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Abstract

The general neighbor-distinguishing total chromatic number xgn4(G)
of a graph G is the smallest integer k such that the vertices and
edges of G can be colored by k colors so that no adjacent ver-
tices have the same set of colors. It is proved in this note that
Xgnd(G) = [logz x(G)] +1, where x(G) is the vertex chromatic num-
ber of G.

Key word: General neighbor-distinguishing total coloring; Chromatic
number; Graph

1 Introduction

Only simple graphs are considered in this note unless otherwise stated. For
a graph G, we denote its vertex set, edge set, and maximum degree by
V(G), E(G), and A(G), respectively. A k-total-coloring of a graph G is a
mapping f from V(G) U E(G) to the set {1,2,---,k}. Let

Ct(v) = {f(zv} | zv € E(G)} U {f(v)}

denote the set of colors assigned to a vertex v and the edges incident to v,
Cy(v) is called the color set of vertex v. A k-total-coloring f of G is general
neighbor-distinguishing, or a k-gndt-coloring, if Cy(u) # Cy(v) whenever
uwv € E(G). The general neighbor-distinguishing total chromatic number,
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denoted by x;'nd(G), is the smallest integer k& such that G has a k-gndt-
coloring.

The general neighbor-distinguishing total chromatic number is related
to two known graph invariants. The one is general neighbor-distinguishing
chromatic index. A k-edge-coloring of a graph G is a mapping ¢ from
E(G) to the color set {1,2,---,k}. Let Cy(v) = {¢(zv) | zv € E(G)}
denote the set of colors assigned to the edges incident to v. A k-edge-
coloring ¢ of G is general neighbor-distinguishing, or a k-gnd-coloring, if
Cy(u) # Cy(v) whenever uv € E(G). The general neighbor-distinguishing
chromatic index, denoted by gndi(G), is the smallest integer k such that
G has a k-gnd-coloring. This concept was introduced by Gyéri et al. [3].
They characterized the general neighbor-distinguishing chromatic index for
bipartite graph and computed gndi(K,) = [logy n]+1 for any n > 3, where
X(G) denotes the ordinary (vertex) chromatic number of G. Furthermore,
they proved that gndi(G) < 2[log, x(G)] + 1 for any graph G without iso-
lated edges. If x(G) > 3, Hortidk and Soték [5] improved the above bound
by showing that [log, x(G)] + 1 < gndi(G) < |logy x(G)| + 2. More re-
cently, it was shown in [4] that gndi(G) = [log, x(G)] +1 for any connected
graph G with x(G) > 3.

Proposition 1 For any graph G without isolated edges, we have x,4(G) <
gndi(G).

Proof. Let ¢ be a k-gnd-coloring of G using the colors 1,2,-. -, k. Based
on ¢, we can define a k-total-coloring f as follows.

(1) For each edge e € E(G), let f(e) = ¢(e).
(2) For each isolated vertex v € V(G), let f(v) =1.

(3) For each vertex v € V(G) that is not isolated, let f(v) be any color
in Cy(v).

Let uv be an arbitrary edge of G. By the definition of ¢, we conclude
that Cy(u) # Cy(v). Thus, Cy(u) = Cy(u) # C4(v) = Cy(v). This shows
that f is a k-gndt-coloring of G. Therefore, xg,4(G) < gndi(G). m|

The other is edjacent verter distinguishing total chromatic number. A
k-total-coloring of a graph is proper if any two adjacent or incident elements
in V(G) U E(G) receive different colors. A proper k-total-coloring f of G is
adjacent vertex distinguishing if Cy(u) # Cy(v) whenever wv € E(G). The
adjacent vertex distinguishing total chromatic number, denoted by x2(G),
is the smallest integer k such that G has an adjacent vertex distinguishing
k-total-coloring.

In (8], Zhang et al. first introduced this concept and conjectured that
X2(G) £ A(G) + 3 for any connected graph G with at least two vertices.
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Note that x%(Kan+1) = A(K2n+1) +3 = 2n + 3 for any n > 1. This
example shows that the upper bound A(G) + 3 of x/(G) is tight if their
conjecture is true. In [8], x2(G) is determined if G is a path, a cycle, a fan,
a wheel, a tree, a complete graph, and a complete bipartite graph. Chen
[2] and Wang [6], independently, confirmed that x;,(G) < 5 for a graph G
with A(G) < 3. In [7), outerplanar graphs were completely characterized
using the adjacent vertex distinguishing total chromatic number.

Proposition 1 and the result of (4] imply immediately that xg,,(G) <
[logs x(G)] + 1 for any graph G. In this note, we will establish a similar
and neat expression Xg,4(G) = [log; x(G)] + 1, independent of the result
in [4].

2 Main Result

For integers p,q with ¢ > p, we use [p,g] to denote the integer interval
bounded by p and g, i.e., [p,gl = {p,p+1,---,¢ - 1,4}

Let G be a connected graph with x(G) = k£ > 3. Clearly, a proper
(vertex) k-coloring of G admits a k-partition (V4, Va, - -+, Vi) of V(G) such
that G[V;], the subgraph of G induced on V;, is edgeless. Let Ax(G) de-
note the set of all such k-partitions (V1,V,,---, Vi) of V(G). Given A =
V1, Va,-+-, Vi) € Ax(G) and 4,5 € {1,2,:--,k}, let E; ;(A) denote the set
of edges of G joining a vertex in V; to a vertex in V;, and e; j(A) = | E; j(A)].
Further, we set e(A) = (e1(A), e2(A), - - -, ex(A)), where

k
ei()\) = Z e,-‘j()\).
=1, j#i
Suppose that A = (a1,a2,+-,a,) and B = (by, ba, -+, b,) are two dis-
tinct real sequences with n > 1, We say that A is greater than B in a
lexicographical order if there is an index 1 < i < n such that a; > b; and
a;=b;jforall j=1,2,.---,i-1.

Lemma 2 Let G be a connected graph with k = x(G) =2 3. Let A* =
(Vi Vg, -+, Vi) € Ai(G) be a lezicographically mazimal sequence in Ax(G)
according to e(A*) = (e(Vy),e(Vy), «--,e(Vy)). Then for any i € [2,k],
z €V and j € [1,i— 1], there ezists a vertez y € V;* such that = is joined
toy in G.

Lemma 2 is obviously right.
If G is a disconnected graph with n > 2 components G;,Ga,---,Gp,

then it is straightforward to derive that xg,,4(G) = max {xgn4(G:)}. Thus,
sStsn

in what follows, we only consider connected graph.

381



Theorem 3 For a connected graph G, xj,4(G) = [logg x(G)] + 1.

Proof. Let k= x(G). If k=1, then G is K, and x5,4(G) =1. If k = 2,
then G is a bipartite graph with bipartition V(G) = X UY. We define a
mapping f as follows:

_J 1 ifteX,orte E(G)
f(‘”)‘{z iftey.

It is easy to inspect that f is a 2-gndt-coloring of G, and hence x and(G) <
2. On the other hand, it is evident that x7,,(G) > 2. Consequently,

Xgnd(G) =2.
Assume that k > 3. We first prove that xg,4(G) < [logy k] + 1. Let

£=[logok]+1and A={A|]l€ Aand AC 1, If]} Then
A = 9¢=1 _ ofloga k] > glega k _ k.

According to the lexicographical order, we can arrange all the elements of
A as follows:

A = {1},A2 = {1,2},-‘-,‘44 = {1,2},Ae+1 = {1,2,3},°--,A21-1 = {1,2,- ..

Let A* = (V" V3%, -+, V') € Ax(G) be a lexicographically maximal se-
quence in Ax(G) according to e(A*) = (e(V}*),e(V3),- -, e(V}¥)). We define
a function f on V(G) U E(G) in the following ways.

(1) For each vertex v € V*, let f(v) =1if 1 <i < ¢, and f(v) =1if
£+1<i<k

(2) Foreachedgee € E;;(A*) with1 < j<i<k,let f(e)=37ifj€ A,
and f(e) =1if j ¢ A;.

We have to prove that f is an f-gndt-coloring of G. Let v € V(G).
So, v € V;* for some 1 < i < k. We observe the construction of Cy(v) by

considering the following two possibilities:
Casel. 1<i<e

By (1), f(v) =i. If i = 1, it is easy to see that C¢(v) = A; = {1}.
Suppose that ¢ > 1. By Lemma 2, there exists u € V}* such that uv € E(G),
hence f(uv) =1 by (2). This implies that A; = {1,i} C Cy(v). Let e be
any edge incident to v. Then either f(e) =1 or f(e) = ¢ by (2), implying
that C¢(v) C A; = {1,}. Therefore, C¢(v) =

Case 2. £+1<i<k.

We see that f(v) = 1 by (1). For any j € A; C [1,£], there exists
u € V! such that uv € E(G) by Lemma 2, so f(uv) = j by (2). It follows
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that j € Cy(v) and henceforth A; C C¢(v). Conversely, let e be any edge
incident to v. Then either f(e) =1 or f(e) € A; by (2), i.e., Cs(v) C A;.
Therefore, C¢(v) = A;.

Since A; # Aj for any i # j and Cy(v) = A; forve V* with1 <i <k,
any two adjacent vertices u and v have distinct color sets. So, f is an
£-gndt-coloring of G. It turns out that x, ,(G) < £.

Second, we need to prove that xgnd(G) > [logy k] + 1. Suppose that

x7.4(G) =t. Let f be an t-gndt-coloring of G using colors 1,2,...,¢, and let
Tg {1,2,---,t}. For any edge e = uv € E(G), we have that C’;(u) #Cr(v)
by deﬁnition, and Cy(u)NCy(v) # D as f(e) € Cr(u)NCy(v). Let A= {AC
T|1 € A}. Then |A| = 2¢—1. We write that A = {A;, Az, -+, Age-1}. Since
f is an t-gndt-coloring of G, for any vertex v € V(G), we have C¢(v) C T.
Thus, C¢(v) € A or T — Cy¢(v) € A, by the definition of A.

Based on f, we define a 2¢~!-vertex coloring 7 of G using the colors
c1,C2, -+, Coe-1. For a vertex v € V(G), we set m(v) = ¢;, where ¢; can be
chosen to satisfy, by the definition of f, that 1 <i < 2!}, and Cy(v) = A
or T — C¢(v) = A;. In order to show that 7 is a proper vertex coloring
of G, we assume to the contrary that there exist two adjacent vertices v
and u such that m(v) = 7(u) = ¢;. By the definition of ¢;, there exists A;,
1 < j <2071, such that Cy(v) = A;j or T — Cy(v) = Aj, and Cy(u) = Aj or
T —Cy(u) = A;. By the definition of f, Cr(u) # C¢(v). So, we derive that
Ci(u)=T- Cf(’U) This means that Cf(u)an(U) @, which is impossible
because f(vu) € Cy(u) N Cy(v). Thus, 7 is a proper vertex coloring of G,
and hence x(G) < 2!-!. It follows easily that ¢ > [logy x(G)] +1 =
[log, k] + 1. Consequently, xj,4(G) = [logg k] + 1. O

Using Theorem 3 and the result of (3], we obtain:

Corollary 4 For any connected graph G without isolated edges, we have
Xgna(G) = gndi(G).

The Four-Color Theorem [1] says that every planar graph is 4-colorable.
This fact together with Theorem 3 establish the following.

Corollary 5 If G is a planar graph, then xg,,(G) < 3.

Since x(Kn) = n, the following result follows immediately from Theo-
rem 3.

Corollary 6 xg,,(K») = [logan] +1.

Corollary 7 Let G be a connected graph with at least two vertices. Then
x;'nd(G) = 2 if and only if G is bipartite.
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The well-known Brooks’ Theorem asserts that x(G) < A(G) if G is
neither a complete graph nor an odd cycle. Using this fact and Theorem
3, we obtained the following corollary.

Corollary 8 If connected graph G is neither complete nor an odd cycle,
then Xgnq(G) < [log, A(G)] +1.

gnd

Since x is a monotone graph parameter, Xg, 4 is also monotone by The-
orem 3.

Corollary 9 If H is a subgraph of G, then xgn4(H) < Xgna(G)-
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