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Abstract In this paper we give some interesting identities on the Bernoulli and the Euler
numbers and polynomials by using reflection symmetric properties of Euler and Bernoulli poly-
nomials. To derive our identities, we investigate some properties of the fermionic p-adic integrals

on Zp.
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1. INTRODUCTION AND PRELIMINARIES

Let p be a fixed odd prime number. Throughout this paper, the symbols
Zp,Qp,C and C, denote the ring of p-adic rational integers, the field of p-adic
rational numbers, the complex number field and the completion of algebraic clo-
sure of Q,, respectively. Let N be the set of natural numbers. The p-adic norm on
C, is normalized so that |p|, = p~!. Let C(Z,) be the space of continuous functions
on Z,. For f € C(Z,), the fermionic p-adic integral on Z, is defined by Kim as
follows:

-1

O ()= [ @) = Jim T @D e (7).

z=0
From (1), we have
) I-1(f1) = =I1-1(f) + 2£(0), (see [7,9)),

where fi(z) = f(z +1).
Let us take f(z) = e*'. Then, by (2), we get
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where E, are the ordinary Euler numbers ( see [1;12]).
From the same method of (3), we can also derive the following equation:

@ [ et = 22 = Y En@)
zp e‘ + 1 n=0 n n! !

where E,(z) are called the n-th Euler polynomials( see [1-12]).
By (3) and (4), we get

® [ @) =B ad [ @rdinat) = Bale)
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From (2), we have

©) /Z (@ +1)"dp_1(z) + /z hdp_y1(z) = 2o,n,

P

where the symbol &y , is the Kronecker symbol.
Thus, by (5) and (6), we get

N (E+1)* + E, = 20p,n ( see [7,9]).

From (1), we can derive the following equation:
®) /z’ (1= 24+ 21)"dps(z1) = (~1) /z (@ + 21) dpir (21)-
P

By (5) and (8), we see that
9) E.(1 —z) = (-1)"Ea(z).

Thus, by (7), we get E,(2) = (-1)"En(-1).
From (7), we have

(10) E.(2) =2 - E,;(1) =2+ E, — 20p,n.
The Bernoulli polynomials By(z) are defined by

t . ot t"
(11) s = e = 3 "B, (z) 7, ( see [13)),

t
[
n=0

with the usual convention about replacing B™(z) by Bn(z).
In the special case, z = 0, B,(0) = B,, is called the n-th Bernoulli number. By
(11), we easily see that

(12) Bn(z) = Z": (’l‘) 2B = (B +2z)".
i=0

Thus, by (11) and (12), we get reflection symmetric formula for the Bernoulli poly-
nomials as follows:

(13) Bn(1 - z) = (-1)"Bnp(z),
and
(14) Bo =1,(B+1)" — By, = 1,n (see [3,9)]).

From (13)and (14), we can also derive the following identity:
(15) (=1)"Bn(=1) = Bn(2) =n+ Bn(1) =n + Bp + 81 n.

In this paper we investigate some properties of the fermionic p-adic integrals on
Z,. By using these properties, we give some new identities on the Bernoulli and
the Euler numbers which are useful in studying combinatorics.
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2. IDENTITIES ON THE BERNOULLI AND THE EULER NUMBERS

Let us consider the following fermionic p-adic integral on Z, as follows:

I N R CI R N (LY e

1=0

n

Y (’;)B,._,E,, forn € Z, = NU{0}.

=0

On the other hand, by (13) and (14), we get
(17)
ho= 0" [ Balt-2duas(@) = (MY (7) Boet [ (1= 2)ducs(o)

=0
n

= 03 () B 0E) = 3 (7) BeeiB2)

= (-1)" Zn: (1;)3,,_1(2 + By ~ 2080,)

=0
n

= 2-1)"Ba(1) +(-1)"Y (’l‘) BniEr +2(-1)"*'B,
=0

= 2(=1)"(Ba+81a) + (-1)" Y (’l‘) BoiEy +2(~1)"*'B,.

=0
Equating (16) and (17), we obtain the following theorem.

Theorem 1. Forn € Z,, we have

(1 + (_1)n+1) Zﬂ: (7) Bp By = 2(—'1)"61_“.

=0

In particular,

2n+1
2n+1
Z ( " )BZn+l—lEl = —0p,n.
=0 l

By using the reflection symmetric property for the Euler polynomials, we can
also obtain some interesting identities on the Euler numbers.
Now, we consider the fermionic p-adic integral on Z,, for the polynomials as follows:

9 k= [ EEwaE- > (1) [ et (@)

=0

n

Z (’;) E,. |k, forneZ,.

=0

457



On the other hand, by (7), (9) and (10), we get

(19)
ho= 0" [ Bl -2 = (03 (}) Bt [ (1= 2@

1=0
- Y (’l‘) Eaci(-1)Ei(-1) = (<1)* 3 (’,‘) Ba-tEi(2)

=0 =0
n

= (-1)* " E,._ 2+E—25,
( ) g (l) 1( l Ol)
= 2(—1)"En(1) + (—l)ﬂz (’;’) En-lEl + 2(—1)"+1E”
=0
=2ﬁmmm—u+mrzcﬁwmnpmm%
{=0

Equating (18) and (19), we obtain the following theorem.

Theorem 2. Forn € Z,., we have

(1 + (=1)+1) i (’l‘) EntEy = 4(~1)"E, + 40 5.

=0

Let us consider the fermionic p-adic integral on Z, for the product of B, (z) and
E.(z) as follows:

(20)

I3 Bm(z)En(z)dp-1(z)

i (T:) (7;) Bk Eni ./z ) *Hdp_, (z)

=0

Z (T:) (7) Bm—kEn—lEk+l-

=0
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IM: I 5~

458



On the other hand, by (9) and (13), we get

(21)
I

/z Bun(2) En(z)di—1(2)

= (-1 /z Bu(1 - 2)En(1 - 2)dpis (2)

n

= (-]m+m i 3 (’,’:) (’l') BmkEn_t /z ,, (1 - z)**dp_, (z)

k=0 {=0
= (=1"tm Z Z (T;:) (1;) Bk En—1(2+ Erq1 — 280, k+1)
k=0 1=0
= 2(=1)"™B, (1)Ea(1) + (-1)"+™ (’") (")B,,._ EniE
(-1) (DE.(1) +(-1) g;k ) kBBt

—2(-1)"*"B,E,.
By (20) and (21), we easily see that

(22)

(1 + (~1)m+1y zm:z": (’,:') (’l‘) Bm-tEn-1Ep4i

k=0 1=0
= 2(=1)™*"(61,m + Bm)(200,n — En) +2(-1)"*"*' B E,
= 2(=1)"*"*1B E, +4(=1)™*"8;,mb0,n + 2(=1)m*n+ls, B,
+4Bp (—~1)™* "8 p + 2(-1)"*" 1B, E,,.

Therefore, by (22), we obtain the following theorem.

Theorem 3. For m,n € Z,., we have

(1 + (=1)ntm+1) ii (7;") (7)Bm_kEn_1Ek+:

k=0 =0
= A(=1)™+"HIBL B 4+ 2(~1)™ G LB+ 4(=1)™"6) mbon
+4Bpm(=1)™ "8 .

Corollary 4. For m,n € Z.., we have

MR f2m) (2n -1
> ( k ) ( )B2m—kE2n—l—lEk+l = 2B2mEsn-1.

k=0 I=0 l

Let us consider the fermionic p-adic integral on Z, for the product of Bernoulli
polynomials and Bernstein polynomials. For n,k € Z,, with 0 < k < n, Bi,(z) =
(¥)z*(1 — )»* are called the Bernstein polynomials of degree n, see [9]. It is easy
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to show that By n(z) = Bu—k,a(l — z).

@) I, = /z Bn@)Ban(@dia(@)
o
« EEC)C e
n—k

3 () 30 51 (9 ] Gy [S:M: Wt

=0 j=0

’ g[\’]s

On the other hand, by (13) and (23), we get
(24)
I,

(-1 / Bn(1 - 2)Ba—kn(1 — 2)dp-1 ()
o )ZO;O( )(5) 1B | (1=t )

o (}) ,‘2,20( ) (5) 17 Brnes2 = 2ot + Enessas)
(-1 )Bmmamz( 17 (7) B

+(—1)"'( ) Z;;o ( )( )(—1) Bon—tEn-kiits-

Equating (23) and (24), we see that

= 2( 1)m3m(1)50k+2( -1)™*1B bk, n

+- 1)"'22( [ N—

=0 j=0

Thus, from (25), we obtain the following theorem.

Theorem 5. For m,n € N, we have

33 (1) () v

2m
= 2Bom + Z ( )B2m—lE +l

=0
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In particular,

zz'" :Vn_: (Zm) (2n)( 1Y Bym—1 By

1=0 j=0
= 2Bgm — mE2n+2m—1-

Finally, we consider the fermionic p-adic integral on Z, for the product of Euler
polynomials and Bernstein polynomials as follows:

@6) I

/Z ,, En(z)Bk o (z)dp—1(z)
()55 (7)o |, -t

R s

=0 j=0
m n-k
= (-1 Em—tE|
B ()05 ) eEmitis
On the other hand, by (9) and (23), we get
(27)
Is = (-1)" | En(l1-2)Bnkn(l—z)dp_1(z)

P

-o(})
()
2(-1)"(}) Bn(1)dos ~ 21" (}) B

o

Equating (26) and (27), we obtain
(28) 2 g (7) ("7 5) 1 BB
- 2-0m(} )Em(l)ao,k = 2-1)" () Bnicn
+(‘1)m( ) ZZ ( ) (j)(—l)jEm—lEn—kH-i-j'

=0 j=0

(7) (5) 7B | 173000

k .
( ) (J) (=1Y Em—t(2 + En-ktie; — 200,n-k+145)

%>
5

I

Therefore, by (28), we obtain the following theorem.
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Theorem 6. For m,n € N, we have

T () et

=0 j=0

= fam -1
= 2Eom_1 — Z ( ! )EQm-l-lEn+l-

=0

Moreover,

2§1§: (2m 1) (2n) (=1) Bam1—1Bies

=0 j=0
= 2Eym-1 — Eam+2n-1.
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