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ABSTRACT. A G-design is a partition of E(K,) in which each
element induces a copy of G. The existence of G-designs with
the additional property that they contain no proper subsys-
tems has been previously settled when G € {K3,Ks —¢}. In
this paper the existence of P,,-designs which contain no proper
subsystems is completely settled for every value of m and v.

1. INTRODUCTION

For any two graphs G and H, a G-decomposition of H is an ordered
pair T = (V, D), where V is the vertex set of H and D is a partition of the
edge set of H, each element of which induces a copy of G. For any graph
G and any set L of edges in K, a G-packing with a leave L of order v is
an ordered pair T' = (V, B), where V is the vertex set of K, and B is a
partition of the edge set of K, — L, each element of which induces a copy
of G. A G-packing of order v with leave L is said to be maximum if there
is no G-packing of order v with leave L’ such that |L/| < |L|. A proper
subsystem of T is an ordered pair S = (V’, B’) where V' c V, B’ ¢ B and
(V', B') is a G-decomposition of K, for |V| > |[V/| =’ > 1. A G-packing
with L = 0 is said to be a G-design.

When considering graph decompositions the most natural question is to
find the set of values of v for which there exists a decomposition of K, into
edge-disjoint copies of a fixed graph G. This set of values is called as the
spectrum of G-decompositions of K,,. This question has been settled for
many G, for example, where G is K, for v € {3,4} [6, 8), a star [13], a path

'Email: dinavahi@findlay.edu
2Email: rodgecl@auburn.edu

ARS COMBINATORIA 107(2012), pp. 33-49



(12], any graph with no more than four vertices [2], or a connected graph
with no more than five edges 5], a cycle [1, 7, 11]. For an up-to-date survey
see [3].

Another question considered in the literature concerns the existence of
G-designs which contain no proper subsystems. That is, for which values
of v is it possible to find a G-design (V,C) of order v such that there does
not exist a G-design (W, D) where W C V and D C C. Doyen [4] settled
this question for Steiner triple systems (that is,when G = K3). Rodger and
Spicer solved this problem when G = K4 — e [10]. The reader may also be
interested to note that the related problem for Steiner quadruple systems
has been considered, but is still unsolved [9]. In this paper we solve the
problem for the case G = P, a simple path with m edges, and H = K,
for every value of m and v (see Theorem 6).

The existence of P,,-decompositions of K, was solved by Tarsi [12], by
proving the following result.

Theorem 1. A necessary and sufficient condition for the existence of
a decomposition of a complete multigraph AK, into edge disjoint simple
paths of length m is

v=1, or

M(v—1)=0 (mod 2m) and v > m + 1. (1)
The approach used in proving the result involves both modifications of
Tarsi’s constructions and in some cases to come up with a completely new
construction to make sure that the P,,-designs have no subsystems. We
have created new techniques to check for subsystems in our constructions.
These proof techniques can be easily applied to check for subsystems in
many G-designs. The following section contains the basic ideas and nota-
tion which will be used throughout the rest of the paper.

2. NOTATION AND Basic IDEAs

For any G-decomposition T' = (V, C), it will be useful to let E(T") denote
the edges occurring in (J ¢ ¢; in particular, if S = (W, D) is a subsystem
of T, then E(S) = E(K,), where v’ = |W|. In the following constructions,
the set of vertices of K, will be either V = Z, or Z,_; U {oo}. Let v = |V
and € = |E(T)| denote the total number of vertices and edges respectively.
Let the trail T = {{zo, 21}, {z1,Z2}, ..., {Zn—-1,Zn}} (not all vertices need
be distinct) be denoted by (zo,Zj,...,Zx), and if T is a path P then let
the cycle P + {zo,2zn} be denoted by (xo,%1,...,2Zn,Zo). For each trail
T = (xo0,Z1,...,Tn) on the vertex set Z, or Z; U {oo} (so z = v or v —
1 respectively), let T + i be the trail (zo + 4,21 +4,...,%n + i), Where
each sum is reduced modulo z if z; # oo, and where co + i is defined
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to be co. If Ty = (zo,%1,...,%.) and T = (Yo, ¥1,...,¥yn) are two trails
with £, = yo, then denote the concatenation of T and T by T} + T} =
(Zo,T1,- -+, Zn = Yo, ¥1,-+-,Yn). If T # 00 and y # oo are two elements of
Z, for some z € {v,v — 1}, then the edge {z,y} is said to be of difference
kif k = min{ly ~ z|,z — [y — z|}. If kK = v/2 then the edge {z,y} is
said to be of half difference. The set of all differences will be denoted by
D, ={1,2,...,|v/2]}.

One of the basic ingredients used in the constructions is the trail
C(v,k)=(0,k+1,1,k+2,...,k—1,v—1,k,0), (2)

where k € D, and k < (v — 3)/2. Notice that C(v, k) has length 2v and
contains all the edges of differences k and k + 1. Let {C(v, k) + i} be the
trail (4, k+1+4,14+4,k+2+4,...,k—1+i,v—1+4,k+1i,1).

For any trail T = (v1,v,...,vx) and k& > m, let T/m be the set of
m-trails {(v;,...,%4m) | i =2m +1,0 < 2 < |k — 1/m| — 1}. Notice that
the edges in T//m partition all but at most the last m — 1 of the edges in T'.
Our aim is to pick T carefully so that each element in T/m is a path. For
any trail T = (v1,v2,..., ), if v; and v; are the first occurrences of a and
b respectively in T then let S(T,a,b) denote the subtrail (v, vit1,...,v;)
of T. For z,y € Z, with z # y, let I(z,y) be the path (z,z+1,2+2,...,y)
consisting entirely of edges of difference 1 reducing the sums modulo z.

In order to prove that a given G-decomposition (V,C) does not have
a subsystem (W, D), the argument here is usually based on the obser-
vation that if {z,y} C W, then there exists a path ¢ € C containing
the edge {z,y}, implying that V(c) C W. This observation is denoted
by {z,y} = V(c). Often a specific vertex a € V(c) is of specific inter-
est, so we similarly write {z,y} — o to indicate that since {z,y} C W
it follows that € W. A common technique used here to show that a
Ppn-design has no subsystems when v is even is to focus on the pairs of
vertices joined by an edge of difference v/2, showing that either the edge
{v,u+v/2} = {u+1,u+v/2+1} or {v,u+v/2} > {u—1,u+v/2-1};
in either case we say that the next half difference is also in the subsystem.

3. PRELIMINARY REsuLTS

In order to prove the main result we first make the following useful
observations.

Lemma 2. Ifm > 2v/3 then every P,,-decomposition of K, has no
subsystems.

Proof. Suppose S = (W, D) is a subsystem of the P,,-decomposition
(V,C) of K,,. Then since D contains a path |[W| > m+1. Consider an edge
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{z,y}, where z € W and y € V — W. Since S is a subsystem, each edge
in the path P that contains the edge {z,y} has at least one end in V — W.
Therefore | V - W |> [m/2]. So |V|=|W|+|V-W|Z>2m+1+m/2=
3m/2+1 > |V|+1, a contradiction. Hence the P,-decomposition contains
no subsystems. a

We now prove a lemma that is used regularly in later constructions. It
considers the concatenation of various copies of C(v, k) (see Equation 2).

Lemma 3. Suppose that i,j € D, withv/2 > j >4, and that j —i is
odd. Let T be the trail formed by the concatenation C(v,i) +C(v,i+2) +
.++4+C(v,j —1). If T contains consecutive edges that form a cycle C, then
the length of C is at least 21 + 1.

Proof. We prove the result by showing that if T' contains z consecutive
edges that form a cycle C then z > 2i + 1.

Looking at the structure of C(v,1), any cycle consisting only of edges
in C(v,i) has length 2i + 2. If C contains edges from both C(v,!) and
C(v,l + 2) then C must contain precisely the first 2! edges in C(v,l + 2)
together with the edge {0,!} in C(v,!), so has length 2/ + 1. Since ! >3,
we can conclude that the length of the smallest cycle in T is 2i + 1. O

Corollary 4. Suppose that i,j € D, with v/2 > j > i, and that j —1
is odd. Let T be the trail formed by the concatenation C(v,i) + C(v,% +
2) 4.4+ C(v,j — 1). If m < 2i then all trails in T/m are paths.

Proof. From Lemma 3 it follows that each cycle formed by the consecu-
tive vertices in T has length at least 2i + 1. Since m < 21, we can conclude
that all trails in T/m are paths. 0

Next we consider a similar concatenation.

Corollary 5. Suppose that i,j € D, with v/2 > j > i, that j — 1
is odd, and that x € Z,. Let T be the trail formed by the concatenation
I(IE,O) +C('U,‘l) +C('U,‘l+2) + - +C(U)J— 1)‘ If

m < min{v + z — 2i — 2,2i} when z > i + 1,and
= | min{v — i —1,2¢} otherwise

then all trails in T/m are paths.

Proof. Let C be any cycle formed by the consecutive vertices in T'. If
C consists only of edges in I(z,0) + C(v,1) then C must contain precisely
the v — z edges in I(x,0) together with the first 2z — 2i — 1 edges of C(v, 1)
ifz > i+ 1 and when z < i, C is a cycle of length v — i, namely the
cycle (i +1,i+2,--- ,v,i +1). If C contains edges from both C(v,!) and
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C(v,! +2) then from Lemma 3 it follows that the length of the C must be
204+ 1.
Thus we can conclude that whenever
m< min{v+2z -2 —1,2i+ 1} when > i + 1,and
min{v — ,2i + 1} otherwise

all trails in T/m are paths.

4. THE MAIN REsuLT

Now we state and prove the main theorem.

Theorem 6. Let m > 3. There exists a Pp-decomposition (V,C) of
K, containing no subsystems if and only if

v)andem+1. (3)

v =1, or m divides (2

Proof. The necessary condition follows from two observations that if X,
contains at least one edge (so v > 1) then C' must contain at least one

path and so |V| > m + 1; and since each of the (;) edges in K, occurs in

exactly one path and each path contains exactly m edges.

In order to prove the sufficiency we now consider two cases depending
on whether v is odd or even, each case considering various subcases in turn.
In view of Theorem 1 and Lemma 2, if m > 2v/3 then P,,-decompositions
exist and clearly have no subsystems; so we can assume that m < 2v/3. In
particular, since v > m +1 > 4 it follows that m < v —2.

Case A: v is odd.
Let Co = (vo,v1,v2,...,v,) be a hamiltonian cycle defined by

_ | xifie {0,v}, and
v { (-1)¥[(z — 1)/2](mod v) otherwise,

where each sum is reduced modulo v(this is the well-known Walecki con-
struction (14]). Let C; = Cp + ¢ for each i € Z,_;. Then clearly C; =
Cit(v-1)/2 for i € Z(y_1y/5. Also note that {C; |i € Z(y_1)/2} is the stan-
dard hamiltonian decomposition of K,. Form an Euler tour (ej, e, ..., €c)
by the concatenation Cy + Cy + -+ + C(v—3)/2. For each i € Zy(v—1)/2m)
let m; be the trail induced by {eim+1,€im+2,--~,€(i+1)m}~ Then (V,C) =
(Zyv-1U{oo}, {m; | i € Zy(y-1)/2m}) is & Pp-decomposition of K,. Suppose
§ = (W, D) is any subsystem in this Pp,-decomposition of K,. Now we
consider various possibilities, arriving at the contradiction W = V in each
case.

Case 1: Suppose {o0,i} € E(S) for some i.
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We will show that {oo,i} — i + 1. By repeating this argument we can
conclude that W = V.

Since m > 3 and C; = (00,%,i+1,...,i+(v—-1)/2+1,i+ (v—1)/2,00),
clearly {o0,i} — i+ 1 except possibly if
(a) {00, 1} is the last edge of some 7; and i < (v —1)/2, or
(b) {oo,i} is the first edge of some 7; and i > (v —1)/2.

We now consider each exceptional case in turn.
Case 1a: Suppose {00,1} is the last edge of some 7; and i < (v —1)/2.

Since m > 3, in thiscase m; = (..., i+ (v —1)/2,i— 14 (v = 1)/2, 00,1),
so clearly

{o0,8} = i+ (v —-1)/2. (4)

Then for some k, {00,i + (v — 1)/2} is in the path M4 = (..., i+ (v —
1)/2,00,i+1,...) or in the path mjix = (...,i+ (v —1)/2,00) in C.

In the first case obeservation (4) implies that V(m;4x) € W,s0i+1 e W
as required.

k
Otherwise E(C;) — {00,i} = | E(mj41). So |V| =1 =|E(Ci) — {o0,4}|
1=1
is divisible by m. So this case only arises when [V| = 1 (mod m). So
since Tj4k = (..., + 1+ (v —1)/2,i + (v — 1)/2,00), we have {co,i} —
{oo,i + (v —1)/2} = i+ 1+ (v —1)/2. Then, since |V| = 1 (mod m),
2k

it follows that E(Ciyy) — {00,i +1+ (v —1)/2} = U E(m;41) and so
I=k+1

Tiy(ek+1) = (E+1 4 (v—1)/2,00,i+2,...) implying that {o0,i} 2 i+2.
But {i,i+2} is in M (k41) = (00,3 +1,i+2,4,...). Hence {oo,i} = i+1,
so i+ 1 € W as required.
Case 1b: Suppose {00, 1} is the first edge of some 7; and i > (v —1)/2.

Since m > 3, in this case 7; = (i,00,i—(v—1)/2+1,i—(v—1)/2+2,...),
so clearly

{o0,i} »i—(v—1)/2+2. (5)

Then for some k, {00, — (v — 1)/2 + 2} is in the path mj = (---,i +
1,00,i — (v —1)/2+2,...) or in the path w4 = (00,4 — (v —1)/2+2,i —
(v—-1)/2+3,...) in C. So in either case observation (5) implies that

V(mjek) W (6)

In the first case observation (6) immediately implies that i +1 € W as

required.
k—1

Otherwise E(Ciy1 = Ci—w—1y/2+1) + {00,i} = |J E(mj41). So |V| +
=0

1 = |E(Cit1) + {o0,i}| is divisible by m. So this case only arises when

[V]| 41 = 0 (mod m). Therefore ;4 (ox—1y = (...,i +2,00,i —(v—1)/2+

3). By observation (6), {o0,i — (v —1)/2 + 3} C W, which implies that
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V(mj42e—1) € W. Therefore i + 2 € W. Finally, notice that Tit(k=1) =
(+ry%i+2,i4+1,00). Hence {i,i+2} - {i+1} andsoi+1¢€ W as
required.

Case 2: Suppose {i,i + 1} € E(S) for some i # o0o.

We will show that {i,i+1} — {00, j} for some j. Then the result follows
by Case 1. Since the edge {¢,i+1} is either immediately precedes or follows
{00, i} in some C;, clearly {i,i + 1} — {00, i} except possibly if
(a) {4, + 1} is the first edge of some 7; and i < (v —1)/2, or
(b) {i,i+ 1} is the last edge of some m; and i > (v —1)/2.

Observe that in both the exceptional cases {i,i + 1} — i — 1, since
;= (i,i+1,i—1,...) orm; = (..., —1,i+1,1) respectively. So for all z,

either {z,z +1} — {00,z}, or {z,z + 1} = {z,z - 1}. (7

But, since Cp = (00,0, 1,...) implies {0,1} — {oo, 0}, recursively applying
the observation (7) implies that for all ¢ {i,i + 1} — {00, 5} for some j
(since at worst j = 0).

Case 3: Suppose {i,i + j} € E(S) for some i # 00,5 > 1.

Notice that if {4,7 + 7} is in some path ; then =; contains at least one
of the vertices ¢ — 1,i+ 1,i4+j—~1or ¢+ 5 -+ 1. In any of these cases
{i,i+3j} > {k,k+1} for some k € {i — 1,4,i+j — 1,5+ j}. So the result
follows by Case 2.

Case B: v is even.

We will solve this case by considering different subcases in turn depend-
ing on the length of the path.
Case 1: m=v—2.

By Lemma 2 and from the fact that m > 3, we can conclude that P,,-
decompositions of K, contain no subsystems.

Case 2. m=v—3.
Since m < 2v/3 and in this case m = v — 3, it follows that v < 9.

ces . v . :
By the necessary condition that m must divide (2), the only situation

that needs to be solved is when v = 6 and m = 3. If v = 6, let Z(3) be
the zigzag path defined by (0,2,5,3). So (V,C) = (Z,{{Z(8)+i|i €
Z3}uU(0,1,2,3) U (3,4,5,0)}) is a Ps3-decomposition of K.

It is easy to check that this Ps-decomposition (V,C) has no subsystems.

Case 3: m <v—4 and v—m =3 (mod 4).

Without loss of generality we can assume m < v — 7, because v —m #
3 (mod 4) when m > v — 7. Observe that in this case m is odd (since v is
even in Case B and v — m = 3 (mod 4)).

Let Z(m) be the zigzag path (vo,v1,...,vm) defined by
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e (-1)** (i +1)/2] for 0 < i < |m/2),and
71 vm-i + v/2 otherwise

where each sum is reduced modulo v. Notice that the set of m-paths
Z = {Z(m) +1i | i € Z,/;} partitions all the edges of differences in
{2,83,...,[m/2]} U {v/2}.

Let T = (v1,v2,...,Vx) be the trail formed by the concatenation I(m,0)+
C(v, [m/2]+1)+C(v, [m/2}43)+---+C(v,v/2-2). Apply Corollary 5 to
T using z = m and i = [m/2] + 1 = (m + 3)/2. Notice that in this case, if
m > 5 then z = m > (m+5)/2 = i+1 and the condition of the Corollary 5
is met, and otherwise m = 3 in which case = m = 7 = 3 and by conditions
of Case 3, v > 10, so clearly m < min{2{,v — i — 1}. Thus we can conclude
that all trails in T'/m are paths. Note that in Case 3, v—m = 3 (mod 4), so
[m/2] + 1 =v/2 — 2(mod 2). So T/m is a set of m-paths which partitions
all the edges of differences in {[m/2] + 1, [m/2] +2,...,v/2 — 1} and the
v — m edges of difference 1 from the vertex m forward to the vertex 0. So
(V,C) = (Zy, {ZVT/m U I(0,m)}) is a Pn-decomposition of K,.

Suppose S = (W, D) is any subsystem in this Pp-decomposition of K.
Let m; € D be any path of length m. Now we consider various possibilities,
arriving at the contradiction W = V in each case.

Case 3a: Suppose that m; = Z(m) + i for some i € Z, 5.

Each path Z(m) + i contains the edge {k, k + v/2} of half difference for
some k.

Suppose m > 5. Then Z(m) + i contains both k+1 and k +v/2 +1
(if m = 1 (mod 4)) or both k — 1 and & +v/2 -1 (if m = 3 (mod 4)).
So W must contain one pair of vertices in the next half difference, which
implies that either Z(m) + (i + 1) or Z(m)+ (i —1) € D. By repeating this
argument we can conclude that V(Z) =W =V,

Suppose m = 3. Then Z(m) +i— {k—2,k+v/2 -2} = Z(m)+i—2.
So recursively it follows that X = {k — 25,k +v/2—-2i|i € Z,;2} CW.
Since v — m = 3 (mod 4) and m = 3, it follows that v/2 is odd so k and
k + v/2 have different parity. So X =V;so W =V,

Case 3b: Suppose that 7; € I(0,m)UT/m € D (so either m; = I(0,m) or
w; € T/m).

We will show that in either of these cases 7; = Z(m) + 1 € D for some
i, then the result follows from Case 3a.

Suppose m > 5. Every m; € I(0,m) UT/m contains a pair of vertices
{k,k + 2} for some k, and the edge {k,k + 2} € Z(m) + i for some i. So
Z(m) +1 € D as required.

Suppose m = 3. Then one of the following occurs.

(i) m; contains the edge {k,k + 2}. So, as above, Z(m) +i € D for
some i.



() mj = (k,k+1,k+1,k+1+1) is contained in a C trail. In this case
the edge {k, k + 1} is in some 7, that must contain either k¥ — 1 or
k +2. So S contains an edge of difference 2 (either {k,k + 2} or
{k—1,k+1}). So S contains an edge in Z(m) + ¢ for some 3.

(ii) m; = (k,0,k + 3,1) straddles two C trails. In this case the edge
{0,1} € 1(0,3). So S contains the edge {0,2} € Z(m) + 1.

Hence the result follows by Case 3a.
Case 4: m <v—-4and v—m=1 (mod 4).

Without loss of generality we can assume m < v — 5, because v — m #
1 (mod 4) when m > v — 5. Observe that in this case m is odd (since v is
even in Case B and v — m =1 (mod 4)).

Let Z;(m) be the zigzag path (vo,v1,...,vn) defined by

_f (-1)**i/2] for 0 < i < |m/2],and
%= Um—; + v/2 otherwise ,

where each sum is reduced modulo v. Notice that the set of m-paths
Zy = {Zy(m) +1i | i € Z,5} partitions all the edges of differences in
{1,2,...,|m/2}}u {v/2}.

Let T' = (v1,vz,...,vk) be the trail formed by the concatenation C(v, |m/2]+
1) + C(v, |m/2] +3) + --- + C(v,v/2 — 2); note that in Case 4 v~ m =
1 (mod 4), so |m/2] +1 = v/2 — 2 (mod 2). Using i = [m/2] +1 =
(m +1)/2, clearly m < 2i, so Corollary 4 can be applied to T to conclude
that all trails in T'/m are paths. So T'//m is a set of m-paths which parti-
tions all the edges of differences in {|m/2] +1, |m/2] +2,...,v/2~1}. So
(V,C) = (Zy,{Z1 UT/m}) is a Pn-decomposition of K,.

Suppose S = (W, D) is any subsystem in this P,,-decomposition. Let
7; € D be any path of length m. Then either 7; = Z;(m) + i for some
i € Zyyp or m; € T/m. We will show that W =V in both these cases.

Suppose that 7; = Z1(m) + i for some ¢ € Z, ;. Each path Z;(m) +
contains the edge {k, k + v/2} of half difference for some k. Since m > 3,
Zy(m) + 4 contains both £ +1 and k+v/2+1 (if m = 1 (mod 4)) or both
k—1and k+v/2 -1 (if m = 3 (mod 4)). So W must contain one pair of
vertices in the next half difference, which implies that either Z;(m)+(i+1)
or Z1(m) + (i — 1) € D. By repeating this argument we can conclude that
V(Z,) =W =V.

If m; € T/m, then since m > 3, mj = (k,k+ L k+1,k+1+1,...) for
some k and for some I, which implies that the edge {k,k + 1} is in some
Zy(m) +1i € D. So the result follows by the previous argument.

Case 5: m <v—4and v—m =2 (mod 4).

We will solve this case by considering two subcases in turn. Without
loss of generality we can assume m < v — 6, because v — m # 2 (mod 4)
when m > v — 6. Observe that in this case m is even (since v is even in
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Case B and v — m = 2 (mod 4)).
Case 5a: m < v/2.
Let Z(m) be the zigzag path (vo,v1,...,Vm) define by

(1) (i +1)/2] for 0 < i <m/2 -1,
Vi= § Un—(it1) +v/2 form/2<i<m—1,and
Um-1+1 for i =m,

where each sum is reduced modulo v. Notice that the set of m-paths
Zy = {Z3(m) —i | i € Z,);} partitions all the edges of differences in
{2,3,...,m/2} U {v/2} and the v/2 edges of difference 1 in I(0,v/2).

Let T = (v1,v2, ..., k) be the trail formed by the concatenation I(v/2, 0)+
C(wv,m/2+ 1)+ C(v,m/2+3) +--- 4+ C(v,v/2 — 2). Apply Corollary 5
to T using £ = v/2 and i = m/2 + 1; notice that in Case 5a, m < v/2,
soz =v/2>m/2+2=1i+1and m < min{2,v + z — 2{ — 2} since
m > 4. So clearly the condition of the Corollary 5 is met. Thus we
can conclude that all trails in T/m are m—paths. Note that in Case 5,
v—m=2 (mod 4), so m/2 + 1 = v/2 — 2(mod 2). So by the above expla-
nation T'/m is a set of m-paths which partitions all the edges of differences
in {m/2+1,m/2+2,...,u/2 — 1} and the v/2 edges of difference 1 in
I(v/2,0). So (V,C) = (Zy,{Z2 U T/m}) is a Pn-decomposition of K.

Suppose S = (W, D) is any subsystem in this Pn-decomposition. Let
m; € D be any path of length m. Then either m; = Z3(m) — i for some
i € Zyp or mj € T/m. We will show that W =V in both these cases.
Case 5a(i): Suppose that m; = Zy(m) — i for some ¢ € Z, /5.

Each path Z;(m) — i contains the edge {k, k +v/2} of half difference for
some k.

Suppose m > 6. Then Zz(m) — i contains both k +1 and k+v/2 +1
(if m = 2 (mod 4)) or both k — 1 and k +v/2 — 1 (if m = 0 (mod 4)).
So W must contain one pair of vertices in the next half difference, which
implies that either Za(m) — (i — 1) or Za(m) — (i + 1) € D. By repeating
this argument we can conclude that V(Z;) = W = V.

Suppose m = 4. Then Zy(m)—i = {k—2,k+v/2—2} = Z3(m) —i—2.
So recursively it follows that X = {k - 2i,k+v/2—-2i|i € Z,;,} C W.
Since v — m = 2 (mod 4) and m = 4 it follows that v/2 is odd so k and
k +v/2 have different parity. So X =V;so W =V,

Case 5a(ii): Suppose that 7; € T/m € D.

Since m > 4, every m; € T/m contains a pair of vertices {k,k + 2} for
some k; since {k,k + 2} € E(Z(m) — 1), it follows that Z3(m) —i € D for
some 3. So m; = Z(m) — i for some i, so the result follows by Case 5a(i).
Case 5b: v/2 <m < 2v/3.

First observe that in this case m > 6, since when m = 4 there is no even
v which satisfies v/2 < 4 < 2v/3. Recall that S(T, e, b) was defined to be a
subtrail of T from a to b.
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Let D; = I(m,0) + S(C(v,m/2 + 1),0,m — v/2); it is easy to check
D, is a path of length m. Denote by T}, the final segment from m — v/2
to 0 remaining of C(v,m/2 + 1); then note that |E(T})| = 3v — 2m > m.
Let T' = (v1,v2,...,v) be the trail formed by the concatenation I(0,m —
v/2) +T; + C(v,m/2 + 3) + --- + C(v,v/2 — 2). Note that in Case 5
v—m =2 (mod 4), so m/2 + 3 = v/2 — 2(mod 2), so T has all the edges
of differences m/2 + 1,...,v/2 — 1, and v/2 edges of difference 1 from the
vertex m forward (through 0) to m —v/2. We now show that trails in T'/m
are paths by showing that if T contains consecutive vertices that form a
cycle C then it has length more than m; so let C be a cycle formed by the
consecutive vertices in T'. Since |E(T})| > m, we need only consider 2 cases.

(i) Suppose C consists only of edges in I(0,m —v/2) +T;. If C is in
T, then since T; is a subgraph of C(v,m/2 + 1) we can use Lemma
3 to conclude that the length of C is greater than m. If C contains
edges from the path (0, m —v/2) then note that the first vertex to
be repeated in T is either (m —v/2) + m/2 + 2 or 0. The number
of edges between first two appearances of 3m/2 —v/2+2in T is
m+3 > m; and the number of edges between first two appearances
of 0inTis (2Qv—m-3)-(2m—v)+(m-v/2) =50/2-2m—-3 > m
since m < 2v/3 and v > 8. So the length of C is greater than m.

(@) IfCisin Ty + C(v,m/2+4+3)+--- + C(v,v/2 — 2) then C is in
Clvyym/2+1)+--- 4+ C(v,v/2 — 2). So we can use Lemma 3 to
conclude that the length of C is greater than m. ‘

Therefore, by the above observations, it follows that, D; UT/m is a set
of m-paths which partitions all the edges of differences in {m/2+1,m/2+
2,...,v/2—1} and the v/2 edges of difference 1 from the vertex m forward
(through 0) to m —v/2.

Let Zz(m — 1) be the zigzag path (vo,v1,...,Um-1) of length m — 1
defined by

_ f (1) (i+1)/2] for 0 < i < m/2 — 1,and
vi= Um—i+1) +v/2for m/2<i<m-1.

Observe that the paths in D; UT/m include v/2 edges of difference 1, one
in L(z) = {(z,z +1),(z +v/2,z +v/2 + 1)} for each z € Z, ;5. Thus the
set L of the remaining v/2 edges of difference 1 also has exactly one edge
in L(z) for each = € Z,/5; so to each path in {Z3(m — 1) +i | i € Z,/5}
we can add one edge from L to form the set M of v/2 simple m-paths.
Notice that the set of m-paths M partitions all the edges of differences in
{2,3,...,m/2} U {v/2} and the remaining v/2 edges in I(m — v/2,m) of
difference 1. So (V,C) = (Z,,{M U D, UT/m}) is a Pp-decomposition of
K,.
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Suppose § = (W, D) is any subsystem in this Pp,-decomposition. Let
m; € D be any path of length m. Now we consider various possibilities for
7;, arriving at the contradiction W =V in each case.

Suppose that 7; € M. Each path 7; € M contains the edge {k, k +v/2}
of half difference for some k. Since m > 6, m; also contains both k 41
and k+v/2+1 (if m = 2 (mod 4)) or both k —1 and k +v/2 — 1 (if
m = 0 (mod 4)). So W must contain one pair of vertices in the next half
difference. By repeating the argument we can conclude that V(M) =W =
V.

Suppose that m; € D;UT/m. Since m 2> 6, every ; € D;UT/m contains
a pair of vertices {k, k + 2} for some k, which implies that D contains the
path m; € M which contains the edge {k,k + 2}. Then the result follows
by the previous argument.
Case 6: m <v—4and v—m =0 (mod 4).
We will solve this case by considering three subcases in turn. Observe that
in this case m is even (since v is even in Case B and v — m = 0 (mod 4)).
Case 6a: m < v/2.

Let Z4(m) be the tailed zigzag path (vo,v1,...,vm) defined by

(-1 +2)/2] for 0 <i<m/j2 -1,
Vi= ¢ VYm—(it1) + v/2 for m/2 < i <m —1,and
VU1 —1=v/2 fori=m,

where each sum is reduced modulo v. Notice that the set of m-paths
Zy = {Z4(m) —i | i € Z,)2} partitions all the edges of differences in
{3,4,...,m/2+1}U{v/2} and the v/2 edges of difference 1 in I(1,v/2+1).
Let Ca(z) = (x,z + 2,2 +4,...,z) be the trail (it is a cycle) of length
v/2. Let T = (v1,va,...,V) be the trail (in fact, a cycle) formed by the
concatenation Ca(v/2 + 1) + {v/2 + 1,v/2 + 2} + Co(v/2 + 2) + I(v/2 +
2,1) + {C(v,m/2 +2) + 1} + - -+ + {C(v,v/2 — 2) + 1}; note that in Case
6, v —m = 0 (mod 4), so m/2 + 2 = v/2 — 2 (mod 2). So T has all the
edges of difference 2, of differences m/2 +2,...,v/2 — 1, and the edges in
I(v/2+41,1). If T contains consecutive vertices that form a cycle C' then we
now show that the length of C is more than m by considering the following
3 cases.

(i) Suppose C consists only of edges in Cz2(v/2+1) + {v/2 +1,v/2 +
2} + Ca(v/2 + 2) + I(v/2 + 2,1). Observe that the least number
of edges between two appearances of any vertex in Cp(v/2 + 1) +
{v/2 +1,v/2+2} 4+ Cao(v/2 + 2) + I(v/2 + 2,1) is clearly at least
v/2. Since m < v/2, it follows that the length of C is greater than

m.
(ii) Suppose Cisin I(v/2+42,1)+{C(v,m/2+2)+1}. Since C(v,m/2+
2) + 1 is isomorphic to C(v,m/2 + 2), we can apply Lemma 3 to



conclude that any cycle consisting only of edges in C(v, m/2+2)+1
has length m + 6. If C contains edges from the path I(v/2 + 2,1)
then since the second vertex in C(v,m/2+2)+1 is less than v/2+1
(all differences in T are at most v/2) which is not in I(v/2 +2,1),
it follows that the length of C is greater than v/2 > m.

(iii) Suppose C is in {C(v,m/2+2) +1} +--- + C{(v,v/2 — 2) + 1}.
Then observe that C(v,m/2+j)+1 is isomorphic to C(v, m/2+j)
for all 7, so we can use Lemma 3 to conclude that the length of C
is greater than m.

Therefore, by the above observations, T'/m partitions into paths of length
m all the edges of differences in {m/2 +2,...,v/2 —~ 1} U {2} and the v/2
edges of difference 1 in I(v/2 +1,1). So (V,C) = (Z,,{Z,UT/m}) is a
P,,-decomposition of K.

Suppose S = (W, D) is any subsystem in this P,,-decomposition. Let
m; € D be any path of length m. Then either 7; = Z4(m) — i for some
1 € Zyg or m; € T/m. We will show that W =V in both these cases.
Case 6a(i): Suppose that 7; = Z4(m) — i for some i € Z, 5.

Each path Z4(m) — i contains the edge {k, k + v/2} of half difference for
some k.

Suppose m > 6. Then Z;(m) — i contains both k+1 and k+v/2 +1 (if
m = 0 (mod 4)) or both k —1 and k+v/2 — 1 (if m = 2 (mod 4)). So W
must contain one pair of vertices in the next half difference which implies
that either Z4(m) — (i + 1) or Z4(m) — (i — 1) € D. By repeating this
argument we can conclude that V(Z4) =W =V.

Suppose m = 4 (so, being Case 6, v = m =0 (mod 4)). Then Z,(m) —
i = {k+3,k+v/2+3} = Z4(m) — i+ 3. So recursively it follows that
X ={k+3,k+v/2+3i | i€ Z,5} CW. So X =V = W unless
v =0 (mod 3).

Hence the only case that remains to be solved is when m = 4 and
v =0 (mod 3) (so actually v = 0 (mod 12), since in this case v = 0 (mod 4)
as well). So finally suppose that v = 0 (mod 12) and m = 4. Notice that
in this exceptional case,

foranyz € V,{z,z +v/2} = {z+ 3,2+ 3 + v/2}. (8)

So if {x,z+v/2} C W then we can recursively apply Equation 8 to {z,z +
v/2} to see that {y € V | y = z (mod 3)} € W. In particular, since
{k,k+v/2} C W, it follows that A={a € V |a =k (mod 3)} C W. But
since each path containing an edge of half difference joining vertices in A
also contains an edge of difference 1, we in fact know that A’ = {b € V|
b=k-1(mod 3),1 <b < v/2} CW. Then observe that if b > 4 and
b€ A’ then {b,b -3} = {b-3,b -3+ v/2}. So by applying Equation
(8) recursively to {b — 3,b— 3 + v/2}, where b € A’ and b > 4 we will get
that B={beV |b=k—-1(mod3)} CW. So {k,k+v/2} = {a|a=
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k or k ~ 1 (mod 3)}. In particular {k — 1,k +v/2 — 1} C W, so similarly
{k=1,k+v/2-1} > {ala=k—1o0r k-2 (mod 3)}. Hence W =V in
this case.

Case 6a(ii): Suppose that w; € T/m.

Now we consider various possibilities for m;. If m; contains two vertices
that are joined by an edge that occurs in Z4(m) — i for some i, then the
result follows from Case 6a(i). Notice that if m > 4 then each edge of
difference 3 occurs in Z4(m) — i for some %, and if m > 6 then each edge of
difference 4 occurs in Z4(m) — i for some 1.

Suppose m > 6. Every m; € T/m contains the vertices in {z,z + 3} or
{z,z+4} for some z. So every subsystem S containing 7; contains an edge
of difference 3 or 4; so S contains an edge in Z4(m) — i for some i.

Suppose m = 4. Then one of the following occurs.

(@) mj=(...,k,k+2,k+4,...). In this case the edge {k,k +4} isin
a path that must contain either ¥ — 1 or k +5. So S contains an
edge of difference 3 (either {k — 1,k +2} or {k+ 2,k +5}),s0 S
contains Z4(m) — ¢ for some i.

(b) m; contains 3 consecutive edges in I(v/2 + 2,1). In this case ;
contains a pair of vertices distance 3 apart, so S contains an edge
of difference 3. So S contains Z4(m) — ¢ for some 4.

(c) ; contains edges in I(v/2 +2,1) + {C(v,m/2 + 2) +1}. In view
of the Case(b) we can assume that m; contains at most 2 edges
from I(v/2 +2,1). So S contains an edge of difference 2 or 3. If
S contains an edge of difference 2 then S contains a path that was
just considered in Case(a). If S contains an edge of difference 3,
then S contains Z4(m) — i for some i.

(d) 7; = (k,k+1,k+1,k+1+1,k+2). In this case the edge {k, k +2}
is in a path that was just considered in Case(a). So S contains
Z4(m) — i for some i.

Case 6b: v/2<m < 3v/4,and m <v—-38.

First define the sub zigzag path (vg,vy,...,v), /2_1) of length m/2 -1

by

vi=(=1)"*(i+1)/2] for 0 <i<m/2-1.
Then let Z5(m) be the zigzag path (vo,v1,...,Vr) defined by

Ufm/z—l)-i for0<i<m/2-1,
Vi= { Umsp—1 + 1 for i =m/2,and
Un-i + /2 form/2+1<i<m,

where each sum is reduced modulo v. Notice that the set of m-paths
Zs = {Zs(m) —i | i € Z,/2} partitions all the edges of differences in



{2,3,...,m/2}, v/2 edges of difference v/2 — 1, and the v/2 edges of dif-
ference 1 in I(v/2,0).

Let A be the trail defined by (0,v/2,1,v/2+1,2,...,v—1,v/2) of length
v which covers the edges of difference v/2 and remaining edges of difference
v/2 — 1. Notice that the only vertex appearing more than once in A is v/2
which appears twice.

If m > v/2 then let C = S(A,0,v — m) + I(v — m,v/2). Then C is a
trail of length 3v/2 — m > m. Let T; be the final segment of A after the
subtrail S(A,0,v — m) has been removed. Observe that the length of 7T} is
2m — v. Clearly B = I(0,v — m) + T} is an m-path.

Note that if m = v/2 then let B = I(0,v/2) and C = A.

In either case, let F' be the subtrail of C containing the last m edges and
let E be the subtrail of C formed by removing F. Then F is an m-path
because the only vertex repeated in C is v/2 which appears as both the
second and the last vertex. Note that

E= 5(C,0,(3v/2 —2m)/2) if 3v/2 — 2m is even,and
| S(C,0,v/2 + |(3v/2 — 2m)/2)) otherwise.

Let T = (v1,va,..., vx) be the trail formed by the concatenation C(v, m/2+
1)+C(v,m/2+3)+---+C(v,v/2—3)+ E. Again we show that the trails
in T'/m are paths by showing that each cycle C in T has length more than
m; so let C be acyclein T.

(i) Suppose C consists only of edges in C(v,m/2 + 1) + C(v,m/2 +
3)+:--+C(v,v/2 — 3) then by Lemma 3 we can conclude that the
length of C is greater than m.

(ii) C contains edges from both C(v,v/2 — 3) and E. First observe
that, since m > max{4,v/2} and since m < v — 8, it follows that
v 2> 16. Hence 3v/4 —m < v/2 -3 < v/2 + |(3v/2 —2m)/2].
The first vertex to be repeated in C(v,v/2 —3)+ E is v/2 — 3 and
the number of edges between its appearances is v — 5(> m), which
implies that the length of C is greater than m.

Therefore, by the above observations, we can conclude that all trails in
T/m are paths. Note that in Case 5, v — m = 2 (mod 4), so m/2 43 =
v/2 — 3 (mod 2). So T/mU BUF is a set of m-paths which partitions
all the edges of differences in {m/2+1,m/2+2,...,v/2 — 2} U {v/2}, the
remaining v/2 edges of difference v/2 — 1, and the v/2 edges of difference 1
in I(0,v/2). So (V,C) = (Z,,{25 U BUFUT/m}) is a Py,-decomposition
of K,.

Suppose S = (W, D) is any subsystem in this P,,-decomposition. Let
m; € D be any path of length m. We will now consider various possibilities
for m; and show that W = V in each possibility. First observe that since
v > 16, m > v/2 implies that m > 8.
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Suppose that 7; = Zg(m) — i for some i € Z, 5.

Each Z5(m)—i contains the edge {k, k+(v/2—1)} for some k. Therefore
m; contains both k —1 and k — 1+ (v/2—1). So W must contain the edge
{k -1,k -1+ (v/2 — 1)}, which implies that Zs(m) — (z +1) € D. By
repeating this argument we can conclude that V(Zs) = W = V.

Suppose that 7; € BUFUT/m.

Every m; € BU F UT/m contains a pair of vertices {k, k + 2} for some
k, which implies that the edge {k,k + 2} is in some Z5(m) — i for some i.
Hence the result follows by the previous argument.

Case 6¢c: v/2<m < 2v/3,m >v -8,

Without loss of generality we can assume that m = v — 4, because
v—m = 0 (mod 4) in Case 6. By Lemma 2 m < 2v/3, so in this case
v/2 < v —4 < 2v/3, implying 8 < v < 12. Since v is even and m has to

divide ;) , this implies that the only exceptional case that needs to be

solved is when v =8 and m = 4.

So finally suppose that v = 8 and m = 4. Then let (V,C) = (Z; U
{00}, {Ze+i | i € Z7}) is a P4- decomposition of K where Zg = (0,0, 6,1,5).
This decomposition contains no subsystems because whenever {c0,z} is in
any subsystem, {c0,z} — z+ 1 for some z € Z7, which implies that when-
ever Zg + i is in any subsystem Zg + (i + 1) is also in the same subsystem.
By repeating this argument we can conclude that V({Zg+i | i € Z7}) =
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