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Abstract

Eternal domination of a graph requires the vertices of the graph to
be protected, against infinitely long sequences of attacks, by guards
located at vertices, with the requirement that the configuration of
guards induces a dominating set at all times. We study some vari-
ations of this concept in which the configuration of guards induce
total dominating sets. We consider two models of the problem: one
in which only one guard moves at a time and one in which all guards
may move simultaneously. A number of upper and lower bounds are
given for the number of guards required.
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1 Introduction

We consider finite, simple graphs, and unless stated otherwise, denote the
number of vertices of the graph G = (V, F) by n. This paper studies the
problem of using guards to defend the vertices of G against a sequence of
attacks. At most one guard is located at each vertex. A guard can protect
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the vertex at which its located and can move to a neighboring vertex to
defend an attack there. This paper deals with the “eternal” version of
the problem in which the sequence of attacks is infinitely long and the
configuration of guards induces a dominating set before and after each
attack has been defended. Eternal dominating sets have been considered
in a number of recent papers such as [1, 5, 11, 12, 17, 18].

In this paper, we introduce the concept of an eternal total dominating
set, which further requires that each vertex with a guard be adjacent to
a vertex with a guard. Total dominating sets are a well-studied variant
of dominating sets [9, 14], hence our motivation to extend the notion of
eternal domination to total domination.

Several variations of this graph protection problem have been studied,
including Roman domination (7, 15}, weak Roman domination (8}, k-secure
sets [4], and eternal m-secure sets [11]. The term Roman domination stems
from the problem’s ancient origins in Emperor Constantine’s efforts to de-
fend the Roman Empire from attackers [16, 21]. Secure domination has
been studied previously in [6, 8, 10, 13, 20], for example, and secure total
domination has been studied in [2, 19]. One can also consider eternal to-
tal domination as a generalization of secure total domination, as the latter
deals with attack sequences of length one (2, 19].

We shall compare the sizes of smallest eternal dominating sets, eternal
total dominating sets, and other graph parameters such as the clique cov-
ering number. We formally define these concepts now. Denote the open
and closed neighborhoods of X C V by N(X) and N[X], respectively, and
abbreviate N({z}) and N[{z}] to N(z) and N[z]. For any D C V, we
denote by (D) the subgraph of G induced by D.

A dominating set of G is a set D C V with the property that for each
u € V — D, there exists £ € D adjacent to u. The minimum cardinality
amongst all dominating sets is the domination number v(G).

A total dominating set (TDS) of G is a set D C V with the property
that for each u € V, there exists z € D adjacent to u. The minimum
cardinality amongst all total dominating sets is the total domination number
7(G). Note that this parameter is only defined for graphs without isolated
vertices.

An eternal dominating set (EDS) of G is a set D such for each se-
quence of attacks R = r,7g,... with r; € V there exists a sequence
D = D,,D,... of dominating sets and a sequence of vertices s, s, ...,
where s; € D; N N|[r;], such that D;;y = (D; — {s:}) U {r:}. Note that
s; = ry is possible. The set D;;, is the set of locations of the guards after
the attack at r; is defended. If s; # r;, we say that the guard at s; has
moved to r;. The minimum cardinality amongst all eternal dominating sets
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is the eternal domination number v*°(G). If the graph G is to be defended
against a single attack ry, as opposed to an arbitrary sequence of attacks,
and the sets D = D; and D5 have the properties described above, then D
is a secure dominating set (SDS), and the minimum cardinality amongst
all secure dominating sets is the secure domination number v,(G).

As discussed in [1, 12], it is often more convenient to model this process
as a two-player game: Player 1 chooses D; and the vertices s, 52, . .. while
Player 2 chooses the vertices r),7s,... (Player 1 chooses s; to defend the
attack Player 2 makes at r;.) In other words, the location of an attack can
be chosen by the attacker depending on the location of the guards.

The clique covering number 6(G) is the minimum number k of sets in
a partition V = Vj U ... UV, of V such that the subgraph of G induced
by each V; is complete, i.e., 6(G) is equal to the chromatic number of the
complement G of G. We denote the independence number of G by o(G).

Goddard et al. [11] noted that for all graphs G,

o(G) < 7%(G) < 4(G). (1
A related upper bound on ¥ is the following.

Theorem 1 [17] For any graph G,
1(G) < (a(G’;+ 1).

It was shown in [12] that this bound is sharp for certain graphs.

An eternal total dominating set (ETDS) and a secure total dominating
set (STDS) of G are defined similarly as an EDS and an SDS, respectively,
except that all the sets D; are total dominating sets. The minimum cardi-
nality amongst all ETDSs and all STDSs are the eternal total domination
number v°(G) and the secure total domination number v (G), respec-
tively. Note that these parameters are only defined for graphs without
isolated vertices.

An m-eternal total dominating set (m-ETDS) is the same as an eternal
total dominating set except that, in response to an attack, we may move
as many guards as we wish to neighboring vertices. We call this the “all
guards move” model. The minimum cardinality amongst all m-eternal total
dominating sets is the m-eternal total domination number Y3%,(G). An m-
eternal dominating set is defined similarly and the minimum cardinality
amongst all such sets is denoted Y¥(G).

Finally, let 42°(G) denote the size of a smallest eternal connected dom-
inating set (ECDS), in which the vertices containing guards induce a con-
nected graph. Denote the all-guards move version of this parameter (the
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cardinality of a minimum m-eternal connected dominating set (m-ECDS)
by ¥%.(G). The ordinary connected domination number of G is denoted
v.(G) [14]. Obviously, these parameters are only defined for connected
graphs.

For the most part in this paper we shall be concerned with upper bounds
on the parameters defined above. It would be an interesting future project
to prove lower bounds where appropriate.

2 Preliminaries

We follow the notation and terminology of [14]. The

private neighborhood pn(z, X)
external private neighborhood epn(z, X)

of £ € X relative to X is defined by

{ pn(z, X)
epn(z, X)

Niz] - N[X — {z}]
pn(:z:, X) - {:Z:}

and the vertices in these sets are called, respectively, the

private neighbors

external private neighbors } of 2 relative to X.

There exist graphs whose only ETDS is the vertex set of the graph. We
now characterize these graphs. Denote the set of leaves of a graph by L,
and the set of support vertices (vertices adjacent to leaves) by S.

Proposition 2 For any graph G, 7°(G) = n if and only if V — S is
independent.

Proof: 1f V — S is independent, then, as proved in [2], V is the only secure
total dominating set and hence also the only ETDS.

Conversely, suppose uv is an edge of G with u,v € V—S and define D =
V(G) — {u}. Let Dy = D, Dy = (D — {v}) U {u}, D; = (Ds—1 — {v}) U {u}
if i is even, D; = (D;—y — {u}) U {v} if i odd. The above sets are all TDSs
and so D is an ETDS. O

The condition of Proposition 2 is not necessary for an ECDS to consist
of V. For example, if G = Ps, then K is a component of V(F;) — S, but
V(Ps) is the only ECDS of Ps. A stronger condition than the condition in
Proposition 2 is required for a characterization of graphs with y° = n. Let
X denote the set of cut-vertices of G.
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Proposition 3 For any graph G, Y°(G) = n if and only V — X is inde-
pendent.

Proof: Consider any x € X and suppose D is an ECDS of G with z ¢ D.
Then D C G — z, which is disconnected, and since D contains vertices in
each component of G — z it follows that D is disconnected, a contradiction.
Thus X is a subset of each ECDS of G, and so the guards on vertices in X
never move. Therefore, if V — X is independent, then each vertexin V- X
needs a guard for protection and it follows that D = V.

Conversely, suppose uv is an edge of G with u,v € V — X. We may
proceed as in the proof of Proposition 2 to obtain an ECDS D G V. O

Corollary 4 (i) The set of cut-vertices of any graph is contained in all
its eternal connected dominating sets.

(i) For any tree T, y°(T) = n.

We note that it is easy to see that K3 is the only connected graph with
1%.(G) = n, and K is the only graph with y32.(G) = n. To see that these
parameters are less than n for all other graphs, it suffices to observe that
the values of both parameters are less than n for all trees with at least three

vertices, while y3%.(K2) = 1.

For n > 1, v (K,) =1 and for n 2> 2, y°(K,) = 2. However, all other
graphs have an independent set of size at least two, and it is easy to see
that 3 < 99°(G) < 92°(G) for all connected graphs G 2 K,. From [19], we
know that v:(G) = 7st(G) if and only if v, (G) = 2. Combining this with
the last observation while noting that v (G) is a lower bound for v{°(G)
yields the following.

Fact 5 1:(G) = v2(G) if and only if G = K,,.
A similar result holds for connected domination.
Proposition 6 v.(G) = y°(G) if and only if G = K,.
Proof: Assume G 2 K, and let D be a minimum ECDS of G. From the
discussion above, |D| 2 3. It is easy to see that each vertex v € V(G) ~ D

is adjacent to at least two vertices of D. Let u € D be a vertex such that
D — {u} is connected. Then D — {u} is a connected dominating set of G.

Now consider the inequality ¥3%(G) < ¥%.(G), which holds if G is not
complete. If G 2 K, and A(G) = n — 1, then it is easy to see that
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1%(G) = v32(G) = 2. The graphs Py, C4, Cs and Cg are other graphs with
1%(G) = v2.(G). There are also infinitely many trees T having A(T) <
n — 1 with equality between these two parameters: consider caterpillars —
a path with pendant vertices attached to the interior vertices of the path.

Problem 1 Characterize graphs G with v33(G) = v3%(G).

It is interesting to note that 2 x n grid graphs with n ¢ {1, 2, 3,4, 5, 6, 8}
have 7%, < 73%,. For example, one can verify that v3%,(P;0K3) = 6 whereas
12 (POK3) =n.

Problem 2 It is easy to see that, for1 < n <6, Y&, (P,0K,) =n. Is it
true that, for n > 6, Y50, (P.0OK2) = 6| %] + 750 (Pn mod 70K32)-

We cite Cy,Cs, Cs, and Ko, ,, as graphs with 1:(G) = 7.(G) = 73%(G).
Proposition 7 If T is a nontrivial tree, then Y32.(T) > v.(T).

Proof: Suppose to the contrary that v3%.(T) = 7.(T). Amongst all mini-
mum m-ECDSs, let D be one such that (D) contains a path P = v,v3,...,v%
of maximum length. Trivially, ¥ > diam G—1. Observe that v; and vx have
external private neighbors v and vi41, respectively, otherwise D — {v;} or
D — {v} is a connected dominating set.

Consider an attack at v and let D’ be the minimum m-ECDS (and
thus a minimum connected dominating set) obtained by defending the at-
tack. Since vg € epn(v;, D), the guard on v, moves to v to defend the
attack. Hence there is some integer ¢ with 1 < ¢ < k such that the guard
on v; moves to v;—; for each i = 1,...,q. If a guard not on P moves to v,
then in (D'), P! = wvo,v1,...,Vk is a path, contradicting the maximality
of P.! Hence v, ¢ D'. But (D'} is connected, so if ¢ < k, then the path
V0, V1, ..., Vg—1 is connected to the path vg4y,...,vx by some path not con-
taining vy. This implies that v, lies on a cycle of T, which is impossible.
Thus ¢ = k. Note that voury; € E(T) because T is acyclic. Therefore a
guard on some vertex ¢ V{(P) moves to a neighbor u of vy different
from . Since (D'} is connected, u is connected to the path vo,vy,...,vx-1
by some path not containing v,. But then vy lies on a cycle of T, a contra-
diction as before. O

Problem 3 Characterize graphs G with Y3%.(G) = v.(G).

Problem 4 Characterize graphs G with 73%,(G) = 7(G).

1This includes the case g = k.
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3 Total domination and clique covers

In order to survey the landscape, we give several inequality chains and show
that some of the inequalities are sharp. The first chain appears in [11]. For
all graphs,

Y<YR <agy® <o (2)

The graphs with v = v were characterized in [18] to be those with
~ = 6. Hence all the equalities may be equalities, for some graphs. Likewise,
all the inequalities may be strict for some graphs. In fact, if G is a graph
with say a(G) = 20,7°(G) = 30 and #(G) = 50 (which exists, as shown
in [18]) and we attach a vertex adjacent to all others, then this new graph
has all the parameters in (2) different.

The next chain is obvious: for all graphs,

¥< 7 <1 <0 (3)

Note that 7 (K1m) = 2 and ¥°(K1,m) = m+1. Also note that y(G) <
78°(G) for all graphs G without isolated vertices, because if y(G) = v§°,
then v(G) = a(G). But is is easy to see that ¥f°(G) > a(G), since no
independent set is total dominating. The path P; is an example with all the
parameters in (3) distinct. There do exist graphs for which v = v = 733,
Cj being an example. In fact, it is easy to verify that v:(Cn) = 733 (Chn),
for all n > 3.

The third chain is also obvious: for all graphs,

YR <Y <. (4)

Again, P5 is an example with all the parameters in (4) distinct, while
Y(Kmn) = Yoy (Kmn) = 733(Km,n) < ’Yoo(Km,n)'

It was proved in [19] that if G is connected and 6(G) > 1, then v7,(G) <
26 — 2, and that the bound is sharp. Likewise, there exist many graphs G
with 8(G) > 1 and ¥{°(G) = 26. We can, however, prove a slightly better
bound for Y% (G).

For any graph G, fix a minimum clique cover C of G. Construct the
cliqgue cover graph C(G) of G with respect to C by mapping each clique
in C to a corresponding vertex in C(G) such that two vertices in C(G) are
adjacent if and only if the corresponding cliques in G have adjacent vertices.
For each vertex v of C(G), let @, be the clique in C corresponding to wv.
Since C is a minimum clique cover, no two adjacent vertices v, v’ of C(G)
correspond to cliques @, and Q. with @, = Q. = K;.
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Theorem 8 If G is connected and 6(G) > 2, then v (G) < 26(G) - 1.,
This bound is sharp for all 0 > 2.

Proof: The case (G) = 2 is trivial, so assume §(G) > 3. Fix a minimum
clique cover C of G and consider a spanning tree T of C(G), the vertex set
of which is also a TDS of C(G), since 8(G) > 1. Define V; = {v € V(T) :
Qv = K} and let a be a support vertex of T, say a is adjacent to the leaf
£. For each v € V(T') we define a set D,, C V(G) as follows.

Let ug be a vertex of Q. adjacent to a vertex w, of Q. and define
D, = {w,}.

If £ € V4, let Dy = {u,}; otherwise, let wy be any other vertex of Q,
and define Dy = {u¢, we}.

For all v € V; — {a, ¢}, let z,, be the vertex of Q,, let y, be any vertex
of G adjacent to z, and define D, = {zy,yv}-

For all v € V(T') — (V1 U {a,£}), if each vertex of Q, is a vertex y, for
some v' € W1, let D,, = ¢; if some but not all vertices of @), are such a vertex
Yw, let z, be a vertex of Q, not already chosen and define D, = {z,}; and
if no vertex of @, is such a vertex y,, let y,, 2z, be any two vertices of Q,
and define D, = {yu, 2, }.

Define D1 = Uyev ) Do- Then D, is a TDS of G and | Dy| < 26(G)-1.
A guard is stationed at each vertex in D,. For eachv € V(T') - (V1 U{q,¢})
for which z, is defined, let g, be the guard stationed at 2,. Also, let g, (ge,
gy, respectively) be the guard stationed at w, (we, ue, respectively).

Consider an attack at a vertex ry € V(G) — D;.

(%) If r; belongs to Q, for v € V(T) — {a, £}, then r; € N(2,) and guard
gy moves to r3; note that Dy = (D — {2,}) U {r1} is a TDS of G.

(4i) If 7y belongs to Qg, then Q¢ # K1, 1 € N(we) and ge moves to 7y;
note that Dy = (D; — {we}) U {r1} is a TDS of G.

(ii1) The only other attack (at a vertex not in D)) is at a vertex of Q,.
Then r, € N(w,), w, € N(ug), and, if w, is defined, up, € N(we).
Thus g, moves to r1, g; moves to w, and g moves to u, if necessary;
note that Dy = (D3 — {ue}) U {r1} or Dy = (Dy — {we}) U {r1} (as
appropriate) is a TDS of G.

Hence D, defends G against any single attack. Note that in each case
w, € D; N D,. Suppose, after i attacks, D; has defended G against the
ith attack, and D;,; is a TDS of G. Consider an attack at a vertex ri;; €
V(G) — Dita.

If 7,41 belongs to Q, for v € V(T) — {a, £}, then as in (), g, defends
against this attack, regardless of any previous attacks.
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If 7;+1 belongs to Q¢ and g, is stationed at a vertex of Q¢ other than
ug, then gy defends as in (i7). If g, is stationed at ug, then, reversing the
defense in (4it), g moves to riy;, g; moves from w, to u; and g, moves to
W,

If 741 belongs to Q, and g, is stationed at w,, then g,, g¢ and g, defend
as in (#2), while if g, is stationed at a vertex of @, other than w,, then g,
moves to 7i4y.

It follows that each set D;, i = 1,..., is an ETDS of G.

Since v (Ps) = 3, the bound is exact for # = 2. For @ > 3, construct
the class Gg of graphs as follows. Let H = K,,, for any m > 6, and let
Fi, ..., Fy_1 be disjoint nontrivial complete graphs. Join one vertex u; of
each F; to some vertex v; of H so that 6 — 1 vertices of H are joined to a
vertex not in H. Let Gy be the class of all graphs thus constructed. Note
that 8(G) = @ for each G € Gs.

Let G € Gy, consider any minimum m-ETDS D of G and suppose
|D| < 260 —2. Since D is a TDS, either [IDNV(F;)| =2,0r [DNV(F)| =1
and {u;,v;} C D. It follows that |D| = 26 — 2. Let = be a vertex of H that
is not adjacent to a vertex of any F;. Then z ¢ D, hence {u;,v;} C D for
at least one ¢ to dominate z. To defend an attack at z, a guard at some
v; moves to z. If the guard at u; does not move, then u; is isolated in the
resulting set, and if the guard at u; moves to v; to ensure that there are no
isolated vertices, then at least one vertex in F; is not dominated. In either
case we obtain a contradiction. O

The graphs constructed in the proof of Theorem 8 to show that the
bound is sharp are not the only graphs with this property. We characterize
this class of graphs in the next theorem. Recall that a ster is a graph
isomorphic to K .

Theorem 9 If G is connected, then v3%(G) = 28 — 1 if and only if one of
the following conditions holds.

(?) 8(G) =2, A(G) < n -1, and in any minimum clique covering of G,
there is a vertez that is not adjacent to any verter in the clique that
does not contain it>.

(i1) 6(G) = k > 3, and for any minimum cligue covering C of G, C(G) is
a star with center (say) = and leaves u,, ..., uk_1, such that

(a) Qu; # K, for each i,

21t can be shown that under these conditions there is a unique minimum clique
covering.
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(b) no vertex of Q is adjacent to vertices in more than one Q,,,,

(c) there either exists a vertex v € Q such that N[v] = Q,; or there
erist two vertices of Q. that are adjacent to vertices in Q,, for
some i, but not to a common vertez in Q,, and some vertez in
Qu,; has no neighbors in Q.

(iid) 6(G) = 3, and for any minimum clique covering C of G, C(G) is a
triangle such that (ii) holds for any spanning subtree of C(G).

Proof: (i) Suppose §(G) = 2 and let C = {Q1,Q2} be a minimum clique
cover of G. If deg(u) = n — 1 for some vertex u, place one guard on u
and another guard on an arbitrary vertex v. Assume v € Q;. To defend an
attack at an unguarded vertex w, the guard on v moves to w if w € Q,, and
if w € Q3, then the guard on u moves to w while the guard on v moves to u.
It is clear that this strategy may be repeated indefinitely to yield a TDS of
G. Hence 733 (G) = 2. Now suppose that each vertex in Q; is adjacent to
some vertex in Q;, ¢ # j. Place one guard on an arbitrary vertex u; € @,
and another guard on a neighbor us of u; in Q2. To defend an attack at
an unguarded vertex w € @;, the guard on u; moves to w while the guard
on u;, j # i, moves to a neighbor of w in Q;. It is clear that this strategy
can also be repeated indefinitely.

Hence suppose A(G) < n— 1, let u € @) be a vertex that is not
adjacent to any vertex in Q2 and let D be any TDS of G that contains u.
Then v € D for some vertex v € @, — {u}, otherwise u is isolated in (D).
But deg(v) < n — 1, hence there exists a vertex w € Q2 such that {u,v}
does not dominate w. It follows that 73%(G) = 1:(G) = 3.

(i1) Suppose 8(G) = 3 and assume firstly that C is a minimum clique cover
of G such that C(G) is not a star or a triangle. Then C(G) has a spanning
tree T that is not a star and so diam T > 3. Hence we may remove an edge
of T to obtain two nontrivial trees T; and T5 of order k; and ks, respectively,
where k) + ko = 8(G). Proceeding as in the proof of Theorem 8 in each T;
separately, we can show that Y33 (G) < 2k; — 1+ 2k — 1 = 20(G) — 2.

Now assume that for any minimum clique covering C of G, C(G) is a star
with center z and leaves vy, ..., ur—;. We henceforth abbreviate @,,; to Q;.
By the proof of Theorem 8, if Q; = K for some %, then 733 (G) < 20(G) -2.
Hence we may assume that Q; # K for each 1.

Suppose that v € Q, is adjacent to a vertex w; € Q; for i = 1,2. Place
a guard on each of v, w; and ws. Also place a guard on wh € @2, and
for each i = 3,...,k — 1, place a guard on two vertices w;, w] € Q;. Thus
20(G) — 2 guards are deployed. It is obvious that attacks at vertices of
Qi, i = 3,...,k — 1 can be defended indefinitely by moving one of the two
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guards, neither of which ever moves outside @Q;. To defend an attack at
an unguarded vertex y in Q;, the guards move as follows: w) — wy —
v = w; — y. Now to defend an attack at an unguarded vertex z in @5,
this movement is reversed, except that the guard on ws moves to z instead
of wy. It is obvious how to defend an attack at an unguarded vertex in
Q1 or Q2 when there are two guards present in the clique. To defend an
attack against an unguarded vertex q in Q, when, without loss of generality,
there are two guards (on w, and wj) in @2, the guards move as follows:
wj — wp — v — ¢. Now if there is an attack in Q2, this movement is
reversed, and a similar movement of guards defends an attack in Q;. It
follows that v3%(G) < 26(G) — 2.

Hence we assume henceforth that each vertex in Q. is adjacent to ver-
tices in at most one @Q;. Suppose (ii)(c) does not hold. Then each vertex
in Q. is adjacent to a vertex in some @;, and if two vertices in Q, are
adjacent to vertices in some Q; but do not have a common neighbor in Q;,
then @Q; € N(Q:). That is, if some vertex in Q; is not adjacent to any
vertex in Qz, then there is a vertex w; € @; that dominates all vertices in
Q. with neighbors in Q;. Define

I = {i : some vertex in Q; is not adjacent to any vertex in Q.} and
J={1,.,k-1}-1I

For each i € I, let w; be a vertex in @; which dominates all the neighbors
of Q; in Q., and let w} € Q; — {w;}. For each j € J, let z; be any vertex in
Q; and y; € Q; a neighbor of z;. Place a guard on each w;, w}, z; and y;.

For i € I, defend an attack at a vertex in Q; by moving the guard
on w} to the attacked vertex. Defend an attack at a neighbor v; € Q. of
w; by moving the guards on w; and any other vertex in Q; to v;and w;,
respectively. Defending subsequent attacks at vertices in @; or neighbors
of w; in Q. is a simple matter; details are omitted. For j € J, defend
an attack at a vertex z; € Q; by moving the guard on z; to z; and the
guard on y; to a neighbor y; of 2} in Qs (if ¥ # y;). Defend an attack at
a vertex in @), adjacent to a vertex in Q;, and subsequent attacks of any
kind, similarly. Since each vertex in Q. is adjacent to a vertex in some Q);,
G can be guarded with 26(G) — 2 guards.

Assume (i7) and (a) -~ (c¢) hold for any minimum clique cover of G. If
y € Q. is adjacent to all vertices in Q; for some i, let C’ be the clique cover
with @; = Q: — {y}, Qi = Q:U {y}, and Q; = Q; for j # i. Let z be
a vertex in Q7 adjacent to a vertex in Q}, j # . Since @ is a clique, z
is adjacent to y € Q.. But y € @}, so (b) does not hold for z in C’, a
contradiction. Hence

for each %, no vertex in Q. is adjacent to all vertices in Q;. (5)
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Assume firstly that C is a clique cover such that some v € Q. is not
adjacent to a vertex in any Q;. Let D be a TDS of G containing v. If
DnQ; = 2, then by (5), Q; is dominated by at least two vertices in Q.,
neither of which is v. If DNQ); # @, then either |[DNQ;| > 2 (since (D) has
no isolated vertices), or DNQ; = {w;} (say), and w; is adjacent to a vertex
in @z N D. By (b), if v;, v; are adjacent to vertices in Q;, Q;, respectively,
then v; # v; for ¢ # j. Hence |D| > 26(G) — 1 and therefore any m-ETDS
of G has cardinality at least (and thus exactly) 26(G) — 1.

Finally, assume that C is a clique cover such that v,v’ € Q. are respec-
tively adjacent to w,w’ € Q; (say), but not to a common vertex in Q;, and
z € @ is not adjacent to any vertex in Q.. Suppose to the contrary that
1%5(G) < 26(G)—2 and let D be an m-ETDS of G containing z. As above,
for ¢ > 2, either |[DNQ;} > 2, or |DN Q| = {w;} and w; is adjacent to
v;i € Q: ND. Since z € D, |IDN Q4| = 2. If |IDN Q1] = 3, we are done,
so suppose |D N @Q;| = 2. Since v and v’ do not have a common neighbor
in @; and neither of them is adjacent to z, at least one of them, say v, is
not protected by a vertex in D N @Q;. But v is also not protected by any
v; € D, because if the guard on v; moves to v, the guard on w; is either
isolated, or moves to v;, in which case (5) asserts that not all vertices in Q;
are dominated. This contradiction completes the proof of (i%).

(ii¢) If G has a minimum clique cover C such that C(G) is a triangle and for
some spanning subtree of C(G), (¢) does not hold, then G can be guarded
by 4 = 26(G) — 2 guards as described in the different cases in the proof
of (i2). Suppose (#?) holds for any minimum clique cover C of G; say C =
{Qo, @1, Q2}. By (ii)(b) there exist distinct vertices v;,w; € Q;, 0 < i <2,
such that w; is adjacent to v;11 (mod 3)- Thus v, wo,v1,w1,v2, w2, is &
6-cycle, and (i) also implies that it is an induced 6-cycle.

By considering the three spanning trees of C(G) separately, it follows
from (i¢)(c) that (without loss of generality) one of the following three
conditions holds:

(I) Each Q; contains a vertex u; with N{u;] C Q;.

(II) For i = 0,1, Q; contains a vertex u; with N[u;] € Q;, and Q2 contains
two vertices, say ag, bg, that are adjacent to two vertices ag, by € Qo
respectively, and no vertex in Qo is adjacent to az as well as b,.

(III) Qo contains a vertex ug with N[ug) C Qo, and for ¢ = 1,2, Q; contains
two vertices, say a;,b;, such that a;,b; are adjacent to ag, by € Qo
respectively, az,b; are adjacent to ao,bo € Qo respectively, and no
vertex in Qo is adjacent to a; as well as by, or to ap as well as bs.
Moreover, by (it)(b), {ao, bo} N {ag, by} = 2.



If (I) or (II) holds, it is easy to see that ¥35(G) = 5; details are omitted.
Assume (III) holds, suppose to the contrary that 753 (G) = 4 and let D
be an m-ETDS containing ug. Then |D N Q| > 2. Since no vertex in Qo
is adjacent to wy or vg, and (by (it)(b)) no vertex adjacent to Qp is also
adjacent to both w; and vg, two vertices in Q; U Q2 are required to totally
dominate w; and vz. Hence |[D N Q| = 2 and |D N (Q; U Q2)| = 2; say
Dn(Q1UQ2) = {z,y}. Now, at most one of ao, ag, b, b is in D, so z
and y are required to dominate at least three of a,b;,a2,b2. But, again
by (ii)(b), no vertex in Q2 is adjacent to a; or b, and no vertex in Q; is
adjacent to as or bp. We may therefore assume without loss of generality
that z € Q; — {a1,51} and y € Q2 — {az,b2}. We may also assume that
{@o,bo, b} N D = @.

The only possible defense of an attack at a; requires the guard on y to
move to az. To avoid becoming isolated, the guard on £ moves to y. But
then b, is not dominated, a contradiction. [J

4 Bounds on eternal total domination num-
ber

We now show the eternal total domination number is always greater than
the eternal domination number. Note that there exist graphs G such as

Ky,m having v°(G) = v*(G) + 1.

Theorem 10 For all graphs G = (V, E) without isolated vertices, ¥°(G) >
7°(G).

Proof: Let D = {vy,vy,...,vx} be an ETDS. Observe that no vertex in
D has an external private neighbor, else an attack at a vertex v that is
an external private neighbor of some vertex in D will destroy the total
dominating set.

We prove that there is a set D' C D,|D’'| = k — 1 such that D' is an
EDS. Observe that D’ = D — {v} is a dominating set, since each vertex in
V — D has at least two neighbors in D and each vertex in D has a neighbor
in D. Our strategy is to have D’ “shadow” D by defending each attack as
described below and always maintaining after each attack that the modified
set D’ is a subset of size k — 1 of the modified set D.

Assume that after m attacks that D}, C D,,,|D},| =k —1 and D!, is
a dominating set, where the subscripts m indicate that the ETDS D,,, and
D;, have evolved over the prior m attacks. Suppose the m + 1% attack is
at v. If v € Dj,, then we have nothing to do. If v € D,,,v ¢ D/, then
v has a neighbor w in D,, such that w € D/,. Defending the attack with
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a guard at w maintains D}, .y C Dm = Dpy1. If v ¢ Dy, there are two
cases. If Dy, defends with a guard at y € D!, then D!, defends with the
same guard and we maintain Dj,,; C Dm41. On the other hand, if Dy,
defends with a guard at z ¢ D/, then D/, defends with a guard at u such
that uv € E. Such a vertex u exists because no vertex is an eternal private
neighbor of any vertex in Dy,. Therefore, we maintain D}, ,; C D4 and
|Dypy1] = k— 1. As above, any subset of size k — 1 of an ETDS of size k is
a dominating set. Hence the proof.(]

The same does not hold in the “all-guards move” model. That is, there
exist graphs G, such as Cy, for which y%(G) = 42(G). In fact, there exist
infinitely many graphs such that y%2.(G) = 7%°(G): take a path with n > 2
vertices, attach a pendant vertex to each interior vertex on the path, and
attach at least two pendant vertices to each of the end vertices of the path.

Conjecture 1 For all connected graphs G with A(G) < n -1, v2(G) >
6(G).

Note that there exist graphs, such as Ky, », for which 732.(G) < 6(G).

Theorem 11 For all graphs G = (V, E) without isolated vertices, y°(G) <
7%2(G) +4(G) £ 2v*°(G) < 26(G).

Proof: Let A be a minimum dominating set of G and B be a minimum
eternal dominating set of G such that |A N Bj is as small as possible. Note
that if A = B, then each contains all the vertices in the graph and so we
are done, hence we may assume that A # B.

If AN B = §, then we are done by the following strategy: keep a guard
at each vertex of the two sets. If an attack occurs at a vertex in either
set, do nothing, else move a guard from a vertex in B, using the eternal
domination strategy that exists for B. Since each vertex in A is adjacent to
at least one vertex in B (since B is a dominating set also) and vice versa,
we have a total dominating set.

Suppose AN B # @. Keep a guard at each vertex of AU B. Our basic
strategy will be to keep the guards of A — B fixed at their initial locations
and to move the guards of B, as necessary (when at attack occurs at a
vertex without a guard), as per an eternal domination strategy for set B
(as above, such a strategy acts as if there were only guards at B). However,
we may need some additional guards.

Let v € AN B. We use the minimality of AN B to prove that any guard
in AN B never needs to move. Clearly any guard in AN B will never need
to move to a vertex in A — B (since the guards in A — B never move).
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Likewise, no guard initially located at a vertex of B — A ever needs to move
to a vertex in A — B. Furthermore, no guard in B — A needs to move to
a vertex in AN B as long as each vertex in AN B contains a guard. Thus
if & guard at v € AN B moves to some vertex in V — {A U B}, then we
have found a new configuration of guards such that AN B is smaller. Hence
we can defend any sequence of attacks (ignoring the requirement of total
domination for the moment) moving only guards in B — A.

In order to guarantee that we maintain a total dominating set, we need
to ensure each vertex in AN B has a neighbor with a guard; it is easy to see
that the strategy above ensures that each vertex in A — B and B — A has
a neighbor with a guard, since A and B are themselves dominating sets.
Thus for each vertex v € AN B, keep a guard at a neighbor of v and this
guard will never move. Hence we maintain a total dominating set with at
most Y*°(G) + v(G) guards.

The last two inequalities are obvious.[]

Note that K, and P, are examples where the bound is sharp. We could
also ask whether the ratio ¥9°/v, can be bounded by a constant. To see
that the answer is negative, consider complements of Kneser graphs, which
we denote as G(n, k) The vertices of these graphs are all the k-sets drawn
from {1,2,...,n} with two vertices adjacent if and only if their k-sets have
a non-empty intersection. It was shown in [12] that some of these graphs
have ¢y = ("‘(%)'“). It is easy to see that a(G(n,k)) = [}]. Likewise, it
is not difficult to see that G(n, k) contains a total dominating set of size at
most 2| 2]. Note that this also implies that there exist graphs for which
~¢° is much larger than v33.

Theorem 12 For all graphs G = (V, E) without isolated vertices, Y3 (G) <
2v(G).

Proof: Let D be a minimum dominating set of G such that epn(v, D) # 0
for each v € D. (Such a set exists for all graphs without isolated vertices
— see [3].) Place a guard at each v € D and at v' € epn(v, D), define
D'=Du {v': v € D} and note that {D’'| = 2v(G).

If an attack occurs at a vertex u ¢ D', move a guard located at
v € N(u) N D to u and move the guard at v’ to v, and note that a to-
tal dominating set containing D is obtained. This process can obviously be
repeated indefinitely. [

The graphs K, and P; are examples where the bound is sharp, and K, ,
is an example where Y°(K, ) = n, ¥°(Knn) =n+1 and 7% (Kn,n) = 2,
foralln > 1.



5 Paths and Trees

5.1 Paths

Theorem 13 The eternal total number domination number of P, is [3%72]+
2 (forn>1).

Proof: For 1 < n <5, it is obvious that n guards are required. Assume the
path is laid out from left to right. Note that we must keep a guard at all
times at both the leftmost and rightmost vertices and there can never be
adjacent vertices without guards. For n > 5, observe that if we choose to
keep two guards fixed at the leftmost two vertices followed by an “empty”
vertex, then one must initially have guards on the next three vertices and
the only guard of these three that can ever move is the leftmost guard.
Alternatively, one could choose to keep three guards fixed at the leftmost
three vertices, but it is not difficult to verify that this provides no advantage.
The proof follows by a straightforward induction. O

The value of secure total domination number was given in [2] as [5252]+
2. This is equal to the secure total domination number when n < 19 and
n ¢ {9,13,17}.

One can also easily show that Y% (P.) = [3], for all n > 1.

5.2 Trees

We describe a family of trees that can be partitioned into stars (i.e., K1 m’s)
of order at least three in a special way. In such a partitioning, the value of
m can be different for different K ,,’s. Let T be a tree. Fix one vertex v as
the root of T' and let the height of a vertex be its distance from v. If u is a
vertex in T of height h, then its parent is the unique vertex z of height h—1
such that zu is an edge, and its grandparent is its parent’s parent. A sibling
of u is any vertex other than u having the same parent as u. We iteratively
try to partition the vertices of T into stars of order at least three as follows.
Let w be a vertex of maximum height not yet contained in a part such that
neither its parent nor its grandparent is contained in any part. Create a
new part containing w, its parent, its grandparent, and all siblings of u that
are not yet contained in a part. If we reach the root and there remains an
additional star containing at least three vertices including the root, then
those vertices form a part. If this process terminates with all the vertices
of T contained in a part, then we say T has a perfect partitioning. The
partition number of T is the minimum number of parts that can be formed
during the partitioning process. A star-partition is formed as a result of
this process, though it may be the case that a star-partition is not a perfect

488



partitioning; i.e., some vertices may not be contained in any star having at
least three vertices.

Theorem 14 Let T be a tree with at least three vertices and partition num-
ber g. Then v3%(T) = 2q if and only if T has a perfect partitioning.

Proof: If T has a perfect partitioning, then it is easy to see that v < 2¢
since V53 (Ps) = 2 and YR (K1,m) = 2.

Now we prove that at least two guards are required in each part at all
times. The proof is by induction on q. The case when ¢ = 1 is easy to
see. Let T be a tree with partition number ¢ > 1. Let P be a part of
T containing a leaf and let 7 = T — P. Clearly, P contains at least two
guards. Suppose there exists an m-eternal total dominating set with fewer
than two guards in some part of T. Since no guard from P can move outside
of P, there exists an m-eternal total dominating set of 7" with fewer than
two guards in some part of TV. This is a contradiction.

For the other direction, we must prove that if T does not have a perfect
partitioning, then 7% (T) > 2¢. Perform the partitioning algorithm de-
scribed above. Of course, some vertices will be contained in no part, since
T does not have a perfect partitioning. By a similar induction as above,
we obtain that yX(T) >2¢ . O

Corollary 15 Let T be a tree with at least two vertices, partition number
g, and c vertices contained in no part. Then 2q+c > v3%(T) > 2g.

Proof: The lower bound follows from the discussion above. If v is a vertex
in no part, there are two cases. If all of v’s neighbors are contained in
parts, by initially placing & guard on v, we have a total dominating set if
we place two guards in each part on two vertices of minimum height. It is
easy to see that a total dominating set can be maintained eternally, though
the guard on v may have to move to a neighbor. If v has a neighbor u that
is not in a part, then the neighborhood of either u or v containing vertices
not in parts induces a K, ,, and two guards suffice for a m-eternal total

dominating set. .

There exist many trees T" with partition number g, but v,(T') < 2¢, such
as Py and Pj3. It is easy to prove that v:(T) < 2q for all trees T

Call an arbitrary partitioning of the vertices of a tree into Ky n’s a
K m-partitioning (the value of m can be different for different K n,’s).
There exist trees without a perfect partitioning that can be partitioned
into j K m’s, even if we require each K ,, to have at least three vertices.
This gives an upper bound on 433 (T') of 25 for such trees, which is in some
cases better than twice the partition number plus the number of vertices
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not contained in any part of a star-partition. However, there also exist
trees without a perfect partitioning such that twice partition number of
the tree plus the number of vertices not contained in any part of a star-
partition is equal to 733 (T') and this is less than twice the number of K ,,'s
in some K m-partitionings of the tree. An example of such is the following:
connect two claws with an edge joining one of the degree one vertices from
each claw, say u and v. Attach a pendant vertex to u.

Proposition 18 Let T be a tree such that all mazimal paths are of length
at least ten. Then YX(T) > v(T).

Proof: If T is isomorphic to P,, n > 11, then the proposition is easy to
verify. Otherwise, let P be a shortest maximal path in T (so P has at least
eleven vertices). Then v.(P)+2 < v (P), so we can force v;(P)+2 guards
to be in P. Furthermore, since P is a shortest maximal path, at most one
vertex in P, say v, has degree greater than two in 7. A guard at v can
dominate at most one vertex in T — P. It is clearly not possible to totally
dominate the vertices of T — P with (T — P) — 2 vertices plus v. O

Though we believe the following conjecture is true, we suspect that even
stronger statements are likely to be true (i.e., if one weakens the conditions
about leaf heights).

Conjecture 2 There exists a constant ¢ such that for all trees T having
all leaves of height at least ¢, Y3 (T) > 7.(T).
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