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ABSTRACT

We discuss the chromaticity of one family of K4-homeomorphs with exactly
two non-adjacent paths of length two, where the other four paths are of
length greater than or equal to three. We also give a sufficient and necessary
condition for the graphs in the family to be chromatically unique.
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1 Introduction

All graphs considered here are simple graphs. For such a graph G, let
P(G, ) éor simply P(G)) denote the chromatic polynomial of G. Two
graphs H are chromatically equivalent (or simply x—eqmvalent)
denoted by G H, if P(G,)) = P(H, ? (or simply P(G) = P(H)). A
graph G is chromatlcally umque (or simply x—unique) if for a.ny graph H
such that H ~ G, we have H & G, i.e, H is isomorphic to G

Graphs derived from the same graph are referred to as homeomor-

phic. A K4-homeomorphic graph or simply K4-homeomorph, denoted by
K4(a, b,c,d, e, f), is obtained by subdividing the six edges of the complete
graph with four vertices, K4, into a, b, ¢, d, e, f paths, respectively (see Fig-
ure 1) Each subdivided edge is called a path and the number of subdivi-
sions is its length. So far, the chromaticity of K;-homeomorphs with girth
g, where 3 < g < 7 and K4-homeomorphs thh at least two paths of length
one has been completed (see L0, 2 I]) (2 12, (7, &\J) Recently, Peng in
[?] has published her result on the c omatlclty of K4(1,3,3,d,¢, f) with
girth seven. Catada-Ghimire S. et al. [?] have studled the chromatlcn:y
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of K4(3,3,4,d,e, f) with girth ten. Dong et al. in [?], after summariz-
ing the results which have been obtained so far on the chromaticity of
K;—homeomorphs, posted two tasks to tackle. First, study the chromatic-
ity of K4—homeomorphs with exactly two paths of length greater than or
equal to two and then study the chromaticity of Ky—homeomorphs with ex-
actly one path of length one. Motivated by such challenge, Catada-Ghimire
S. et al. [?] discussed the chromaticity of a family of K4—homeomorphs
with exactly two adjacent paths of length two, exactly one path of length
one and three paths of length at least three, that is, K4&, 2,2,4,1, f),
where a > 3, d > 3, f > 3. With the same motivation, we shall discuss
in this paper the chromaticity of one family of K4-homeomorphs with ex-
actly two non-adjacent paths of length two, where the other four paths are
of length greater than or equal to three, that is, K4(a,b, 2,d, 2, f), where
a>3,b2>3,d>3, f> 3 (asshown in Figure 2). The result in this paper is
significant in the completion of the study of K4-homeomorphs with exactly
two paths of length two and as a consequence, the chromaticity of some
families of such graphs with girth greater than seven can be established.

L= ° a b
[+ )

Figure 1. Ky (a,b,c,d, e, f)

Figure 2. K4(a,b,2,d,2, )

2 Preliminary results and Notations

In this section, we give some known results used in the sequel.
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Lemma 2.1 Assume that G and H are x—equivalent. Then the following
statements are proven to be true.

) V(@) = [V(H)I, |E(G)| = |E(H)| (see [?]);

(2) Let g(G) and g(H) denote the girths of G and H, respectively. Then
9(G) = g(H). Moreover, G and H have the same number of cycles
with length equal to their girth (see [?]);

3) {f G is )a K4-homeomorph, then H must itself be a K4-homeomorph
see [7]);

(4) Let G = Ks(a,b,c,d, e, ) and H = Ku(a', ¥/, &, d', &', f'), then

(i) min {a,b,c,d,e, f} = min {a',V,c,d', ¢, f'} and the number
of times that this minimum occurs in the list {a,b,c,d,e, f} is
equal to the number of times that this minimum occurs in the
list {a',¥/,c,d', €, f'} (see [7]);

(ii) z’(f{a, b,)c,d, e, f} ={a',V,c,d',€, f'} as multisets, then H = G
see [1]).

Lemma 2.2 (Ren [?]) Let G = Ky(a,b,c,d, e, f) when ezactly three of
a,b,c,d,e, f are the same. Then G is not x—unique if and only if G is iso-
morphic to K4(r,7,7—2,1,2,7), K4(r, 7 —2,7,2r - 2,1,7), K4(t,¢,1,2t,t +
2,t), Ka(t,t,1,2t,6—1,8), Ka(t, t+1,¢,2t+1,1,8), Kq(1,¢,1,6+1,3,1) or
K4(1,1,8,2,t+2,1), wherer 2 3,t > 2.

Lemma 2.3 (Ren and Zhang [?] and Li [?]) The graph K4(a,b,c,d, e, f)
is x—unique if ezactly four numbers among a,b, ¢, d, e, f are the same.

Lemma 2.4 (Whitehead, Jr. and Zhao [?]) The graph K4(a,b,c,d, e, f)
is x—unique if the positive integers a, b, c,d, e, f assume no more than two
distinct values.

Lemma 2.5 (Li [?] and Whitehead and Zhao [?] |) The chromatic poly-
nomial of G = K/(Z b,c,d,e, f) is

P(G,)) = H(-1)"w[w™ ! + Q(G,w) — (w + 1)(w +2)],
where w = 1 — A, m =| E(G) | and Q(G,w) = —(wt/+e 4 yotbte 4
whtetd pyydtetS pogatd Loyb+f pypete)t(14w)(w® +wb+ws +w+we +wf).
Q(G, w) or simply Q(G) is called the essential polynomial of G.

Lemma 2.6 (Li [?{) Two Kj-homeomorphs with the same order are x-
equivalent if and only if they have the same essential polynomial.

The following are notations used in the sequel.
L} = set of the exponents of the positive terms in the left hand
side of Equation (t),

L; = set of the exponents of the negative terms in the left hand
side of Equation (t),

421



R} = set of the exponents of the positive terms in the right
hand side of Equation (t),

R; = set of the exponents of the negative terms in the right
hand side of Equation (t),

—-R, (=) set of the negative terms in the right hand side of Equa-
tion (),

R; = set of the positive terms in the right hand side of Equation
(t),

—L, (=) set of the negative terms in the left hand side of Equa-
tion (),

L = set of the positive terms in the left hand side of Equation

@).

Elements can be repeated in a set.

3 Main result
We now present the main result in the following theorem.

Theorem 3.1 K4-homeomorphs K4(a,b,2,d,2, f), as shown in Figure 2,
where min{a, b, d, f} > 3, is x-unique if and only if it is not isomorphic
to K4(3,4,2,4,2,6) or K4(3,4,2,4,2,8) or K4(3,4,2,8,2,4). Moreover,
each of the  following sets. 18  x—equivalence class:
K4(3,4,2,4,2,6), K4(3,5,4,2,2,5)},
K4(3,4,2,4,2,8),K4(3,4,2,7,5,2
K4(3,4,2,8,2,4), Ky(3,4,2,5,7,2

Proof. If there exists a graph H such that H ~ G, by Lemmas 2.1 and
2.6, we know that H is a K4-homeomorph and

|E(G)| = |E(H)|,Q(G) = Q(H) 1)
Let H= K4(i1,j1, k]_, l1, my, nl). We define R = {i]_,jl, kl, ll, m1,n1} and
R'= {’il +1,h+Lk+LLh+1,m+1,n1+ 1}.
Let G = K4(a,b,2,d,2, f), where min{a,b,d, f} > 3. For a clearer presen-
tation of the proof, we shall have G of the form K4(3,74,2,k,2,1). With-
out loss of generality, let ¢ = min {i,j, k,1}, where i > 3. By Lemma
2.1(4(i)), min{iy, j1, k1,01, m1,n1} = 2 and exactly two paths among
11, J1, k1, l1, m1, n; are of length two while the other four paths are of length
greater than or equal to three. Then Equation (1) yields
d+i+ji+k+l=0+H+ki+h+m+m (2)
a2 ik a2k o k2 ik il 4 6
4w + wF +w? 4wl w4t B b R g3 gl =
_wi1+ﬂx+k1 —ghrtatm _ wjl+k|+11 - w11+m1+n1 - wi1+h — i1tm
—ykrtm + w + wit + wk + wh +w™ 4™+ wirtt! 4 @ t! +
wrkrtt +w11+1 +,wm1+1 +wn1+1 (3)

H
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where R} = R"UR".

We shall now find non-isomorphic graphs G and H. In Equation (3), the
positive terms (resp. negative terms) in the left hand side can only be
cancelled by the negative terms (resp. positive terms) in the left hand side
or by the positive terms (resp. negative terms) in the right hand side. We
know that the two shortest paths of H are of length two, thus, 2,2 € R’
and 3,3 € R”, where Rf = R’ U R"”. Consider the term —w* € —Lj.
It can easily be shown that if —w? = —whth or —w? = —wih+™ or
—w* = —w*1+™ then G = H. Since none of the terms in —R3 can be
equal to —w*, where G is not isomorphic to H, one of the terms in L3 must
be equal to the said term. There are six cases to be considered. Without
loss of generality, we shall consider only conditions where at most two pairs
of terms in Lz and —L3 are equal. Tables 1-2 show the possible values of
exponents in L3 in relation to the values of some exponents in L3 for each
case,

Case 1. Claim: 2<i<j<k <l

Subcase 1.1 If | = 4 then with our claim 2 < i < j < k < !, we have
G = K4(4,4,2,4,2,4) or G = K4(3,4,2,4, 2,42 or G = K;g, 3,2,3,2,4).
Thus, G is x—unique by Lemmas 3.3, 3.4 and 3.2. Since H ~ G, H &

G. Under the same condition, i.e., ! = 4, G can also be of the form
K4(3,3,2,4,2,4). In this case, each term in Ly can neither be 3 nor 5 and
there can be only one exponent belonging to the said set which is equal to
4. Hence, we have {i,7,i+1,5+1,k+ 1,0+ 1} C R}, where i = j = 3,
i+l=j41=4,k+1=101+1=25,1= 4. By Equation (2), we
have R’ = {i,2,2,5,k,l} = {3,2,2,3,4,4} = {i1, 1, k1,11, m1,n1}, where
R' = {4,3,3,4,5,5} = {1:1 +1L, 5+ + 1,5 +1,m+ 1,0 + 1} and
R} = R'U R". Therefore, we have {i,2,2,j,k, 1} = {1, j1, k1, l, m1, n1}.
By Lemma 3.1(4(ii)), H = G. Note that throughout the proof in this paper,
wheneveraii,2,2,j, k,l} = {i1, 41, k1,11, m1,n1} occurs, we mean that the
two equivalent sets are multisets.

Subcase 1.2 Ifl+1 =4,ie.,l =3thenbyourclaim2<:i<j<k<l,

G = K4£?, 3,2,3,2,3). By Lemmas 3.3 and 3.4, G is x—unique. Since
H~G,H=G.

Subcase 1.3 If k = 4 then byour claim 2 < i £ j £ k£, G =
K4(4,4,2,4,2,1) or G = K4(3,4,2,4,2,1) or G = K4(3,3,2,4,2,!), where
l > 4 (Note that when ! = 4 we obtain the same results as in Subcase 1.1).

Subcase 1.3.1 Suppose G = K,4(4,4,2,4,2,1), where | > 4. Then by
Lemma 3.2, G is y—unique. Since H ~ G, H & G.

Subcase 1.3.2 Suppose G = Ki4(3,4,2,4,2,1), where | > 4. Then
9(G) = 9. None of the exponents in Lz can be equal to 3 or 5 and there
is only one exponent in the said set equal to 4, i.e., k =4 € Ly . Thus, we
have {i,i+1,5,j+1,k+ 1} C RI. Note that i + 1 = 4. By Equation (2),
R = {2, 2,4,7+1,k+1,1—- 2} = {2, 2,3,5,5,l— 2} = {il,jl, k1, i, ml,nl},
where R” = {3,3,4,6,6,l—1}. By Lemma 3.1(2%, g(H) =9 and H must
have one cycle of length 9. There are two possible shortest cycles of H,
namely, (2,2,5) and when | = 6, (3,2,! — 2) = (3,2,4). Hence, we have
the following non-isomorphic cases of H: K4(3,5,! — 2,2,2,5), where 1
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Subcase i+j+2 | j+2+4+k|i+k

1.1
1.2
1.3.1 T+1
132 T+1
1.3.3 T+1
14
151,155 T+1
1.5.2,1.5.6 T+1
153,157 | [+1
154,158 | k+1

+
-

+
P

Tablel: 2<i<j<k<l

is at least 6; K4(3,5,5,2,2,l — 2), K4(3,2,l — 2,5,2,5), where | > 6;
and K4(3,2,4,5,5, 22. Let us consider H = K,4(3,5,! — 2,2,2,5) with
G = Ky4(3,4,2,4,2,). Substitute the corresponding values in Equation
(3). After simplification, we have:

—w =ttt wP ! = —wl® — o — w2 8 4w

Clearly, I = 6. Therefore, we obtain a solution, where G & K4(3, 4, 2,4, 2, 6)
and H 2 K,(3,5,4,2,2,5).

Subcase 1.3.3 Suppose G = K4(3,3,2,4,2,1), where ! > 4. Then we can
assume [+1 = i+k,ie,l =6orl+1l = j+24k,ie,l =8orl+l =i+j+2,
i.e.,, I = 7. We know that g(G) = 8 and G has only one cycle of length
8. Since k,l+1 € L3, we have k +1,%,i+1,5,7+1,1,1+1,2,2,3,3 €
R}. By Equation (2), R = {i,j,k+1,l —1,2,2}. By Lemma 3.1(2),
we have the following non-isomorphic cases of H: K4(3,3,2,5,! - 1,2),
K,4(3,3,2,5,2,1-1), K4(3,3,2,2,5,l—1). None of these cases of H satisfies
Equation (3) for = 6,7, 8. Note that the same conclusion can be deduced
if this subcase is solved following the procedure in Subcase 1.3.2.

Subcase 1.4Ifk+1=4,ie., k=3thenbyourclaim2<i<j<k<l,
G = K4(3,3,2,3,2,1), where | > 3. By Lemmas 3.2, 3.3 and 3.4, G is
x—unique. Since H ~ G, H £ G.

Subcase 1.5If j =4theni=3o0ri=4. Wecanassume!+1=1i+k or
l+1=j4+2+korl+l=i+j+20rk+1=i+5+2. Whenj, I+1€ L7, we
have j+1,1,4,i+1,k,k+1,2,2,3,3 € RY. Thus, R' = {i,j+1,k,1-1,2,2}.
When j, k+1€ L7, we have j+1,1,4,i+1,k,1,1+1,2,2,3,3 € Rf. Thus,
R ={i,j+1,k-1,[,2,2}.

In Subcases 1.5.1 - 1.5.4, we assume j = 4 and ¢ = 3. By our claim
2<i<j< k<l wehave k > 4. Hence, G = K4(3,4,2,k,2,1), where
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9(G) = 9 and G has only one cycle of length 9.

ubcase 1.5.1 Let {+1 =1+ k. Thenl=k+2,G = K4(3,4,2,k,2,k+
2), where k > 4. We have R' = {i,j + 1,k,1 —1,2,2} = {83,5,k,k+
1,2,2}. We can consider (5,2,2) for £ > 4 or (3,4,2) for k = 4 as the
shortest cycle of H. The following are the non-isomorphic cases of H:
K4(5,2,2,k,k+1,3), K4(5,2,2,3,k+1,k) for k > 4; K4(5,2,2,k+1,k,3)
fork > 4; K4(3,4,2,5,2,5), Ka(3,4,2,2,5,5), Ka(3,4,2, 5,5, 2). Weobtain
a solution where G = K4(3,4,2,4,2,6) and H 2= Ky4(5,2,2,5,4,3), the
same result we have in Subcase 1.3.2, by considering the only case here
which satisfies Equation (3), that is, H = K4(5,2,2,k + 1,k,3) with G =
K4(3,4,2,k,2,k+ 2), where k = 4.

Subcase 1.5.2 Let {+1 = j+2+k. Thenl = k+5,G = K4(3,4,2,k,2, k+
IEQ and R’ = {i,7 + 1,k,0 —1,2,2} = {3,5,k,k + 4,2,2}, where k > 4.
one of the following cases of H satisfies Equation (3): K435, 2,2,k k+
4,38, Ky(5,2,2,3,k+ 4,k) for k > 4; K4(5,2,2,k + 4,k,3) for k > 4;
K4(3,4,2,5,2,8), K4$3, 4,2,2,5,8), K4(3,4,2,8,5,2), K4}‘§, 4,2,8,2,5).
Subcase 1.5.3 et 1 +1 =i+ j+2. Then | = 8, G = K4(3,4,2,k,2,8),
where £k > 4. We have R’ = {i,j + 1,k,1 - 1,2,2} = {3,5,k,7,2,2}.
The following are the non-isomorphic cases of H: K4(5,2,2,%,7,3),
Ki(3.4,2,5,2,7),

K4(5,2,2,3,7,k) for k > 4; K4(5,2,2,7,%,3) for k > 4;
K4(3,4,2,2,5,7), K4(3,4,2,7,5,2), K4(3,4,2,7,2,5). There
tain a solution where G = Ky(3,4,2,4,2,8) and H = K4(3,4, 2,
Subcase 1.5.4 Let k+1=1+j+2. Then k = 8, G = K4(3,4,
where | > 8. We have R' = {i,j+1,k—1,1,2,2} = {3,5,7,1,2,2}. Among
the three non-isomorphic cases of H: K4(5,2,2,1,3,7), K4(5,2,2,7
K4(5,2,2,3,1,7), the only case of H which satisfies Equation (3) is
K4(5,2,2,3,1,7), where G = K4(3,4,2,8,2,l). We arrive at the follow-
ing equation after substituting the corresponding values and simplifying:

6“-0 -~
g
o

$.

-
o~
-
(7t
~—
-

PR O § G I N e S S )

Clearly, | = 4. But this is a contradiction to our assumption [ > 8.

In the following Subcases 1.5.5 - 1.5.8, we consider j = i = 4. By our
claim2<i<j< k<!, k>4 If k=4 then by Lemma 2.2, G is
x—unique. Since H ~ G, G = H. We now consider £ > 4. We have
G = K4(4,4,2,k,2,l), g(G) = 10 and G has only one cycle of length 10.

Subcase 1.5.5 Let l+1 =i+k. Thenl = k+3, G = K4(4,4,2,k,2,k+3)
and R = {i,7 +1,k,1 —1,2,2} = {4,5,k,k+ 2,2,2}, where kK > 4. The
only possibility to have cases of H such that g(H) = 10 is when k& = 6.
But none of the following non-isomorphic cases of H satisfies Equation (3):
K,(6,2,2,4, 5,88, K,4(6,2,2,5,4,8), K4(6,2,2,8,4, 5&

Subcase 1.5.6 Let [+1 = j+2+k. Then! = k+5,G = K4(4,4,2,k,2, k+
5)and R’ = {i,j+1,k,1—1,2,2} = {4,5,k, k+4,2,2}, where k > 4. None
of the following non-isomorphic cases of H (when k = 6) satisfies Equation
3): K4(6,2,2,4,5,102, K4(6,2,2,5,4,10), K4(6,2,2,10,4,5).

Subcase 1.5.7Let L +1 =i+ 35+ 2. Thenl =9, G = K4(4,4,2,%,2,9)
and R’ = {i,j + 1,k,l - 1,2,2} = {4,5,k,8,2,2}, where k > 4. None the
following non-isomorphic cases of when k = 6) satisfies Equation (3):
K4(6,2,2,4,5,8), K4(6,2,2,5,4,8), K4(6,2,2,8,4,5).
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Subcase i+l+2i+i+2)|5+10 |4
2.1 k
2.2 k+1
2.3

2.4 1+1
251,255 E+1]|j
252,256 k+1 3
253,257 k+1 7
254,258 I+1 3

Table2: 2<i<j<I<k

Subcase 1.5.8 Let k+1 =i+ j+2. Then k=9, G = K4(4,4,2,9,2,1)
and R’ = {i,7+ 1,k - 1,1,2,2} = {4,5,8,1,2,2}, where [l > 9. Thus,
g9(H) # 10.

Case 2. Claim: 2<i<j<I<k.

Subcase 2.1 If k = dthenl=j=1i=3,ie, G=Ki43,3,24,23). By
Lemma 3.2, G is x—unique. Since H ~G, G H.

Subcase 2.2 If k + 1 = 4 then k = 3,i = j = | = 2. This contradicts our
claim2<i<j<l<k.

Subcase 2.3 If | = 4then byourclaim2 < i < j <l <k G =
K4(4,4,2,k,2,4) or G = K4(3,4,2,k,2,4) or G = K4(3,3,2,k,2,4), where
k > 4. Since l = 4, i.e,, l € Ly and no other elements of L3 can be
equal to 3 or 4 or 5, we have ! +1,4,i+ 1,5,5 +1,2,2,3,3 € Rf. So,
R ={l+1,i3j,k— 122}

Subcase 2.3.1 Let G = K4(4 4,2,k,2,4). Then by Lemma 3.2, G is
chi—unique. Since H ~ G, G =

Subcase 2.3.2 Let G = K4(3 4,2,k,2 ,4). Then R' = {l +1,i,5,k —
122}—{534k—122,wherek>4 (G) = 9 and G has two
cycles of length 9. With (3,4,2) and (5,2,2 as the shortest cycles of
H X we have the following non-lsomorphlc cases for H: K,(3,4,2,5,k —

wherek>5 K,4(3,4,2,2,k — 1,5), where k > 5. hen k = 5,
&I}: - 1 3 2) 4, 3 2) can be one of the two shortest cycles of H, thus,
can be K4 , ,2,5 4,2) or Ky4(4,3,2,4,2,5). However, if k = 6 then
(k-1,2,2) =( y2,2) can "be one of the two shortest cycles of H, thus, H can
be K4(5 2,2,4, ,3 or K4(5,2,2,3,5,4). Consider H = K4(3 4,2,5k —
1,2) with G'= 4 3,4,2,k,2, 4) Substitute the corresponding values in
Equatlon (3). After mmphﬁcatlon, we have:

2

—w® —w® — Wk okt = T 1l gkl k-1

Clearly, k = 8. Therefore, we obtain a solution where G = K4(3,4,2,8,2,4)
and H = K4(3,4, ,5,7,2).
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Subcase 2.3.3 Let G = K4(3,3,2,k,2,4). Then R' = {l +1,i,5,k —
1,2,2} = {5,3,3,k — 1,2,2}, where k > t)l, 9(G) = 8 an{d G hasjonly
one cycle of length 8. Considering (3,3,2) as the shortest cycle of H,
we have the following non-isomorphic cases of H: K,4(3,3,2,5,k— 1,2),
K4(3,3,2,5,2,k — 1), K4(3,3,2,2,k — 1,5), K4(3,3,2,k — 1,2,5), where
k> 4; K4(3,3,2,2,5,k— 1), K4(3,3,2,k—1,5,2), where k¥ > 5. None of
these cases of H satisfies Equation (3). If k =5 then (k—1,2,2) = (4,2,2)
can be the shortest cycle of H. In such condition, {7,j,k,{,2,2} = {i; +
L+ 4,k +1,0l; +1,m +1,n; +1}. By Lemma 3.1(4(ii)), G = H.

Subcase 2.4Ifl+1 =4thenl =i=j=1=23, where k > 3. By Lemma
3.2, G is x—unique. Since H ~ G, H = G.

Subcase 2.5 If j =4 theni=3o0ori=4. Wecan assume k+1=j+!or
k+l1=i+j+20rk+1=i+l+2o0rl+1=i+5+2. Ifj,k+1 € L3 then
J+1,k,4,i4+1,1,1+1,2,2 € Rf. Thus, R' = {i,5+1,k-1,1,2,2}. If j,l+1 €
L3 then j,j+1,k,i,i+1,1,2,2€ Rf. Thus, R’ = {i,j +1,k,1—1,2,2}.
In Subcases 2.5.1-2.5.4, we consider j = 4, i = 3, G = K4(3,4,2,k,2,1),
where | > 4 and k& > {. Thus, g&G) = 9. If | = 4 then G has two cycles of
length 9. If | > 4 then G has only one cycle of length 9.

Subcase 2.5.1Let k+1=j+Il. Thenk =143, G = K,4(3,4,2,1+3,2,0)
and R' = {i,j+1,k—1,1,2,2} = {3,5,1+2,1, 2,}2(}. We have the following
non-isomorphic cases of H: Ky4(5,2,2,3,1,1+2), K4(5,2,2,!,3,1+2), where
1> 4; Kq(5,2,2,1+2,3,1), where ! > 4. Equation (3) is not satisfied by
any of these cases of H for all values of [ > 4.

Subcase 2.5.2 Let k+1 = i+j+2. Then k = 8, G = K,4(3,4,2,8,2,1)and
R ={ij+1,k-1,122} = g3,5,7,l,2,2}. H can be K4E5,2,2,l,3,7;
or K4(5,2,2,3,1,7) or K4(5,2,2,7,3,l). Consider H = K4(5,2,2,3,{,7
with G = K4(3,4,2,8,2,!). Using Equation (3) we get the following after
simplification:

—wtS — !t — = T — b

Evidently, Equation (3) is satisfied for the value of [ = 4. Therefore, we
obtain a solution where G = K4(3,4,2,8,2,4) and H = K4(5,2,2,3,4,7),
the same result we have in Subcase 2.3.2.

Subcase 2.5.3 Let k+1 = i+ 1+ 2. Then k = l +4, G =
K,(3,4,2,1+4,2,)) and R = {i,j + 1,k - 1,1,2,2} = {3, 3,12
We have the following non-isomorphic cases for H: Ky4(5
K4(5,2,2,3,1,143), K4(5,2,2,143,3,1). Consider H = K,4(5,
with G = K4(3,4,2,1 + 4,2,1). Using Equation (3) we get t
after simplification:

—w® — = T — B — WS 2 3 g8,
Clearly, Equation (3) is satisfied for the value of [ = 4. Therefore, we
obtain a solution where G = K4(3,4,2,8,2,4) and H 2 K4(5,2,2,3,4,7),
the same result we have in Subcases 2.3.2 and 2.5.2.

Subcase 2.5.4 Let [ +1 =17+ 5+2. Then! =8, G = K4(3,4,2,k,2,8)
and R’ = {i,j + 1,k,! - 1,2,2} = {8,5,k,7,2,2}, where k > 8. The non-
isomorphic cases of H are as follows: Ky(5,2,2,%,3,7), K4(5,2,2,3, 7,}9},
K,4(5,2,2,7,3,k). Equation (3) is not satisfied by any of these cases of H.
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In Subcases 2.5.5-2.5.8, we assume j = 4 and 1 = 4. Thus, G =
K4(4,4,2,k,2,1), where | > 4 and k > . We have g(G) = 10. If | = 4 then
G is x — unique by Lemma 3.2. Let us now consider ! > 4. G has only one
cycle of length 10.

Subcase 2.5.5Let k+1 =j+Il. Thenk =143, G = K4(4,4,2,1+3,2,1)
and R = {i,5+1,k—1,1,2,2} = {4,5,1 + 2,1,2,2}, where | > 4. There
are no possible cases of H such that g(H)=10.

Subcase 2.5.6 Let k+1 =i+ j+2. Then k=9, G = K4(4,4,2,9,2,1)
and R’ = {i,j + 1,k —1,1,2,2} = {4,5,8,1,2,2}, where | > 4. Thus,

g(Hg # 10. ]
ubcase 2.5.7Let k+1=4%+1+2. Then k=145, G = K4(4,4,2,l+
5,2,0) and R' = {i,j + 1,k = 1,1,2,2} = {4,5,0 +4,1,2,2}, where [ > 4.
There are no possible cases of H such that g(H)=10.

Subcase 2.5.8 Let | +1 =i+ j+2. Thenl =9, G = K4(4,4,2,k,2,9)
and R' = {i,7 + 1,k,1 - 1,2,2} = {4,5,k,8,2,2}, where k > 9. It is not
possible for H to have girth 10.

We can follow the same procedure, as shown in Cases 1-2, for the remain-
ing four cases, that is, when 2 < i < k< j<[,2< i<k <l < j
2<i<l<j<k and 2<i<!l<k<}j, respectively. We note that all
solutions are gained from the first two cases ané) are repeatedly obtained in
the next four cases. The reader may refer to [?] for the details of the proof
in Cases 3-6. We now summarize our results from what we have shown
in this paper and from our technical report [?] as indicated in each of the
following equivalence classes:

K4(3,4,2,4,2,6) ~ K4(3,5,4,2,2,5
(Cases 1,3,4,6/Subcases 1.3.2,1.5.1,3.3.2(a),4.3.2(a),4.5.1(a),6.3.2(a),6.5.1);
K4(3,4,2,4,2,8) ~ K4(3,2,4,7,2,5)
(Cases 1,3,4/Subcases 1.5.2,3.3.2(c),3.5.4,4.3.2(c));

K4(3,4,2,8,2,4) ~ K4(5,2,2,3,7,4
(Cases 2,5/Subcases 2.3.2,2.5.2,2.5.3,5.3.2(b),5.3.2(c),5.5.2).

At this point, we have shown that K4-homeomorphs K4(a,b,2,d,2, f)
where min{a, b,d, f} > 3, is x-unique if and only if it is not isomorphic
to K4(3,4,2,4,2,6) or K4(3,4,2,4, 2,8? or K4(3,4,2,8,2,4).

The proof of Theorem 3.1 is now complete. g
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