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Abstract

In 1989, Zhu, Li and Deng introduced the definition of implicit
degree, denoted by id(v), of a vertex v in a graph G and they obtained
sufficient conditions for a graph to be hamiltonian with the implicit
degrees. In this paper, we prove that if G is a 2-connected graph of
order n with a(G) < n/2 such that id(v) > (n —1)/2 for each vertex
v of G, then G is hamiltonian with some exceptions.
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1 Introduction

All the graphs in this paper are undirected and simple. We use the notation
and terminology in [4]. In addition, for a graph G = (V(G), E(G)), let H
be a subgraph of G. G[H| denotes the subgraph of G induced by V(H).
Ny(u) = {v € V(H) : w € E(G)} and dy(u) = |Ng(u)| denote the
neighborhood and the degree of a vertex u € V(G) in H, respectively. If
there is no fear of confusion, we can use N(v) and d(v) in place of Ng(v)
and dg(v), respectively. Let Ny(v) = N(v) and Na(v) = {u € V(G) :
d(u,v) = 2}, where d(u,v) indicates the distance from u to v. A and B
being the subsets of V(G), e(A, B) is the number of edges ab of G with
a € A and b € B. We write e(A, b) instead of e(A4, {b}).

*The work was supported by NSFC (11101174), Science foundation of Guangdong
Province (S2011040003984) and Science foundation of Huizhou University (C5100207).
tCorresponding author.
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For a cycle (or a path) C in G with a given orientation and a vertex
y in C, y* and y~ denote the successor and the predecessor of y in C,
respectively. Define y*(#+1) = y+(+h) for every integer b > 0, with y°+ = y.
y~h is defined analogously. And for any A C V(C), let

A" ={y:yt € A} and At ={y:y~ € A}.

We denote by ¢(G) the circumference, i.e. the length of a longest cycle
in G. A cycle or a path containing all vertices of G is a Hamilton cycle or
a Hamilton path. A graph G of order n is hamiltonian graph if ¢(G) = n.

In order to give the results of this paper, we define some special graphs.

(1) Let n > 7 be an odd integer. G € ¥, if and only if |V(G)| = n and
the vertex-set of G is the disjoint union of the sets A;, Az, By, B3 and
{a1,a2,b} so that

(1) [AiUBi| = (n-3)/2,i=1,2;
(i) JAi| = 2,i=1,2;

(iii) G[A; U B;] and G(A; U {a;}) are both complete subgraphs of G
fori=1,2and j=1,2;

(iv) e(ar,a2) < 1
(v) A1 U A2| 2 (n —3)/2 - (a1, a2); and
(vi) d(b) = 2 and the neighbors of b are a; and a;. (Fig.1.)

(2) H is the graph of order 9 depicted in Fig.2.

Fig.2

(3) Let » > 9 be an odd integer. G € &, if and only if |V(G)| = n and
the vertex-set of G is the disjoint union of the sets A;, A3, By, Bs and
{a1,a2, b} so that they satisfy the above (i),(ii),(iv),(v),(vi) and

(vii) G[A:] and G(A;U{a;}) are both complete subgraphs of G for i = 1,2
and 7 =1,2;

(vili) [Ai] > max{|No(B)| +2: b€ Bi},i = 1,2.
(4)% = (kKl U2Kl;—'—k) VKk+1.
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The hamiltonian problem has been studied widely by many researchers.
Among the conditions in most significant results, degree conditions or var-
ious neighborhood conditions play important roles in sufficient conditions
for a graph to be hamiltonian. We have two classic results due to Dirac
and Fan respectively.

Theorem 1. (Dirac [5]) If G is a graph of order n > 3 such that d(u) >
n/2 for each vertez u in G, then G is hamiltonian. The bound is sharp.

Theorem 2. (Fan [7]) Let G be a 2-connected graph of order n > 3 such
that max{d(u),d(v)} > n/2 for each pair of vertices u and v at distance 2,
then G is hamiltonian. The bound is sharp.

An improvement of Theorem 2 is as follows, where a(G) is the indepen-
dence number of G.

Theorem 3. (Benhocine and Wojda [1]) Let G be a 2-connected graph of
order n > 3 with a(G) < n/2 such that max{d(u),d(v)} = (n — 1)/2 for
each pair of vertices u and v at distance 2, then either G is hamiltonian or
Ge¥, UH.

In order to generalize Theorems 1 and 2, Zhu, Li and Deng proposed
the concept of implicit degrees of vertices in [10].

Definition 1. (Zhu et al. [10]) Let v be a vertez of a graph G. If Na(v) # 0
and d(v) > 2, then set k = d(v) — 1, mz = min{d(u) : v € N2(v)} and
M, = max{d(u) : u € Na(v)}. Supposed; <ds < -+ <dgy1 < -+ is the
degree sequence of vertices of N(v) U Na(v). Let

may, if di, < mo;
d'(v) = dk+1, if dk+1 > Msy;
di,  ifdp >mg and diyy < M.

Then the implicit degree of v, is defined as id(v) = max{d(v),d*(v)}. If
Na(v) =0 or d(v) < 1, then we define id(v) = d(v).

From the definition of implicit degree, it is clear that id(v) > d(v) for
every vertex v. Zhu et al. [10] gave a sufficient condition for a graph to be

hamiltonian.

Theorem 4 (Zhu et al. [10]) Let G be a 2-connected graph of order n such
that id(u) + id(v) = ¢ for each pair of nonadjacent vertices u and v in G.

Then ¢(G) = min{n,c}.

Corollary 5. Let G be a 2-connected graph of order n such that id(u) >
n/2 for each u € V(G). Then G contains e Hamilton cycle.
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In this paper, we study implicit degrees and the hamiltonicity of graphs,
and we obtain the following main result.

Theorem 6. Let G be a 2-connected graph of order n with o(G) < n/2
such thatid(u) > (n—1)/2 for eachu € V(G). Then G contains a Hamilton
cycle or G € $B, U H or G is a subgraph of 3,.

2 The proof of Theorem 6

We first have the following lemma that will be used in our proof.

Lemma 1. (Dirac [6]) Let G be a 2-connected graph of order n, and let
P(a,b) be a longest path of G with d(a) + d(b) > ¢, then ¢(G) > min{n, c}.

Lemma 2.(Benhocine and Wojde [1]) If a graph G of order n > 4 has a
cycle C of length n — 1, such that the vertez z not in V(C) has degree at
least n/2, then G is haemiltonian.

Lemma 3. Let P = z1z2-- -z, be a path and y1,y; be two vertices not in
V(P). If Np(y1) N Np(y2) = @ and 2141 ¢ E(G), then

dp(y1) +dp(y2) < [V (P)].

Proof. We prove by induction on |V(P)|. If |[P| = 1,2,3, the lemma
follows. Suppose that the lemma is true for any path P’ with |P’| < |P|.
Now we let

P =z9z324- - T,

If z1y2 ¢ E(G), we have dp(y1) +dp(y2) = dp:(11) +dp(y2) < (IV(P)| +
1) =1 = |V(P)|. Otherwise, y;z; ¢ E(G), we have dp(y1) + dp(y2) =
dpi (1) + dp (32) + 1 < [V(P)] + 1 = [V(P)). 0

Proof of Theorem 6. Let G be a graph satisfying the conditions in
Theorem 6 and suppose G is not hamiltonian. By Theorem 4, G contains
a cycle of length n — 1. We choose an cycle C of length n — 1 such that the
degree of the remaining vertex is as large as possible. Let x be the remaining
vertex of G not in C. Choosing an arbitrary orientation on C, define
Y1,¥2,°** » Yk+1(k > 1) to be the neighbors of z. Since {z,y1,¥2, "+ , ¥k+1}
is an independent set, d(z,y;) = 2 for every i = 1,2,--- ,k+1. By Lemma
2, d(z) < (n —1)/2.

If d(z) = (n — 1)/2, then {z,v1,¥2,"** ,Y(n—1)/2} is an independent set
of G with (n + 1)/2 elements, contradicting a(G) < n/2.



So we can assume d(z) < (n — 1)/2. Set mj = min{d(u) : u € Np(x)}
and M§ = max{d(u) : u € Na(z)}. Suppose df < df <---<df, ;<. is
the degree sequence of vertices of N(z) U Na(z). Since N*(z) C Na(z), by
the definition of implicit degree, we can easily get that id(z) # di,,. We
consider the following two cases.

Case 1. id(z) = m3.

Since d(z,y;") = 2 for each i = 1,2,--- ,k + 1, we have d(y]") > m§ =
id(z) = (n — 1)/2 for each 1.

Since G is not hamiltonian, it is easy to check that

(1) e(yi,zt) + e(yz ,2) < 1for every z € A= {uj,vi? -+ ,y7"}, where
h is the minimum integer such that y; h = Y2, and :
(2) e(yt, z) + e(y2 z+t) < 1 for every z € B = {7,452, -y}, where

! is the minimum integer such that y3* = y;.
As yitz ¢ E(G) and y§ z ¢ E(G), (1) and (2) imply

n-1 < du)+dyd) = levf,z%) +e(y], 2)]
zEA

+ ) le(wi 2) +e(d, 2] + e(yi 1) + e(yd , v2)
z2€B
< h+l+2=n-1,

which 1mphes that all the inequalities above are equalities. In particular,
d(yt) =d(yF) = (n —1)/2 and n is odd.

If d(:n) > 3 we have e(y],y7) +e(¥F,y3%) = 1. Asyiyd ¢ E(G), we
deduce ¥ y3? € E(G) and G has a cycle of length n— 1 avoiding ys whose
degree is at least (n — 1) /2 contrary to the choice of C. (An analogous
argument shows that y7 91 € E(G) and yF4{2 ¢ E(G).) So we can
assume that d(z) =2 and h > 2,1 > 2.

By the choice of C, we can assume that whenever we have a cycle of
length n — 1, then the vertex not in the cycle has degree 2.

Observe that y; and y5 have degree precisely (n—l) /2 and are joined by
a Hamilton path P in G, where P = y{ 472 -y ypozyivdtyd 1 - ot
For convenience, let P = z,z3 - T,,, Where 7, = yi",:z:g = yi" , and so on.
We may easily deduce the following useful properties:

(i) e(z1,zi41) + €(zn,z:) =1 forevery i =1,2,--- ,n - 1;

(ii) If e(x1,zi41) + €(Zn,zi-1) = 2 for some ¢ = 2,3,--. ,n — 1, then
d(z;) = 2. Moreover, by the definition of implicit degree, we have d(z;_2) >
id(z;) 2 (n — 1)/2 and d(z;42) > id(z;) = (n - 1)/2;
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(ili) z1zn—1 ¢ E(G) and z,z2 ¢ E(G).

Since 7,73 = y{ ¥3* € E(G),ytv1 € E(G) and yiz ¢ E(G), only two
cases can arise.

Case 1.1. There are 7 and j,j > i + 1, such that T1Zi-1,Z1%j41 € E(G)
and Ty ¢ E(G) foreach k=14,i+1,---,5

Choose such i such that ¢ is as small as possible. By (i) and (iii), we
havei >4 and j < n—3; by (i) znzi € E(G) foral k=4i—1,4,--+ ,5—1;
by (ii) d(z;) =
Statement. If z127---2, is a Hamilton path of G such that there are i
and j,i +1 £ j, z212i~1 € E(G), 212541 € E(G),z12x ¢ E(G) for k =
tyi+1,--0,7 and d(2;) > (n—1)/2, then j =i+ 1, d(2i43) 2 (n —1)/2
and d(z;—1) > (n—1)/2.

Proof. Suppose j > i + 2 and consider the Hamilton path
2122 Zi—12nZn-1" " 2

Then (i) gives e(21,zj—-1) + e(2i, 2;) = 1, hence zz; € E(G), contrary to
d(z;) = 2. The Statement follows.

Case 1.1.1. d(z;) > (n —1)/2.

By the Statement, we have j = i+1, d(zi4+3) = (n—1)/2 and d(z;—1) 2>
(n—1)/2. Let P' = 21Z3++ * Ti—1ZnTn—1 - - - Ti. Since 1%;—) € E(G),z12, ¢
E(G),z1xn-1 ¢ E(G),z17i42 € E(G) and d(zn) > (n — 1)/2, we have
Z1Zp—2 € E(G) and d(zn-3) 2 (n — 1)/2 by the Statement. Moreover,
d(xn—1) = 2 since z;z, € E(G). Then use P we can obtain z,z,—3 ¢
E(G).

If i + 3 < n — 2, then considering the Hamilton path

Ti—1Zi-2** L1Ti42Ti4+1TiTnTn—1 " * * Ti43,
to get by (i) z;_1zn_2 € E(G). So taking the Hamilton path
T1Z2: ' Ti-1Tn—-2Tn-1ZnTiTi41** " Tn-3,

and observing that z,_sz, ¢ E(G) implies by (i) z1z; € E(G), but this
contradicts the hypothesis in Case 1.1.

Suppose 1 + 3 = n — 2 and then i is even. Referring to the Hamilton
path
TiTip1Ti42T1T2 - - Ti-1Ti+5Ti+4Ti+3,



we have by (i), z;zi4+2 € E(G).

Since z;zi42 € E(G),z1z; ¢ E(G),z2z; ¢ E(G)(for z;43z, € E(G)),
z;xi—1 € E(G) and d(z;1) > (n — 1)/2, we have by the Statement z;z3 €
E(G) implying d(z3) = 2(z1zi+3 € E(G)). If i = 4, we obtain n = 9 and
G is isomorphic to H.

Then suppose ¢ > 6. We have d(z4) > (n—1)/2 and d(z;42) > (n—1)/2.
Taking the Hamilton path

Zi42Zi4+1L:;X3T2T1T44-3Ti4+4Ti4+8Ti—1Ti—2 " * * T4,

by (i) and the fact d(z;14) = 2, we obtain z;107;+5 € E(G). A Hamilton
cycle is then
Ti42Ti4] ** T1Ti+3Ti44Ti4+5Ti42,

a contradiction.
Case 1.1.2. d(z;) < (n —1)/2.

We have x;_sz; ¢ E(G) for z,2i-1 € E(G),z1%:-1 € E(G) and G
is not hamiltonian. And d(x;-2) > id(z;) > (n —1)/2 and d(z;j42) >
id(z;)  (n — 1)/2 by (i)

Claim 1. d(z;_2) < (n —1)/2.

Proof. Suppose d(z;_2) > (n — 1)/2, by considering the Hamilton path
Zi—2%i-3 " T1Tj41%5** Tin1TnTn~1"""Tj4+2y

and using the fact that z;_sz, ¢ E(G), we deduce z;42z;—1 € E(G). Then
L1122 Ti—1T5j42T543 " TnTiTiq1 *** Tj4+1T1,

is a Hamilton cycle of G, a contradiction. a

Claim 2. j =i+ 1.

Proof. Suppose j > ¢ + 2, by considering the Hamilton path

Zj_9Tj-3°  T1Tj 41T Tj—1TnTn—1 " * * Tj+2,
and using the fact z1z;_2 ¢ E(G), we deduce ;522 € E(G). Then
Tj41T5Tj—]  * TiTnTno1 - Tj42Z2T3 * - * Tim1Z1%541
is a Hamilton cycle of G, a contradiction. (]

Claim 3. z1z, € E(G) forany k <i-—2.
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Proof. Suppose there exists some k,(4 < k < i — 2) such that z;z,; €
E(G),zyzk41 € E(G) and z1z ¢ E(G). By (i) zpzk—1 € E(G) and
znzr-2 € E(G); by (ii) d(zk) = 2, thus d(zk42) = id(zx) 2 (n - 1)/2
and d(zx—2) = id(zx) 2 (n — 1)/2. So z1xx-2 € E(G). We consider the
following two case.

(a) Trzr42 ¢ E(G).

By (i), znzk+1 € E(G). Since d(zg42) 2 (n —1)/2, by (ii), z1zx4+3 €
E(G). S0 znzr+2 € E(G) and z1xx44 € E(G). By the choice of 7, we have
i = k + 2, contrary to d(z;) < (n — 1)/2. o

(b) z1Zk+2 € E(G).
By (i), ZnZr+1 ¢ E(G). By considering the Hamilton path
Tk—2Tk—3 " - T1Tk-1TkTh+1" " Tn

and using the fact that z,zx4+1 ¢ E(G), we deduce Tx_ozki2 € E(G).
Then
Tg-2Tk-3 " L1 Tk4+1TkTk—1TnTn-1" " Tk+2Tk~2

is a Hamilton cycle of G, a contradiction. ]
Claim 4. z12:43 € E(G)

Proof. Otherwise, z,z;12 € E(G) by (i), then considering the Hamilton
path
T1Z2 - LiTi+1Ti+2TnTn—-1 """ Ti+3

and using the fact z1z;11 € E(G), we deduce z;z,4+3 € E(G). Then
T1T2- ' Ti—1TnTn~1 " Ti4+3TiTi+1Ti4221

is a Hamilton cycle of G, a contradiction. 0

Claim 5. 21z, ¢ E(G) forany s=1+4,i+5,:-- ,n.

Proof. Otherwise, there is some s with i + 4 < s < n such that z;z, €
E(G). Clearly, s # n — 1,n. We choose such s such that s is as small as
possible. If s =i + 4, then considering the Hamilton path

Ti43Ti+2Ti4+1TiTi~1 " T1Ti+4Ti45° " Tn,
and using the fact that z;;1z, € E(G), we deduce z;zi+3 € E(G). Then

Z1Z2 " Ti-1TnTn—1 - Ti4+3TiTiy1Ti4271,



is a Hamilton cycle of G, a contradiction.
So we assume i +5 < s < n — 2. By (i) and (ii), we get d(z,4+1) =
(n — 1)/2. By considering the Hamilton path

Zim1Ti-2 " T1T6T5—1" " TiTpnTn—-1"** Ts+1,
and using the fact z;_;z;4; ¢ E(G), we deduce z;;27,41 € E(G). Then
Ti42Zi41 " T1TsTs-1 """ Ti4+3TnTn—1 " Ts+1%i+2,
is a Hamilton cycle of G, a contradiction. (]

By Claim 5 and (i), we have e(z1, {Tit+4,Zit+5,° - ,Zn}) = 0 and e(z,,
{Zi=1,Zi,Ti+3,Titas- -+ yTn-1}) = n — i — 1. The degrees of z; and z,
impose i = (n — 1)/2. For every s <i—2 and t > i + 4, we have z,z; ¢
E(G),zsz; ¢ E(G) and 24z;42 ¢ E(G), for £5z,_1 - - T1Z441%s42 - * Tt—1Tn
Tn-1"""Tty TsTs—1'' 'T1Ts41Ts42"°° ' Ti=1TpTn—1"*"Ti, TtTt41 "' TnTi-1
Ty—g++Tiy3Z1ZT2 - Tipo are Hamilton paths of G, respectively. We deduce
that {z;—1, Ti, Zi+1Zi+2, Tis+a} isacut-set of G. Let Uy = {z1,%2,- - ,Ti-2}
and Up = {Zi44,Tigs, - ,Zn}, We see that |Uy| = |Us| = (n — 5)/2.

We can claim d(z;—1) = d(zi4+3) = (n — 1)/2 for

Zi—1Ti-2 " T1Ti42Ti4+1TiTnTn—1 * * * Tit3,
is a Hamilton path of G.
Claim 6. e(z;—1, Uz \ {zn}) = 0. Similarly, e(z;43, U1 \ {z1}) =0.
Proof. Considering the Hamilton path
P=zxi_1Ti 2 T1Ti42Zi41ZiTnTn—1 - * * Tit 3,

and using the fact d(z;4+3) = (n — 1)/2, we have z;_1z;+4 ¢ E(G). If there
exists some m,i + 5 < m < n — 1 such that z;_;z,,, € E(G), choose such
m such that m is as large as possible. Then

/
P =z, 17; 2+ T1%:42Ti11TiTnTrn—1"* ' Tm+2Ti+3Ti4d * * * T T1

is a cycle of length n — 1 avoiding 41, but d(zm41) = 3, a contradiction.
So e(z;—1,Uz \ {zn}) = 0. Therefore, all the vertices in Us \ {z,} with
degree less than (n — 1)/2. Similarly, e(ziy3,U; \ {z1}) = 0. a

We can easily check that d(z3) < (n — 1)/2 for zozi42 ¢ E(G) and
zoZiys ¢ E(G). Set d(z2) = k' + 1,m5 = min{d(z) : ¢ € Na(z2)} and
Mj = max{d(z) : z € Nz(z2)}. Supposed] < dj <--- < d}, o < - be
the degree sequence of the vertices of Nj(z3) U Na(z2). By the definition
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of implicit degree and the fact d(z;33) = (n — 1)/2, zi43 € No(x3) and
d(ziy2) < (n—1)/2, we get that id(z2) = d}, > (n—1)/2. Then there exist
at least two vertices in U, with degree at least (n — 1)/2, a contradiction.

Case 1.2. z,z;_, € E(G),z1Zi41 € E(G) and z,z; ¢ E(G) for some
i€ [4,n -3

By (i), znzi—1 € E(G) and z,z;—2 ¢ E(G); by (ii), d(z;) = 2, thus
d(zipe) 2 id(z:) = (n — 1)/2 and d(z‘g_z) > z‘d(:z:.-) > (n - 1)/2. So
ZnZi—3 € E(G). (otherwise, by (ii), 2 = d(zi—2) = (n — 1)/2.)

Choose such ¢ such that i is as small as possible, then e(z,, {z2, 23, -,
zi-1}) =i — 2 and e(zn, {z1,Z2,--- ,Ti-2}) = 0.

Considering the Hamilton path

Li-2Ti—3° " T1Ti—1Ti***Tp
and noting that z,z; ¢ E(G) implies by (i), zi—27zi+1 € E(G); but since
L1T2*  Ti—2Ti+1TiTi-1TnTn—1 """ Tit+2

is a Hamilton path of G, we must have z,z;1, ¢ E(G). Which implies
by (i) znziy1 € E(G) and by (ii) 21243 ¢ E(G). Now, we can sup-
pose that e(z1, {Ti+2, Ti+3, - ,Tn}) = 0, otherwise Case 1.1 holds. Thus
e(Zn, {Ti+1,Ti+2, - 1Tn-1}) =n —i—1. The degree of z; and z,, impose
i=(n+1)/2

For every s <i—2 and t > i + 2, we have z,z; ¢ E(G) for

T3Tg—1'*T1Ts541T342"° * Tt—1TnTn-1-** Tt

is a Hamilton path of G. We deduce that {zi—1,%;,Zi+1} is a cut-set of G,
and d(u) < (n —1)/2 for any v € V; UV,, where V| = {z1,29,-++ ,Zi—2}
and V2 = {Zi}2,Tits, -+ ,Zn}. We see that |V3| = |V3| = (n - 3)/2.

Claim 7. d(zi;—1) 2 (n —1)/2 and d(zi4+1) 2> (n — 1)/2.

Proof. Suppose, without loss of generality, d(z;—1) < (n —1)/2.

Let d(zi—1) = s+ 1, m3'™' = min{d(z) : = € No(zi_1)}, M3 ' =
max{d(z) : ¢ € Np(zi_1)}. Set di'' < d3"' < -+ < dji' < -
is a degree sequence of the vertices of N(z;~1) U Na(z;—;). Since z, is
adjacent to all the vertices of {z2,zs,--- ,Zi—1,Zi+1} and z, is adjacent
to all the vertices of {zi—1,Zi4+1,Ti+2," " yZn-1}, We get that |N(z;—1) U
Na(zi-1)] = n — 1. Since all the vertices with degree at least (n — 1)/2
must be adjacent to z;-; and z;,;, we get that d(u) < (n — 1)/2 for each
u € Na(z;—1). By the definition of implicit degree, we can easily check that
id(zi—1) # my ", ds "', Therefore, id(zi-1) = dgi7', then dj{}' > M3*?,
but |N2(zi-1)| > I, a contradiction. m}
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For j = 1,2, V; can be partitioned into A;UB; such that d(a) > (n—1)/2
for each a € A; U Ay and d(b) < (n — 1)/2 for each b € By U B,. Since
Ty, Ti—2,Tit+2, Tn have degree at least (n —1)/2, we have |4;]| > 2,5 =1,2.
Moreover, taking a € A,, we have

(n—-1)/2 < d{a)
< Al =1+ |By| +e(a, {zi-1,Tis1})
< a[+1.
And similarly, (n —1)/2 < |V2|+ 1. Thenn—-1<|Vi| + |W2|+2=n—-1,
that implies e(A4; U A,, {xi_1,$¢+1}) = 2|A1 U] A2|

If ByU By = 0, then d(u,z;) = 2 for any u € V; U V. Therefore, by the
definition of implicit degree, we have d(u) = (n — 1)/2 for any u € VU V4.
Then G € B,.

So suppose B; U By # 0. No vertex of B;,j = 1,2, is joined to
{2},’_1,2:“.1}, SO d(mi_l) = d(:c,-+1) = |A1| + |A2| + 14 e where e =
e(zi—1,Zi+1). Since d(zi—1) = d(ziy1) 2 (n — 1)/2, we get |A;| + |A2| +
1+e>(n—-1)/2,s0 |A]| +[A2| 2 (n—3)/2—e.

Choose a vertex b in B, U B,, without loss of generality, suppose b € B;.
Let d(b) = a + 1,m} = min{d(u) : v € N2(b)} and M} = max{d(u):u €
Na(b)}. Set dé < df <--. < db,, <--- be degree sequence of the vertices
of N(b)U Ny(b). And let |A1| =m, ]N(b)nBll = k; and INg(b)nBll = kp.
Then ky + ke +m = (n—5)/2 and a+1 = k; +m. Since d(z;—1,b) =2 and
d(zi-1) = (n—1)/2, we can easily check that id(b) # d%,,. If k2 = 0, then
G|B,] is complete. If kz # 0, then id(b) # m}. So id(b) = d?, then d¥, > m}
and dg_,_l < M}. Therefore, ky+ky < a—1=ky+m—2. Then ks < m—2.
By the arbitrary of b, we have |A;| > max{|Na(b) N By| +2 : b € By}.
Similarly, |Az| > max{|N2(b) N B2| + 2 : b € Bo}. Consequently, G € %,..

Case 2. id(z) = d.

Then dr > mg and k > 2. Fori = 1,2,--- ,k+1, let W) = {y; :
IV(C(¥:,yi41))| = 1} and W2 = {y: : [V(C(y1,¥541))| 2 2}. Set |[W)| =
wy, |[Wa| = wa. Then wy + wp = k + 1. Moreover, {yi, v, : v € Wa} C
N(z) and {y; : y; € W1} C Ny(z), so [Na(z)| > wy + 2ws.

By the choice of C, we can get that d(y}") < d(z) < (n — 1)/2 for any
y; € W). Since id(z) = dy, there are at least wy + 2 vertices in Np(z) with
degree at least id(v) > (n — 1)/2.

Claim 8. w, = 2.

Proof. If wy < 1, since there are at least uy + 2 vertices in Na(z) with
degree at least (n —1)/2, we can easily check that there exists at least one
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vertex, say yi1, in W such that d(yj) > (n — 1)/2, contrary to the choice
of C.

By similar arguments as in Case 1, we can get that there are ai most
two vertices in {y} : y; € W,} with degrees at least id(z) and there are ai
most two vertices in {y;;, : ¥; € W2} with degrees at least id(x). Then
|Ws| < 2. Therefore, [Wa| = 2. O

By Claim 8, we assume W = {y;,yx4+1}. Then d(y}'), d(y;,), d(vi,,)
> id(z) and d(yy) > id(z).

Claim 9. N(u) = N(z) for any u € W;t.

Proof. We assume y; € W;. We just need to prove N(y}) = N(z). Let
d(yf) =s+1. Sincez € Nz(y1 ), d(z) < B5=2 "‘1 and G is not hamiltonian, we
can get that id(y]) # my1 d”1 +1- Then zd(y )= dy‘ If there exists some
vertex y; such that yyy € E(G) and ye41y7 ¢ E(G) or yt_lyl ¢ E(G),
then by similar argument as m Claim 12, we can get that d(y) > id(yt) =
2=l a contradlctlon Since y7y; € E(G), we have y}y, € E(G) for each
s= 2 3 .
If yi y,+1 ¢ E(G), we can get that y{'y: ¢ E(G) for eacht=1i+2,i+
,k + 1. Then we can get that there is a vertex yf with1<t<i-—-1
w1th d(y ) > id(y) > 252, a contradiction. So yfyi41 € E(G). Similarly,
v}y € E(G) for each i + 2 i+3,--+,k+ 1. Therefore, N(y7) = N(z). O

Claim 10. N(z) C N(u) for any u € {4, ¥;51, ¥ 0,91 -

Proof. By symmetry, we Just prove N(z) € N(y;). Considering the
Hamilton path P = y}yf ¥2. Yk 1TYIY; Y5 -2, y,t,_l and using the fact
dyf) 2 1‘;—1 and d(y{,,) > 25%, we deduce d(y‘) d(yi,,) = 252
Since yfy},, ¢ E(G) for any y, € W, and zy},, ¢ E(G), we have
N@)\yin} SN,

By Claim 9, yk+1yk+1 YITYk41Yp1 Vit 1¥T YT - Uiy is & Hamil-
ton path, then y}, ,y5;, ¢ E(G). Then by using P, we get that yfyiy1 €
E(G). Therefore N(z) € N(y{). o

Let C1 = Clyf,4i71],C2 = Clyf,y,y7] and C3 = Clyiyr,yk41] U
Cly1, ). By Claim 10, de,(y;') = dey(4i11) = dcs(y;?“) = dc,(y1) =
k +1. Since G is non-hamiltonian, we have N& (y{,,) N N, () = 0,
by Lemma 4, we can get that dc,(v}) + dc, (v) < |C2f — 1. Similarly,
dey(@}) + dey(@}) < 11 - 1, dey(i) + des W) < ICal = 1 and
dc, (Yig1) +de (¥j41) < |Ci] = 1. By the above inequalities, we get

2n—1) < de(yh)+de(y;) +deig) + do(Wi)
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< 4k+1)+2(|C1] - 1) +2(]C| - 1)
< 2(n-1),

which implies that all the inequalities are equalities. If there exists some
vertex z, € V(C}) such that y:+1-"’a € E(G), then yy z;,y7 =}, yy v,
vt ¢ E(G) and Yir1Z; ¢ E(G). By Lemma 4, we can get that
de, (¥i11) + do, (1) < |C1| — 1, a contradiction. Hence, Ne, (vf,;) = 0.
Similarly, we can get that Ng, (v') = 0, No,(yf) = @ and Ne, (v53,) = 0.
Hence, dc, (y}") = [V(C1)| — 1 and dy(c,)(yjt,,) = IV(C2)| — 1. Since
d(yf) = 25* and d(yf,,) = 252, we can get that |V(Cy)| = [V(C2)| =
-";—1 — k. Therefore, we can get that G is the subgraph of J%,.

Then Theorem 6 holds. o
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