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Abstract: Let P;(n) denote the number of representations of n as a sum
of j pentagonal numbers. We obtain formulas for P;(n) when j =2 and j = 3.
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1. Introduction The pentagonal numbers are defined for n € Z by
E(n) = n(3n—1)/2. They occur frequently in the theory of partitions, notably
in Euler’s recurrence for the partition function p(n) for n > 1, which may be
written as

> (~1)tp(n— E(k) = 0

k=—00

The first few pentagonal numbers (corresponding to n = 0,41, +2,+3, +4)
are: 0,1,2,5,7,12,15,22,26. For the integers j > 1 and n > 0, let Pj(n)
denote the number of representations of » as a sum of j pentagonal numbers.
Representations that differ only in the order of terms are considered distinct,
that is, we are counting compositions of n whose summands are pentagonal
numbers. In this note, we obtain formulas for P;(rn) where j = 2,3.

2. Preliminaries
Let the integers n >0, k>0,7>1,m>2,0<i<m-1.

Definitions
“di,m(n) is the number of positive integers d such that djn and d =% (mod m)

rj(a) is the number of representations of o as a sum of j squares of integers if
« is a non-negative integer (and is zero otherwise)
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sj(n) is the number of representations of n as a sum of j squares of integers
that are coprime to 6.

ty = k(k +1)/2 (the k** triangular number)

t;(n) is the number of representations of n as a sum of j triangular numbers

Proposition 1  {ry(n) = dy4(n) - d3a(n)

Proposition 2 Let

n=2 ﬁpf‘ f[ af’

=1 j=1
where ¢ > 0, all primes p; =1 (mod 4), all primes ¢;j =3 (mod 4). Then

1 v [ Ilic(es+1) if all ;=0 (mod2)
4r2(n) _{ 0 otherwise

Proposition 3 ta(n) =d14(dn+1) —ds4(4n+1)

Proposition 4 Let a,b be positive integers such that (a,b) = 1. Let
n > 0. Then the sequence {an + b} contains infinitely many primes.

Remarks: Proposition 1 is attributed to Jacobi. (See [4], p. 15, Theorem
2.) Proposition 2 is equivalent to Proposition 1. (See [5], p. 166, Theorem
3.22, where a slightly different notation is used.) Proposition 3 appears in
both (1] and [6]. Proposition 4 is Dirichlet’s celebrated theorem on primes in
arithmetic progressions.

3. The Main Results

We begin with a lemma that links representations of non-negative integers as
sums of pentagonal numbers to representations of non-negative integers as sums

of squares.
Lemma 1l Letk>1,n>0. Then P.(n) = sx(24n + k).

Proof:

k| wi(3z: £ 1) u ud
i i
n=§:—2—~<—v24n= S (3627 +247;) & 2Un + k= Y (6z: 1)

i=1 i=1 i=1
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Our next result is a formula for Py(n).

Theorem 1

1
Pg(n) = 27‘2(1217. +1)= d1_4(12n +1)— d3,4(12n + 1)

Proof: Lemma 1 implies Pz(n) = s2(24n + 2). Now

Un+2=22 44> > 22 +y*=2 (mod 4) — (z,2) = (,2) =
Also

2Un+2=224+y? 522 +y’=2 (mod 3) - (z,3) = (,3)=1.

Therefore (z,6) = (¥,6) =1, 50 52(24n + 2) = ;r2(24n + 2). But
Proposition 1 implies r2(24n + 2) = ro(12n + 1), so we are done. W

‘We now present an alternate proof of Theorem 1, based on a connection between
sums of pentagonal numbers and sums of triangular numbers.

Lemma 2 Pi(n) = t3(3n)
Proof:

ne :c(3a:2i 1) + y(3y2:l: 1) o3n= 3z(3r; +1) + 3y(3;;:l: 1)

that is, n is a sum of two pentagonal numbers if and only if 3n is a sum of two
triangular numbers that are multiples of 3. But if ¢; is a triangular number,
then we must have ¢; = 0,1 (mod 3). Therefore if t; +¢; = 0 (mod 3), it
follows that ¢; =t; =0 (mod 3). Thus there are no representations of 3n as a
sum of two triangular numbers that are not both multiples of 3. The conclusion

now follows. @

Alternate Proof of Theorem 1 This follows immediately from Lemma
2 and Proposition 3. W

The next theorem concerns solutions of the equation P(n) = k, where k is a
given non-negative integer.

Theorem 2 For every non-negative integer k, there are infinitely many n
such that Pp(n) = k.
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Proof:

Case 1: k=0 By Proposition 4, there are infinitely many primes, g, such
that ¢ = 7 (mod 12). For each such pair g, g2 of distinct primes, let n =
{g192) — 1)/12. Then, by Theorem 1, P3(n) = %rg(qlqg) =0.

Case 2: k=1 By Proposition 4, there are infinitely many primes, g, such
that ¢ > 3 and g=3 (mod 4). For each such prime, g, let
n = (¢*> — 1)/12. Then Py(n) = iry(¢?) = 1.

Case 3: k>2 By Proposition 4, there are infinitely mé.ny primes, g, such
that g=1 (mod 4). For each such prime, g, and each k > 2, let n = (¢*~! -
1)/12. Then Py(n) = ira(¢* ) =k W

We now present a formula for sums of three pentagonal numbers.

Theorem 3 Pi(n) = L{rs(24n + 3) — r3(8%tL)}

Proof: Lemma 1 implies P3(n) = s3(24n + 3). Let

24n+3 = 22 + y% 4 22, Clearly, z,y, z are all odd, and either all of them or none
of them are multiplesof 3. Ifn # 1 (mod 3), then z2+y?+22 = +3 (mod 9),
so zyz # 0 (mod 3). Therefore s3(24n + 3) = }r3(24n + 3). (The factor }
occurs because r3(n) counts squares of both positive and negative integers.)
Ifn=1 (mod3), then 22 +y2 + 22 = 0 (mod 9), so it is possible that
z = 3r, y = 3s, z = 3¢. In this case, we have r% + s +¢? = 881 Since we do
not wish to count such representations, we have s3(24n + 3) =

H{rs(24n + 3) — r3(8%1)}. The conclusion now follows, recalling the definition
of ri(a). W

Remarks: r3(n) may be computed in either of the following ways:

(1) Let R3(n) denote the number of primitive representations of n as a sum
of three squares, that is, n = z? +y? + 22, where GCD(z,y,z) = 1. Then

_f 12h(/=7) ifn=1,2,5,6 (mod 8)
Rs(n) = { 24h(\/-Tnn)lifnn =3 (mod ;;o

where h(d) denotes the class number of an imaginary quadratic field of discrim-
inant d, and

ra(n) = Y Ro()

d?n

(See [3], p. 187, Theorem 7.8.)
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(2) Let go(n) denote the number of self-conjugate partitions of n (or the
number of partitions of n into distinct, odd parts). Then

ra(n)= ) (-1)*®(1 - 6k)qo(n — w(k))

k=-—00

This identity is due to Ewell [2].
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