On a new Stirling's series

M. Mansour¹ and M. A. Obaid²

King Abdulaziz University, Faculty of Science, Mathematics Department, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

> ¹ mansour@mans.edu.eg ²drmobaid@yahoo.com

Abstract

In this paper, we deduced the following new Stirling series

$$\begin{split} n! \sim & \sqrt{2n\pi} \left(\frac{n}{e}\right)^n exp\left(\frac{1}{12n+1} \left[1 + \frac{1}{12n} \left(1 + \frac{2/5}{n} + \frac{29/150}{n^2} \right.\right.\right. \\ & \left. - \frac{62/2625}{n^3} - \frac{9173/157500}{n^4} + \ldots \right)^{-1} \right] \bigg) \,, \end{split}$$

which is faster than the classical Stirling's series.

Key Words: Stirling' series, Stirling' formula, speed of convergence, approximation formulas.

1 Introduction.

It is well known that the Stirling's formula

$$n! \sim \sqrt{2n\pi} \left(n/e \right)^n \tag{1}$$

is the most known approximation of n!. It is used in many applications, especially in statistics and probability. A number of upper and lower bounds for n! have been obtained by various authors [6], [7]. Most bounds are of the form

$$\sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\alpha_n} < n! < \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\beta_n}, \tag{2}$$

²⁰⁰⁰ Mathematics Subject Classification: 41A60, 41A25, 57Q55, 33B15, 26D07.

¹Permanent address: M. Mansour, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

where α_n and β_n tend to zero through positive values. P. R. Beesack [3] deduced that α_n and β_n satisfy

$$\alpha_n - \alpha_{n+1} < \sum_{k=1}^{\infty} \frac{1}{2k+1} \frac{1}{(2n+1)^{2k}} < \beta_n - \beta_{n+1}.$$
 (3)

Mansour et al concluded the double inequality (2) with different proof [5] and presented a new family of upper bounds of n!, which is differ from the known Stirling's series [1]

$$\frac{B_2}{1.2.n} + \frac{B_4}{3.4.n^3} + \frac{B_6}{5.6.n^5} + ..., \tag{4}$$

where the numbers B_i 's are called the Bernoulli numbers and are defined by

$$B_0 = 1, \quad \sum_{k=0}^{n-1} \binom{n}{k} B_k = 0, \quad n \ge 2.$$
 (5)

Also, we concluded a q-analogy of the double inequality (2) and we presented some double inequalities of the q-factorial [4].

E. Artin [2] showed that the sequence $\mu(n) = \ln \frac{n!e^n}{n^n \sqrt{2\pi n}}$ lies between any two successive partial sums of the Stirling's series. Also, H. Robbins [11] showed that the sequence $\mu(n)$ satisfies

$$\frac{1}{12n+1} < \mu(n) < \frac{1}{12n}, \qquad n \ge 2. \tag{6}$$

C. Mortici [10] search the best approximation of the form

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n + \frac{n}{n+b}}} = \gamma_n, \tag{7}$$

where a and b are real parameters. He showed that the best approximation for (7) is obtained for a = 2/5 and b = 0 and presented the following new Stirling's series

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n exp \frac{1}{12n + \frac{2/5}{n + \frac{195/371}{n + \frac{195/371}{n + \frac{23999/22737}{n}}}}},$$
 (8)

as a continued fraction, which is faster than classical Stirling's series.

2 New double inequalities of n!.

Firstly, consider the following function for $a \in \mathbb{R}$

$$T_n = (n+1/2)\log(1+1/n) - 1 - \left(\frac{1+\frac{1}{an}}{12n+1} - \frac{1+\frac{1}{a(n+1)}}{12(n+1)+1}\right).$$

Then

$$\frac{d^2}{dn^2}T_n = \frac{1}{2an^3(n+1)^3(12n+1)^3(12n+13)^3} \left[-8788 + 169(13a - 2172)n \right]$$

$$+143(-40164+611a)n^2-72(367260+83a)n^3+432(-134940+1213a)n^4\\+6912(-10212+347a)n^5+41472(-1092+67a)n^6+995328(-12+a)n^7]\ .$$

If a > 13, then $\frac{d^2}{dn^2}T_n > 0$ and hence the function T_n is convex for $n \ge 13$. But $\lim_{n\to\infty}T_n = 0$, then

$$T_n > 0$$
, $\forall a > 13; n \geq 13$.

Hence the sequence $\alpha_n = \frac{1 + \frac{1}{an}}{12n+1}$ for a > 13 tends to zero through positive values and satisfies

$$\alpha_n - \alpha_{n+1} < (n+1/2)\log(1+1/n) - 1 = \sum_{k=1}^{\infty} \frac{1}{2k+1} \frac{1}{(2n+1)^{2k}} \quad \forall \ a > 13.$$

Also, if a < 12, then $\frac{d^2}{dn^2}T_n < 0$ and hence the function T_n is concave for $n \ge 1$. But $\lim_{n \to \infty} T_n = 0$, then

$$T_n < 0, \quad \forall a < 12; n \ge 1.$$

Hence the sequence $\beta_n = \frac{1 + \frac{1}{bn}}{12n+1}$ for b < 12 tends to zero through positive values and satisfies

$$(n+1/2)\log(1+1/n)-1 = \sum_{k=1}^{\infty} \frac{1}{2k+1} \frac{1}{(2n+1)^{2k}} < \beta_n - \beta_{n+1} \quad \forall \ 0 < b < 12.$$

Theorem 1. The factorial n! satisfies the double inequality

$$\sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{na}}{12n+1}} < n! < \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{nb}}{12n+1}}, \qquad 0 < b < 12; \ a > 13$$
(9)

where $n \ge 13$ in the left hand side and $n \ge 1$ in the right hand side.

The double inequality (9) can be improved by choosing two positive sequences a_n and b_n such that $a_n \to 13$; $b_n \to 12$ as n tends to infinity, a_n is decrease monotonically and b_n is increase monotonically.

Theorem 2. The factorial n! satisfies the double inequality

$$\sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{nI_n}}{12n+1}} < n! < \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{ng_n}}{12n+1}},\tag{10}$$

where the two sequences $f_n \to 13$; $g_n \to 12$ as $n \to \infty$ through positive values, f_n is monotonically decreasing, g_n is monotonically increasing, $n \ge 13$ in the left hand side and $n \ge 1$ in the right hand side.

3 Some new approximation formulas of n!.

In view of Theorem 2, we will discuss two approximation formulas of n! and we will deduce a double inequality of $\Gamma(x)$. Firstly, we will study the best approximation of the formula

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{12\left(1+\frac{h}{n}\right)n}}{12n+1}},$$
 (11)

where h is a real parameter. In what follows, we need the following result, which represents a powerful tool to measure the rate of convergence.

Lemma 3.1. If $(w_n)_{n\geq 1}$ is convergent to zero and there exists the limit

$$\lim_{n \to \infty} n^k (w_n - w_{n+1}) = l \in \mathbb{R}$$
 (12)

with k > 1, then there exists the limit:

$$\lim_{n \to \infty} n^{k-1} w_n = \frac{l}{k-1}.$$

This Lemma was first used by C. Mortici for constructing asymptotic expansions, or to accelerate some convergences [8], [9]. By using Lemma (3.1), clearly the sequence $(w_n)_{n\geq 1}$ converges more quickly when the value of k satisfying (12) is larger.

To measure the accuracy of the approximation formula (11), define the sequence $(w_n)_{n\geq 1}$ by the relation

$$n! = \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{12\left(1+\frac{h}{n}\right)n}}{12n+1}} e^{w_n}; \qquad n = 1, 2, 3, \dots$$
 (13)

This approximation formula will be better as $(w_n)_{n\geq 1}$ converges faster to zero. Using the relation (13), we get

$$w_n = \ln n! - \ln \sqrt{2\pi} - (n+1/2) \ln n + n - \frac{1 + \frac{1}{12(1 + \frac{1}{n})n}}{12n + 1}$$

and hence

$$w_n - w_{n+1} = (n+1/2)\ln(1+1/n) - 1 - \frac{13+144h^2+168n+144n^2+12h(13+24n)}{12(h+n)(1+h+n)(1+12n)(13+12n)}.$$

Then

$$w_n - w_{n+1} = \frac{5}{84n^6} - \frac{1}{15n^5} + \frac{3}{40n^4} - \frac{1}{12n^3} + \frac{1}{12n^2}$$
$$-\frac{13 + 144h^2 + 168n + 144n^2 + 12h(13 + 24n)}{12(h+n)(1+h+n)(1+12n)(13+12n)} + O(n^{-7})$$

and

$$\lim_{n \to \infty} n^4(w_n - w_{n+1}) = \frac{1}{240}(5h - 2).$$

Now, we get the following result about the rate of convergence of w_n :

Lemma 3.2. The rate of convergence of the sequence w_n is equal to n^{-4} if h = 2/5, since

$$\lim_{n \to \infty} n^4 w_n = \frac{-29}{21600}.$$
 (14)

Then the fast sequence w_n appears for h = 2/5 and hence the best approximation of the formula (11) is

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{12\left(1+\frac{2/5}{n}\right)n}}{12n+1}}.$$
 (15)

In the next step, we will discuss the best approximation of the formula

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{12\left(1+\frac{2/5}{n}+\frac{d}{n^2}\right)n}}{12n+1}}.$$
 (16)

To measure the accuracy of the approximation formula (16), define the sequence $(v_n)_{n\geq 1}$ by the relation

$$n! = \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{2/5}{12\left(1+\frac{2/5}{n}+\frac{d}{n^2}\right)n}}{12n+1}} e^{v_n}; \qquad n = 1, 2, 3, \dots$$
 (17)

Then we get the following result about the rate of convergence of v_n :

Lemma 3.3. The rate of convergence of the sequence v_n is equal to n^{-5} if d = 29/150, since

$$\lim_{n \to \infty} n^5 v_n = \frac{31}{189000}.$$
 (18)

Then the fast sequence v_n appears for d = 29/150 and hence the best approximation of the formula (16) is

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{2}{12\left(1+\frac{2/5}{n}+\frac{29/150}{n^2}\right)n}}{12n+1}} = \sigma_n.$$
 (19)

Theorem 3. For $x \geq 2$,

$$\sqrt{2x\pi} \left(\frac{x}{e}\right)^{x} e^{\frac{1+\frac{2}{12\left(1+\frac{2/5}{x}+\frac{29/150}{x^{2}}\right)x}}{12x+1}} < \Gamma(x+1) < \sqrt{2x\pi} \left(\frac{x}{e}\right)^{x} e^{\frac{1+\frac{1}{12\left(1+\frac{2/5}{x}\right)x}}{12x+1}}.$$
(20)

Proof. E. Artin [2] showed that

$$\mu(x) = \ln \frac{\Gamma(x+1)e^x}{x^x \sqrt{2\pi x}}$$

lies between any two successive partial sums of the Stirling's series, then

$$\sum_{k=1}^{4} \frac{B_{2k}}{2k(2k-1)x^{2k-1}} < \mu(x) < \sum_{k=1}^{5} \frac{B_{2k}}{2k(2k-1)x^{2k-1}}.$$

But

$$\sum_{k=1}^{4} \frac{B_{2k}}{2k(2k-1)x^{2k-1}} - \frac{1 + \frac{1}{12(1 + \frac{2/5}{x} + \frac{29/150}{x^2})x}}{12x+1}$$

$$= \frac{1488x^5 + 3074x^4 - 3768x^3 - 2494x^2 - 1224x - 87}{5040x^7(12x+1)(150x^2 + 60x + 29)},$$

then we get

$$\mu(x) > \frac{1 + \frac{1}{12\left(1 + \frac{2/5}{x} + \frac{29/150}{x^2}\right)x}}{12x + 1}, \qquad x \ge 2.$$

Similarly,

$$\sum_{k=1}^{5} \frac{B_{2k}}{2k(2k-1)x^{2k-1}} - \frac{1 + \frac{1}{12(1 + \frac{2/5}{x})x}}{12x+1}$$

$$=\frac{-13398x^7 + 6996x^6 + 3828x^5 - 5676x^4 - 2871x^3 + 8202x^2 + 4060x + 280}{166320x^9(5x+2)(12x+1)},$$

then we get

$$\mu(x) < \frac{1 + \frac{1}{12(1 + \frac{2/5}{x})x}}{12x + 1}, \qquad x \ge 2.$$

Corollary 3.4. If n is positive integer, then

$$\sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{12\left(1+\frac{2/5}{n}+\frac{29/150}{n^2}\right)n}}{12n+1}} < n! < \sqrt{2n\pi} \left(\frac{n}{e}\right)^n e^{\frac{1+\frac{1}{12\left(1+\frac{2/5}{n}\right)n}}{12n+1}}, \quad n > 1.$$
(21)

Our new formula σ_n (Eq.19) is much stronger than the Mortici formula γ_n (Eq.7). The rate of convergence of each of them is equal to n^{-5} and they define lower bounds, but

$$\gamma_n < \sigma_n$$

since

$$\frac{1}{12n + \frac{2/5}{n}} - \frac{1 + \frac{1}{12\left(1 + \frac{2/5}{n} + \frac{29/150}{n^2}\right)n}}{12n + 1}$$

$$=\frac{-29}{(12n+1)(30n^2+1)(150n^2+60n+29)}<0.$$

Also, we can obtain some further improvements of the above formulas (15) and (19) by using the same technique. For instance, the formula

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n exp\left(\frac{1}{12n+1}\theta_n\right),$$

where

$$\theta_n = 1 + \frac{1}{12n} \left(1 + \frac{2/5}{n} + \frac{29/150}{n^2} - \frac{62/2625}{n^3} - \frac{9173/157500}{n^4} + \frac{1563/43750}{n^5} + \frac{9035351/165375000}{n^6} - \frac{81698486/1136953125}{n^7} \right)^{-1}$$

has a rate of convergence equal to n^{-10} . This procedure will give us an easy technique to construct the new Stirling's series

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n exp\left(\frac{1}{12n+1} \left[1 + \frac{1}{12n} \left(1 + \frac{2/5}{n} + \frac{29/150}{n^2} - \frac{62/2625}{n^3} - \frac{9173/157500}{n^4} + \dots\right)^{-1}\right]\right), \quad (22)$$

which is faster than the classical Stirling's series.

References

- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, Applied Mathematics Series - 55, Tenth Printing, Dover, New York, 1972.
- [2] E. Artin, The Gamma function, translated by M. Butler, Holt, Rinehart and Winston, New York, 1964.
- [3] P. R. Beesack, Improvement of Stirling's formula by elementary methods, Univ. Beograd, Publ. Elektrotenhn, Fak. Ser. Mat. Fiz. No. 274-301, 17-21, 1969.
- [4] M. Mansour and M. A. Obaid, Bounds of q-factorial $[n]_q!$, Ars Combinatoria, 102, 313-319, 2011.
- [5] M. Mansour, M. A. Alghamdi and Ravi P. Agarwal, New upper bounds of n!, Journal of Inequalities and Applications, 2012, 2012:27.
- [6] A. J. Maria, A remark on Striling's formula, Amer. Math. Monthly, 72, 1096-1098, 1965.
- [7] R. Michel, On Stirling's formula, Amer. Math. Monthly, 109(4):388-390, 2002.
- [8] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly 117, 434-441, 2010.
- [9] C.Mortici, New approximations of the gamma function in terms of the digamma function, Appl. Math. Lett. 23, 97-100, 2010.
- [10] C. Mortici, A new Stirling series as continued fraction, Numerical Algorithms 56(1), 17-26, 2011.
- [11] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly, 62, 26-29, 1955.