@ ) (=2 )k (0" /2% 9)m ge+mn ™ 9)i{¢" " q)i s
- g& (g:9)x(z?; 9)x (¢/2% q)m g(cz.q)i(ql""/z’ ) T
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Interchanging the summation order for the last double sum, we achieve the rela-
tion:

=", _ (@72 )m ma (@7™59)i(a7"59)s
3¢1[ ziqm 'q' ] — (9/z%g)m 2 (g 9)(g /=% ) !
xar |15 7% ). ay

Evaluating the 3¢;-series on the last line by (9), we attain the formula that
appears in Theorem 1 to complete the proof. O

Theorem 2. For a complex number x and two nonnegative integers m and n,
there holds the following g-analogue of (4):

14+2n .. mm -m. )ilz; q)s
3¢[ - Bt ] = %ﬁf(i) gz-i-?q).-(;——-‘%fil):

‘+1 2)
(qr qz)ﬂ

-

Proof. Performing the exchange between = and g™ for (11), we obtain the rela-
tion:

31 [z, T lq, ] = M(l)mi (@~™19)i(=; ) ¢

(@ 0)m \z/ & (g:9)i(g' 2"z g):
xa¢1[qx qqz |q,].

Evaluating the 3¢,-series on the last line by (10), we get the identity displayed
in Theorem 2 to finish the proof. (|

Theorem 3. For a complez number £ and two nonnegative integers m and n,
there holds the following g-analogue of (5):

y :B, -z (m+n)t nti (q 1Q) (q- rQ) (.‘t Q)t(_z)Q)l
e [ |q’ ] ,z_.:,q (2: 9)i(22q™; )i(z%¢*~1; q)s
(219%)2gs
W X(n bt Z)

Proof. Letting a — z2?/q, b — ¢* and ¢ — oo for the terminating ss-series
identity (cf. Gasper and Rahman [6 p. 42]):

o] »9v/a —ava bc g™ Iq g'"*™a] _ (ga:9)m(ga/be;@)m
7% | v, —Va, ga/b, ga/c, ag*™ | "he (9a/5;9)m(ga/ci@)m’
we gain the following equation:

zm: k q(i+m—1)z Zi(x q )m—l 1_x2q23—1 (q-m;Q)t
i (wzq‘,q)m—‘ 1-22¢1 (a2q™;q)i

i=0
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Then we can proceed as follows:
B A R N B k|n] (1Y) —nk (T Qr(—2; @)k
31 [ 2gm |q,q] —z_:(-l) k} g(3)-mh B L Pk

(z2q™; )k

2
= (a: qm q)k

x z (t+m-1)x 2i ({D (1 ;q)m—i 1— z.2 -1 (q q)i
i=0 (z2¢;Q)m—i 1—=z%¢""! (z2q™;q):

Interchanging the summation order, we can reformulate the last double sum as

2 21 ([ —m,
z, —x Gm-1)i 2i1 = T°¢ (g™™; )
3d [ ‘2 m |q, ] Z } ' i 1 _zzq.—1 (x2qm’, a):

=0
(k“)-uk(_""_’_‘!)L(-_“”q)_k
x é( -1)* [ ] (=% )k~

Shifting the summation index k& — ¢ + j for the sum on the last line, we have

,w, +myi 2 (@773 9)i(a775 9)i(®3 @)i(=23 9)i
“""[ *Ja ] Z" (q,q)i(xzq 10)i(@2a )i

i=0
¢" zg, _
X 31 [ 2% Q] . (12)
Evaluating the 3¢;-series on the lase line by (9), we achieve the formula that
appears in Theorem 3 to complete the proof. @]

Theorem 4. For o complex number  and two nonnegative integers m and n
with m < n, there holds the following q-analogue of (6):

i [ ] = g M)

pord (g 9)i(g™—%";9)i(g~1—2;q);

« (qi+lz; q2)n_‘,

(9:9%)n-i

Proof. Employing the exchange between = and g~ for (12), we attain the rela-
tion:

3 [a:,

(i+m=2n)i (g~ Yq)‘(wl q)i (q- ,Q) (_q_ 7‘1)!
mlan 'q’ ] Zq (@ 9)i(@™=*"9)ilg"= 12" q)

l—n
X 31 [ & zza-'zn |q, ]

Evaluating the 3¢;-series on the last line by (10), we deduce the identity displayed
in Theorem 4 to finish the proof. ]

Noting that (9) is the case m = 0 of Theorems 1 and 3, we can regard the latter
as the contiguous variations of the former. Meanwhile, Theorems 2 and 4 are
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the contiguous variations of (10) in the same reason. Several other identities on
g-contiguous relations can be found in Jain [8], Kim et al. [9] and Wei et al. [23].

For explaining the interest of Theorems 1-4, eight concrete formulas from them
are laid out as follows.

Example 1 (m =1 in Theorem 1).

2 L2
g™z —z| | _ . (@6d)g . . ! (4¢") np
3 [ mz/q ,mq] = (zz/q:qz)g X(n) q (xz/q;qz)g;_l X(n+1).
Example 2 (m = 2 in Theorem 1).
-n 3 2 n n+1 .« n2
q9 ,Z, —T . = nq +m(1-q -q ) (q!q)'g
e [ =*/q° Iq' q] * a(q? ~ z?) (=*/g:9%) 3 (=)
2
_EN @) itg EDp
7 pe = /6 ) " .
Example 8 (m =1 in Theorem 2).
C et [zz, q—_nl’_;‘q-n |q; q] = l(qx;qz)n“ _1(= qz)n+1.
q z (¢¢®)n+1 7 (30?1

Example 4 (m = 2 in Theorem 2).
2,q" —¢ | 1 _ 114+q-2(1+¢***) (¢2;,¢°)ns1
3 [ g2 I q ‘1] > ol = g+ (@ Dt
_ 1 (1+9)(1—¢***"2) (z;¢°)an1
22 q(1-¢**)  (g;¢%)n+1’
Example 5 (m =1 in Theorem 3).

3 [q_"’ s | % q] = xn—(ﬁz)—a‘ X(n) + x"“—(-q;—qz)i X(n+1)
qz® ’ (47%,9%) 3 (92% ¢*) zpa )

Example 6 (m = 2 in Theorem 3).

4 g ", T, - I aql =2 1+ qz% — ¢"*lg? — "2 (g;¢°)p (n)
391 ¢%a? ! 1— g222 (¢°2%;¢%) 3

. n2
i(l-ga?)itg) @)ap
1-¢%22  (q2%¢%)npn )
Example 7 (m =1 in Theorem 4: n > 1).
z,q " -q" (:8%)n | (g7:8%)n
—2n H = + .
391 [ q'? lq q] @@®)n | (@4%)n
Example 8 (m = 2 in Theorem 4: n > 2).
z,¢ " —¢" | 1 _ (1=¢"""1)(1+9q) (z:4°)n
3¢1 [ q2—2n | q; q] = Q(l — qg,,_z) (q; qz)n
1+q—2(1+¢") (¢2;¢%)n—1
q(1 —g*n-2) (#¢%)n-1 "

+z
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