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ABSTRACT. For any abelian group A, we denote A*=A-{0}.
Any mapping 1: E(G) — A* is called a labeling. Given a labeling
on the edge set of G we can induce a vertex set labeling 1*: V(G)
->A as follows:

1°(v) = Z {1(u,v): (u,v) EE(G)}.

A graph G is known as A-magic if there is a labeling 1: E(G)
— A* such that for each vertex v, the sum of the labels of the
edges incident to v are all equal to the same constant; i.e., 1’(v) =
¢ for some fixed ¢ in A. We will call <G,1> an A-magic graph
with sum c.

We call a graph G fully magic if it is A-magic for all non-
trivial abelian groups A. Low and Lee showed in [11] if G is an
eulerian graph of even size, then G is fully magic. We consider
several constructions that produce infinite families of fully magic
graphs. We show here every graph is an induced subgraph of a
fully magic graph.

Keywords: magic labeling, A-magic, fully magic, eulerian, edge
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1. Introduction.

For any abelian group A, we denote A* =A-{0}. Any
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mapping 1: E(G) —A* is called a labeling. Given a labeling on
edge set of G we can induce a vertex set labeling 1*: V(G) —A as

follows:
1'(v) = 2 {1(u,v): (u,v) € E(G)}.

Definition 1. A graph G is called A-magic if there is a labeling 1:
E(G) —A* such that for each vertex v, the sum of the labels of the
edges incident to v are all equal to the same constant; i.e., 1’(v) =
¢ for some fixed c in A. We will call <G,1> an A-magic graph
with sum c.

The concept of an A-magic graph was introduced in [8]. For
other properties of A-magic graphs, the reader can refer to
[5,8,9,10, 11,15,16].

Definition 2. We call a graph G fully magic if it is A-magic for
all non-trivial abelian groups A.

Example 1. The following bipartite graph G is fully magic. We
see that if x is a non-zero element for any non-trivial abelian
group A, then G admits an A-magic labeling with sum 0 (Figure

1.

vV, W) (vpw) (vw)

V,w,) (W) (v, w,)
Figure 1.
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When A = Z, the Z-magic graphs had been considered in [3,
18, 19, 20, 21]. Stanley pointed out that the theory of magic
labelings can be put into the more general context of linear
homogeneous diophantine equations [18,19].

When the group is Zy, we shall refer to the Z, -magic graph
as k-magic. Graphs which are k-magic had been studied in
[4,5,7,8,12].

The original concept of A-magic graph is due to J. Sedlacek
[12,13], who defined it to be a graph with real-valued edge
labeling such that (i) distinct edges have distinct nonnegative
labels, and (ii) the sum of the labels of the edges incident to a
particular vertex is the same for all vertices. Magic graphs of this
type had been characterized by S. Jerzy and M. Trenkler in [2,
22].

In [8], we show that

Theorem 1.1. The graph G is 2-magic if and only if all vertices
are odd degree or even degree.

An eulerian graph is a connected graph consisting of a single
closed walk such that each edge is traversed once. It is well-
known that a graph is eulerian if and only if all the degrees of its
vertices are even. Low and Lee showed in [11] the following

result.

Theorem 1.2. If G is an eulerian graph of even size, then G is
fully magic.

The following result is obvious.

Theorem 1.3. Every eulerian graph is 2k-magic for all k > 1 and
A-magic where A is any elementary 2-group.

However, eulerian graphs of odd size, need not be fully magic.

Example 2. The following eulerian graph is not 3-magic.
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Figure 2.

Lee and Wen [11] provide eight constructions of infinite
families of eulerian graphs of odd sizes which are fully magic.

The aim of this paper is to provide some constructions which
will yield fully magic graphs. In section 2, the generalized product
of graphs is introduced. The merit of this construction is that we
can show that any graph is an induced subgraph of a fully magic
graph. In section 3, the generalized L-product construction is
extended to partially generalized L-product. Several infinite
families of eulerian graphs of odd sizes by partially generalized L-
product are presented. In section 4, chain sum and edge expansion
of graphs are considered. In section 5, another construction called
two-point join is also considered.

2. Fully magic graphs which are generalized L-products of

graphs.

In this paper, we will use the following notations:

Gph = the class of all connected graphs.

Euler(even) = the class of all eulerian graphs of even sizes.
Similarly,

Euler (odd) = the class of all eulerian graphs of odd sizes.

REG(K) = the class of all k-regular graphs.
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Let Gph * be the class of pairs (H,s) where H is a connected
graph and s is a distinguished vertex of H.

For any graph G and a mapping ®: V(G)—=Gph* we
construct a new graph G x| ® as follows:

We form the disjoint union of G and {®(v) = (H,s) : v €
V(G)} and identify v with s for each v in V(G).

The resulting graph is called the generalized L-product of G
and ®.

If @ is the constant map ®(v) = (H,s) for all v € V(G), then
we denote G x | ® simply by G x | (H,s) and call the resulting
graph the L-product of G and (H,s).

For any n > 1, we denote the tree with n+1 vertices of diameter
two by St(n). The star has a center ¢ and n append edges to c.

Theorem 2.1. For any G in Gph and ® :V(G) — Gph*, where
®(v) = (St( deg(v)+1,c) for each v in V(G), the generalized L-
product G x | ® of G and @ is fully magic.

Proof. Let x be a non-zero element of a non-trivial abelian
group A. We label all the edges of G x | @ except edges in E(G)
by x and all the edges in E(G) by -x . For each v in V(G) if
degree v is n then v has an extra n+1 appended edges, then it is
clear that the vertex label of v is -nx+n+ )x = x. Thus the
labeling is A-magic with sum x (see Figure 3).

We have the following result immediately.

Corollary 2.2. Every graph G is an induced subgraph of a fully
magic graph.

Example 3. Figure 3 shows a (8,11)-graph which is non magic.
We see that deg(v,)=1, deg(vo)=deg(vi)=deg(vs)=2, deg(vi)=3,
deg(v,)=deg(v4)=deg(vs)=4. However, its generalized L-product
G x L @ is fully magic.
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Figure 3.

For k>0, we denote the class of all fully magic graphs G
such that for each non-trivial abelian group A and any x in A*,
there exists a A-magic labeling 1:E(G) —A* where 1(e) is x or -x,
and 1¥(v) = kx for all v in V(G) by Q(k).

Observation 1. The minimal graph in € (1) is P,.
Observation 2. Euler(even) C Q(0).

Observation 3. The cycle Cyp4; is in £(2) but not in (1) and
Q(0).

We have the following general result.

Theorem 2.3. For any G in Euler(even), and ® : V(G)—Gph*,
the generalized L-product G x | @ is in Q(k) if ®(v) is in Q(k) for
each v in V(G).
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Proof. Let x be a non-zero element of a non-trivial abelian group
A. If G is eulerian of even size then we have an eulerian trail from
any vertex v back to itself. We label the edges of the trail by x, -x
alternately. We see that each vertex in G has a zero sum. Now as
O(v) is in Q(k), it admits an A-magic labeling with sum kx.
Hence the generalized L-product G x | @ is in Q(k).

Corollary 2.4. For any G in Euler(even), the L-product G x| P>
is in Q(1).

Remark. The above result is not true if we replace Euler(even)
by Euler(odd). Consider C; which is clearly eulerian of size 3.
We see that the L-product C; x 1, P, (Figure 4) is not 2k+1-magic
for all k > 1. For if C; x | P, is A-magic for some A, then we

would have x+y+y = x which implies 2y =0.

Vi

X
¢
Y/ \Y

vy
Xe, ¥ 5 Vi

Figure 4.
In fact, Theorem 2.1 can be generalized as follows

Theorem 2.5. If G is a graph in ©(0), then the generalized L-
product G x | @ is in Q(k) if ®(v) is in Q(k) for each v in V(G).

3. Fully magic graphs in Q(I).
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Theorem 2.1 shows that every graph is an induced subgraph
of a Q(l) fully magic graph. In this section, we will construct
several new families of fully magic graphs in Q(l). It is obvious
that REG(3) € (3). However, we have

Theorem 3.1. If H is a graph in REG(3) with a perfect matching
T, then H is in Q(1).

Proof. Let x be a non-zero element of a non-trivial abelian group
A. We label all the edges of E(H) except T by x and all the edges
in T by -x . For each v in V(G), it has one edge in T, then it is
clear that the vertex label of v is -x+2x =x. Thus the labeling is A-
magic with sum x.

Corollary 3.2. For any n > 3, the cylinder graph C, x P, is in
Q(1).

Let the wheel W(n) = K; + C,. Suppose V(W(n) = {c,
V1,V2,...,Vn}, We see that it has size 2n.

Theorem 3.3. (a)For m > 2, and any graph G in REG(2m), the L-
product graph G x; (W(2m-I),c) is in Q(1).

(b)For m > 2 and any graph G in REG(2m+1), the L-product
graph G x; (W(2m),c) is in Q(1).

Proof. (a)Let x be a non-zero element of a non-trivial abelian
group A. We label all the edges of W(2m-I) except the spokes by
x and all the spokes by -x. For each v in W(2m-I), we see the
vertex label is -x+2x =x and the center ¢ has vertex label -(2m-
1)x. Now if we label all the edges of G by x, then each vertex in G
x.(W(2m-l),c) has label 2mx. Thus the labeling of G x, (W(2m-
1),c) is A-magic with sum x.

Using a similar argument, we can show that (b) is true.

Example 4. Figure 5 illustrates the labeling scheme for the L-
product of K5 with (W(3),c).

392



Figure S.

Theorem 3.4. Among the 19 connected (6,7)-graphs, the graph
G115 depicts in Figure 6 is the only one in Q(l).

G115

Figure 6.

Theorem 3.5. For any n > 3, the graph C, x, (G 115, v) for any v
in V(G115) is in (1) if and only if n is even.
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Proof. If n is even, then C, is in ©(0). Thus, C, x, (G 115, v) for
any v in V(G115) is in Q(1).

If n is odd, then C, is in 0(2) but not in €(0). Thus, C, x;, (G115,
v) for any v in V(G 115) is not in Q(1). '

Theorem 3.6. The graph H depicts in Figure 7 is in Q(1).
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Theorem 3.7. Let J be the (5,7)-graph as shown in Figure 8. For
any G € REG(3), the L-product graph G x.. (J,v}) is in Q(1).

Proof. Let x be a non-zero element of a non-trivial abelian group
A. We label all the edges to each J component as shown in Figure

8.
All the edges of the G are x labeled. We see that all the

vertices in the L-product G x;, (J,v) are x. Thus G x.(J,v,) is in
Q(1).

Example 5. Let G be K,. Figure 8 shows that K4, x (J, v1) is in
Q(1).

del.(']’vl)
Figure 8.

Definition 3. In the definition of generalized L-product of G and
®, we relax the condition @ : V(G)— Gph*, by ® : S — Gph*
where S C V(G), then the construction is called the partially
generalized L-product. We will denote this graph by (G,S) x.®.
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Theorem 3.8. For any m > 2 and n > 3, let G = P,xP, be the grid
graph. Let S be the set of all even vertices of G. For any @ : S
—Q(1)*, the partially generalized L-product (G,S) x; ® is in Q(1).
Proof. Let x be a non-zero element of a non-trivial abelian group
A. We label all the edges of P,,xP, as follows:

All the edges of the rows of P,xP, are labeled by x and all the
edges of the columns of P,xP, are labeled by -x. We see that all
the odd vertices in P,xP, have labeled x and all the even vertices
in P,xP, have labeled 0.

Thus the partial generalized L-product (G,S) x @ is in Q(1) if
each even vertex is amalgamated with a Q(1) fully magic graph.

Example 6. Figure 9 shows the partial generalized L-
product (P2xP4,S) x; @, is in (1) where ®(v) =P, for all v in S.

Figure 9.

Theorem 3.9. For any m> 3 and n> 2, let G = C,xP, be the
cylinder graph. Let S be the set of all even vertices of G. For any
® : S — Q(1)*, the partial generalized L-product (G,S) x,® is in
Q(1).
Proof. Let x be a non-zero element of a non-trivial abelian group
A. We label all the edges of C,xP, as follows:

All the edges of the cycles of C,,xP, are labeled by x and all
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the edges of the paths of C,xP,, are labeled by -x .

We see that all the odd vertices in C,xP,, are labeled x and
all the even vertices in C,xP, are labeled 0.

Thus the partially generalized L-product (G,S) x,.® is in
(1) if each even vertex is amalgamated with a Q(1) fully magic
graph.

Example 7. Figure 10 shows that the partially generalized L-
product (C3xP3,S) x; @ is in (1) where ®(v) =P, forall v in S.

Figure 10.

Let Gph** be the class of pair (H, {u;,u;}) where H is a connected
graph and s,t are two distinguished vertices of H.

For any two pairs (H’{ubuZ}) (H[,{V],Vz}) in Gph**’ we
construct a new graph (H,{u,,u;})# (H;,{v,,v2}) as follows:

We form the disjoint union of H and H, and identify u; with

v, and u, with v,. The resulting graph is called the two-point join

Of(H’{ul’uZ})s (H],{V],Vz})-
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We can generalize the above construction in the following
way:
Suppose n pairs {u;,u}, {us,us}, ... , {uzn.1,uzn} of vertices in
H are given. Let D={{u;,u3}, { us,ws}, ... , {Uzn.1,U20}} and 4 : D
—>Gph** with
0 ({uzi.,uzi} ) = (Hi, {vai1 vai}) fori=1,2...,n
We set TI() = (H,{u;,u2})# (Hi,{v1,v2})
TI(2) = (TI(1), {u3,us}) # (H2{v3,va}),
TI3) = (TI(2), {us,us}) # (H3{vs,ve}),

Finally TI(n) = (TJ(n-1), {uzn.1,u20}) # (Hn, (V2na1,

Van})-

We will say TJ(n) is the two-point join of H with {(
Hy,{v1,v2})... , (Hn, (V2n-1, V2n}). and will denote this graph simply
by (H,D) # 9 (D).

Theorem 3.10. Let G = C,, where t >1 and V(Cq) = { u;,uz, Us,uy,
«»-U4t-1,U4t }'

Let D={ {u;,uz}, {u3,us},...{uss.1,us} } and 9: D

— Gph** with

0 ({uzi.1,u2i} J=(St(3), {v1,v2}) fori=1,2,...,2t.

Then the two-points join (H, D) #3d( D) is in

Q).

Example 8. Figure 11 demonstrates the magic labeling scheme
for H = (St(3), {v1,v2}) and C, for t=1 and 2 respectively.
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4. 2(2)-and Q(3)-Full magic graphs.

Definition 3. The generalized theta graph ©(1,,1,,...1y) is the
graph consisting of k pairwise internally disjoint paths with
common end vertices s),s; and length 1;,15,...1y.

It is clear that the size of the generalized theta graph
O(1y,15,... 1x) is 1)+1x+. . +1y.

For each k >1, we denote the class of all generalized theta
graphs ©(1,,1,,...15) by GT(k). For convenience, we consider that
GT(1) consists of all paths as generalized theta graphs. We denote
U {GT(k):k>1 } by GT.

Theorem 4.1. The generalized theta graph ©(1,, 15,13) is in Q(2).

Proof. Let x be a non-zero element of a non-trivial abelian group
A. We label all the edges of ©(1, 1,,13) except (s;,52) by x and
(s1,82) by -x. It is clear that the labeling is A-magic with sum 2x.

For any two pairs (H],{U],llz}), (Hz,{U3,U4}), in Gph**9 we
construct a new graph (H,{u;,u;}) © (H;,{us,u4}), as follows:

We form the disjoint union of H, and H, and identify u, with
u3). The resulting graph is called the chain sum of (H;,{u;,u;}),
(Hz,{u3,uq}).

We can generalize the above construction in the following
way: :

Suppose n pairs (Hy,{u;,u2}), (H2,{u3,u4}),... Hn,{U25.1,u25}) in
Gph** are given‘ We set TJ(I) = (H’{ul,uz}) © (H],{U3,U4}),

TI(2)= (TI(1), {uy,us}) © (Hs,{us,ue}),
TI(3) = (TI(2), {u1,u6}) © (Ha,{u7,us}).



Finally TJ(n) = (TJ(n-1),{u;,u2n2}) © (Hp,{u2n-1,u20})-
We will say TJ(n) is the chain sum of (H;,{u;,u;}),
(Hz,{ll3,ll4}),. o Hna{ulaUZ})

Theorem 4.2. For any odd integer n > 3, the chain sum of n
generalized theta graphs (©(1,13,),{s152}),(©(1,12,2),{53,54}),
«(©(1,12,0),{S20-1,520}), is in Q(2).

Proof. Let x be a non-zero element of a non-trivial abelian group

A.
For i =1,2, ... ,n, we label all the edges of the odd component

of the chain sum by x and all the edges of the even component
except (S2i.1,82i) by x and (sz;.1,52i) by -X. It is clear that the labeling
is A-magic with sum 2x (see Figure 10).

Example 9. Consider the chain sum of

(9(1 ,2),{3] ’SZ}),(Q( 1 ,2),{53,84}), (9( 1 ’3)s{55’56} )’ (6(1 ,2),{87,58}),
(0(1,4),{s9,510}), in Figure 12. It is easy to see that the graph is in
Q(2).

Figure 12.

Given a graph G, and T C E(G), we define a mapping 6 : T

—GT. A

Now we construct a new graph from (G, T, 8) as follows:

If 8(e) = O(1,,1,, ... ,1x,) € GT(k), where e = (u,v) € T, we
will identity s;,s3, of ©(1,15, ... ,1x,) to u,v respectively. We will
denote the final graph by I'(G,T, d).

We will call I'(G, T, d) as the edge expansion of (G,T, ).
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Theorem 4.3. Suppose the wheel W(2m+2) has 2m+3 vertices
and T = { (v1,v2), (V3,Va),... (Vam+1,V2ms2). For any mapping 8 :
T—GT(l), the edge expansion of (W(2m+2),T, &) ,c) has the
following property:

For any G in REG(2m), the L-product G x; (W(2m+2),T,
d),c) is in Q(2).
Proof. Let x be a non-zero element of a non-trivial abelian group
A. If we label the edges in the edge expansion of (W(2m+2),T, d)
except those in T by X, and all the edges in T by -x, we see that all
the vertices, except ¢ have label 2x. The center has label 2m+2)x.
Now if all the edges in G are labeled by -x, then the vertex label
for each vertex in G is -2mx. Thus the L-product G x;
(W(2m+2),T, d),c) is in 2(2).

Example 10. Figure 13 illustrates the labeling for (W(4),T, d)
where T= {(v),v2), (V3,v4)} and & : T=GT(1) is defined by

8((v1,v2)) = P3 and 8((v3,va)) = P..

3 (v, V)F O C C
8 ((v3, VO O—O—0O0—0

Figure 13.

In general, not all 4-regular graphs have a perfect matching.
Carbonera and Shepherd [1] gave a 4-regular graph of order 30
without a perfect matching and showed that 4-regular graphs
derived from quadrilateral meshes always have a perfect matching.



Theorem 4.4. If G in REG(4) and p(G) is odd, such that there
exists a vertex u in G with G- {u} has a perfect matching then the
L-product C, x; (G, u) is in Q(2) foranyn>3 ..

Proof. Suppose G in REG(4) and V(G) = { v,,v2.. vair1). For any
u in V(G) and for any x in A*, where A is a non-trivial abelian
group, we define a labeling on each G component as follows: the
four edges in G which are incident on u are labeled by x. For the
subgraph G\{u} which containing the other 2t vertices, we labeled
the edges in a perfect matching of G\{u} by -x and all the other
edges by x. We see that each vertex of G has vertex label 2x,
except the vertex u which has label 4x. Now if we define all the
edges in the cycle by

-X, then it is obvious that the L-product C; x; (G, u) has magic
labeling with sum 2x.

Example 11. Figure 14 illustrates the labeling for C; x1. (Ks, u).

Figure 14.

Let J be K4-¢, where e =(a,b). Given a graph GEREG(3),and
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T C E(G), where all the edges in T are independent, i.e.no two
edges are incident on one vertex,we define a mapping & : T
—Gph.** where 8((u,v)) = (K4-¢, {a,b}).

Now we construct a new graph from (G,T, 8) as follows:

If e = (uv) € T, we will identity u with a and v with b
respectively. We will denote the final graph by I'(G,T, 6). Let
I'(G,T, 0) be the edge expansion of (G,T, ).

Theorem 4.5. For any graph GEREG(3), and any T C E(G) with
independent edges, the edge expansion of (G,T, 8).is in Q(3).

Proof. Let x be a non-zero element of a non-trivial abelian group
A. We label the edges of I'(G,T, 8) with J component by —x on
(u,v) and all the other edges by x. We see that I'(G,T, 8) has

magic sum 3x.

Example 12.. The following (6.10)-graph in Figure 15 is in €(3)
which is I'(K4,T, 8) where T = {(v,,v3)}.

Figure 15.



5. 2(k)-Full magic graph.
Finally, we will use the two point-join construction to create
a large family of fully magic graphs in Q(k) for any k > 3.

For any k > 3, and any H €REG(k). If e=(u,v) € E(H), we
consider the pairs (H \ {e}, {u,v}), (P3, {s1,52}) and forms their
two-point join. We denote the resulting graph simply by H*. If
V(P3) = { s1,8,52} and E(P3) ={(51,8) {s,s2)) then we consider the

pair (H*,s).

Theorem 5.1. For any k > 3, and any G € Q(k-2), the L-product
G x. (H*,s) is in Q(k).

Proof. Let x be a non-zero element of a non-trivial abelian group
A. If we label the edges in each H* component of G x; (H*,s) by
X, we see that all the vertices in H* component except s have label
kx and the vertex label of s is 2x. Now as any G €R(k-2), it has
an A-magic labeling with edges labeled by -x or x , and the vertex
labels in G are (k-2)x. Thus the L-product G x;, (H*,s) is in (k).

Example 12. Figure 16 shows that H EREG(3) and e =(uz,u3).

The graph G115 of Figure 6 is in (1). and the L-product G115 x.,
(H*,s) is in (3).
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Figure 16.
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