On Sums of Two or Three Pentagonal Numbers

Neville Robbins Mathematics Department San Francisco State University San Francisco, CA 94132 USA

Abstract: Let $P_j(n)$ denote the number of representations of n as a sum of j pentagonal numbers. We obtain formulas for $P_j(n)$ when j=2 and j=3.

KEYWORDS: pentagonal numbers

2000 MSC 11P81

1. Introduction The pentagonal numbers are defined for $n \in \mathbb{Z}$ by E(n) = n(3n-1)/2. They occur frequently in the theory of partitions, notably in Euler's recurrence for the partition function p(n) for $n \geq 1$, which may be written as

$$\sum_{k=-\infty}^{\infty} (-1)^k p(n - E(k)) = 0$$

The first few pentagonal numbers (corresponding to $n=0,\pm 1,\pm 2,\pm 3,\pm 4$) are: 0,1,2,5,7,12,15,22,26. For the integers $j\geq 1$ and $n\geq 0$, let $P_j(n)$ denote the number of representations of n as a sum of j pentagonal numbers. Representations that differ only in the order of terms are considered distinct, that is, we are counting *compositions* of n whose summands are pentagonal numbers. In this note, we obtain formulas for $P_j(n)$ where j=2,3.

2. Preliminaries

Let the integers $n \ge 0$, $k \ge 0$, $j \ge 1$, $m \ge 2$, $0 \le i \le m-1$.

Definitions

 $d_{i,m}(n)$ is the number of positive integers d such that d|n and $d \equiv i \pmod{m}$

 $r_j(\alpha)$ is the number of representations of α as a sum of j squares of integers if α is a non-negative integer (and is zero otherwise)

 $s_j(n)$ is the number of representations of n as a sum of j squares of integers that are coprime to 6.

$$t_k = k(k+1)/2$$
 (the k^{th} triangular number)

 $t_j(n)$ is the number of representations of n as a sum of j triangular numbers

Proposition 1
$$\frac{1}{4}r_2(n) = d_{1,4}(n) - d_{3,4}(n)$$

Proposition 2 Let

$$n=2^a\prod_{i=1}^r p_i^{e_i}\prod_{j=1}^s q_j^{f_j}$$

where $a \ge 0$, all primes $p_i \equiv 1 \pmod{4}$, all primes $q_j \equiv 3 \pmod{4}$. Then

$$\frac{1}{4}r_2(n) = \left\{ \begin{array}{ll} \prod_{i=1}^r (e_i+1) & \text{if} \quad \text{all } f_j \equiv 0 \pmod 2 \\ 0 & \text{otherwise} \end{array} \right.$$

Proposition 3
$$t_2(n) = d_{1,4}(4n+1) - d_{3,4}(4n+1)$$

Proposition 4 Let a, b be positive integers such that (a, b) = 1. Let $n \ge 0$. Then the sequence $\{an + b\}$ contains infinitely many primes.

Remarks: Proposition 1 is attributed to Jacobi. (See [4], p. 15, Theorem 2.) Proposition 2 is equivalent to Proposition 1. (See [5], p. 166, Theorem 3.22, where a slightly different notation is used.) Proposition 3 appears in both [1] and [6]. Proposition 4 is Dirichlet's celebrated theorem on primes in arithmetic progressions.

3. The Main Results

We begin with a lemma that links representations of non-negative integers as sums of pentagonal numbers to representations of non-negative integers as sums of squares.

Lemma 1 Let $k \ge 1$, $n \ge 0$. Then $P_k(n) = s_k(24n + k)$.

Proof:

$$n = \sum_{i=1}^{k} \frac{x_i(3x_i \pm 1)}{2} \leftrightarrow 24n = \sum_{i=1}^{k} (36x_i^2 \pm 24x_i) \leftrightarrow 24n + k = \sum_{i=1}^{k} (6x_i \pm 1)^2$$

Our next result is a formula for $P_2(n)$.

Theorem 1

$$P_2(n) = \frac{1}{4}r_2(12n+1) = d_{1,4}(12n+1) - d_{3,4}(12n+1)$$

Proof: Lemma 1 implies $P_2(n) = s_2(24n + 2)$. Now

$$24n + 2 = x^2 + y^2 \to x^2 + y^2 \equiv 2 \pmod{4} \to (x, 2) = (y, 2) = 1$$
.

Also

$$24n + 2 = x^2 + y^2 \rightarrow x^2 + y^2 \equiv 2 \pmod{3} \rightarrow (x,3) = (y,3) = 1$$
.

Therefore
$$(x,6) = (y,6) = 1$$
, so $s_2(24n+2) = \frac{1}{4}r_2(24n+2)$. But Proposition 1 implies $r_2(24n+2) = r_2(12n+1)$, so we are done.

We now present an alternate proof of Theorem 1, based on a connection between sums of pentagonal numbers and sums of triangular numbers.

$\underline{\mathbf{Lemma}\ 2} \quad P_2(n) = t_2(3n)$

Proof:

$$n = \frac{x(3x \pm 1)}{2} + \frac{y(3y \pm 1)}{2} \leftrightarrow 3n = \frac{3x(3x \pm 1)}{2} + \frac{3y(3y \pm 1)}{2}$$

that is, n is a sum of two pentagonal numbers if and only if 3n is a sum of two triangular numbers that are multiples of 3. But if t_i is a triangular number, then we must have $t_i \equiv 0, 1 \pmod 3$. Therefore if $t_i + t_j \equiv 0 \pmod 3$, it follows that $t_i \equiv t_j \equiv 0 \pmod 3$. Thus there are no representations of 3n as a sum of two triangular numbers that are not both multiples of 3. The conclusion now follows.

<u>Alternate Proof of Theorem 1</u> This follows immediately from Lemma 2 and Proposition 3. ■

The next theorem concerns solutions of the equation $P_2(n) = k$, where k is a given non-negative integer.

<u>Theorem 2</u> For every non-negative integer k, there are infinitely many n such that $P_2(n) = k$.

Proof:

<u>Case 1:</u> k=0 By Proposition 4, there are infinitely many primes, q, such that $q \equiv 7 \pmod{12}$. For each such pair q_1 , q_2 of distinct primes, let $n = (q_1q_2) - 1)/12$. Then, by Theorem 1, $P_2(n) = \frac{1}{4}r_2(q_1q_2) = 0$.

Case 2: k=1 By Proposition 4, there are infinitely many primes, q, such that q>3 and $q\equiv 3\pmod 4$. For each such prime, q, let $n=(q^2-1)/12$. Then $P_2(n)=\frac{1}{4}r_2(q^2)=1$.

Case 3: $k \ge 2$ By Proposition 4, there are infinitely many primes, q, such that $q \equiv 1 \pmod{4}$. For each such prime, q, and each $k \ge 2$, let $n = (q^{k-1} - 1)/12$. Then $P_2(n) = \frac{1}{4}r_2(q^{k-1}) = k$.

We now present a formula for sums of three pentagonal numbers.

Theorem 3 $P_3(n) = \frac{1}{8} \{ r_3(24n+3) - r_3(\frac{8n+1}{3}) \}$

Proof: Lemma 1 implies $P_3(n) = s_3(24n+3)$. Let $24n+3 = x^2+y^2+z^2$. Clearly, x, y, z are all odd, and either all of them or none of them are multiples of 3. If $n \not\equiv 1 \pmod{3}$, then $x^2+y^2+z^2 \equiv \pm 3 \pmod{9}$, so $xyz \not\equiv 0 \pmod{3}$. Therefore $s_3(24n+3) = \frac{1}{8}r_3(24n+3)$. (The factor $\frac{1}{8}$ occurs because $r_3(n)$ counts squares of both positive and negative integers.) If $n \equiv 1 \pmod{3}$, then $x^2+y^2+z^2 \equiv 0 \pmod{9}$, so it is possible that x = 3r, y = 3s, z = 3t. In this case, we have $r^2+s^2+t^2 = \frac{8n+1}{3}$. Since we do not wish to count such representations, we have $s_3(24n+3) = \frac{1}{8}\{r_3(24n+3)-r_3(\frac{8n+1}{3})\}$. The conclusion now follows, recalling the definition of $r_i(\alpha)$.

Remarks: $r_3(n)$ may be computed in either of the following ways:

(1) Let $R_3(n)$ denote the number of primitive representations of n as a sum of three squares, that is, $n = x^2 + y^2 + z^2$, where GCD(x, y, z) = 1. Then

$$R_3(n) = \begin{cases} 12h(\sqrt{-n}) & \text{if } n \equiv 1, 2, 5, 6 \pmod{8} \\ 24h(\sqrt{-4n}) & \text{if } n \equiv 3 \pmod{8} \end{cases}$$

where h(d) denotes the class number of an imaginary quadratic field of discriminant d, and

$$r_3(n) = \sum_{d^2|n} R_3(\frac{n}{d^2}) \quad .$$

(See [3], p. 187, Theorem 7.8.)

(2) Let $q_0(n)$ denote the number of self-conjugate partitions of n (or the number of partitions of n into distinct, odd parts). Then

$$r_3(n) = \sum_{k=-\infty}^{\infty} (-1)^{\omega(k)} (1 - 6k) q_0(n - \omega(k))$$

This identity is due to Ewell [2].

References

- J. A. Ewell On Representations of Numbers by Sums of Two Triangular Numbers Fibonacci Quart. 25 (1987) 175-178
- 2. J. A. Ewell Recursive determination of the enumerator for sums of three squares Internat. J. Math. & Math. Sci. 24 (2000) 529-532
- 3. D. Flath Introduction to Number Theory (1989) John Wiley & Sons
- 4. E. Grosswald Representations of Integers as Sums of Squares (1985) Springer-Verlag
- I. Niven, H.S. Zuckerman, & D. L. Montgomery
 The Theory of Numbers (5th ed.) (1991) John Wiley & Sons
- 6. K. Ono, S. Robins, & P. Wahl The representation of integers as sums of triangular numbers Aeq. Math. 50 (1995) 73-94