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Abstract The locally twisted cube LTQ,, is an important variation of
hypercube and possesses many desirable properties for interconnection net-
works. In this paper, we investigate the problem of embedding paths in
faulty locally twisted cubes. We prove that a path of length [ can be
embedded between any two distinct vertices in LT'Q,, — F for any faulty
set F C V(LTQn) U E(LTQ,) with |F| < n — 3 and any integer ! with
2"~1 —1 <1 < |V(LTQn — F)| — 1 for any integer n > 3. The result is
tight with respect to the two bounds on path length [ and faulty set size
|F| for a successful embedding.
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1 Introduction

An interconnection network can be represented by a connected graph
G = (V, E), where the vertex set V = V(G) represents the set of processing
elements and the edge set E = E(G) represents the set of communication
channels, respectively. In this paper, we use graphs and interconnection
networks (networks for short) interchangeably.

The embedding problem, which maps a guest graph into a host graph,
is an important topic in recent years. Many graph embeddings take paths,
cycles, trees, and meshes as guest graphs [2, 3, 4, 9, 10, 12, 13, 15, 16}, be-
cause they are the architectures widely used in parallel computing systems.
In particular, paths are probably the most common structure of graph em-
bedding in parallel computing since paths are often used to model linear
arrays (1, 7, 11)].
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Failures are inevitable when a large network is put in use. It is very
important to study graph embedding in the case where some vertices and/or
edges in the host graphs have become faulty. It is desirable to find an
embedding of a guest graph into a host graph where all faulty elements
have been removed. This is called fault-tolerant embedding.

It is well known that the hypercube network @, is one of the most pop-
ular interconnection networks. As an important variant of Qn, the locally
twisted cube, LTQy,, proposed by Yang et al. [14], has many properties
superior to Q. One advantage is that the diameter of locally twisted
cubes is only about half of the diameter of hypercubes. The variously
desirable properties of LT'Q,, have been extensively investigated in the lit-
erature {4, 5, 6, 15].

In this paper, we study embedding of paths of different lengths between
any two vertices in faulty locally twisted cube. We prove that there is a
path of length ! between any two distinct vertices in LTQn — F for any
faulty set F' C V(LTQ,) U E(LTQ,) with |F| < n — 3 and any integer {
with 271 -1 <[ < |V(LTQn — F)| -1 for any integer n > 3.

The rest part of this paper is organized as follows. In Section 2, the
structure of LTQ,, is elaborated, and some definitions and notations are
introduced. In Section 3, some properties of LTQ,, are derived. Finally,
we investigate the fault-tolerant path-embedding in LT'Qy, in Section 4.

2 Preliminaries

Let G = (V, E) be a connected graph. Two vertices u and v are adjacent
if (u,v) € E. A path P = (u,u,...,v) is a sequence of adjacent vertices,
in which all the vertices are distinct except possible « = v. The length of
a path is the number of edges on the path. The path P between v and v is
called a uv-path. Let P = (u, P(u, z), z,y, P(y, v),v) be a uv-path of length
at least two, where P(u,z) is the subpath of P from u to z and P(y,v)
is the subpath of P from y to v. A path P forms a cycle C if the length
of P is at least 3 and u = v. The distance between v and v is the length
of a shortest uv-path, denoted as dg(u,v). The diameter of G, denoted as
D(G), is the maximum distance between any two vertices. A path (cycle)
which contains each vertex in G exactly once is called a Hamiltonian path
(cycle). A graph G is Hamiltonian if there is a Hamiltonian cycle in G, and
a graph G is Hamiltonian connected if there is a hamiltonian path between
any two distinct vertices in G.

We now recall the two definitions of the locally twisted cube proposed
by Yang et al. in [14].
Definition 1 Let n > 2. The n-dimensional locally twisted cube, denoted
by LTQ,, is defined recursively as follows.
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(1) LTQ: is a graph consisting of four vertices labelled with 00, 01,10

and 11, respectively,
connected by four edges (00,01), (00,10),(01,11) and (10,11).

(2) For n > 3, LTQ,, is built from two disjoint copies of LT'Q,—; accord-
ing to the following steps. Let 0LT'Qn_; (respectively, 1LTQn_;)
denote the graph obtained by prefixing the label of each vertex of
one copy of LTQ,-1 with 0 (respectively, 1). Each vertex u =
Oup—1...ugu; of OLTQ,_; is connected with the vertex 1(un—; &
u1)...upu; of 1ILTQ,_; by an edge, where “®” represents the mod-

ulo 2 addition.

(a) Ondinary drawing of LTQ, (b) Symmetric drawing of LTQ;
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©) LTQ,
Figure 1. LTQ, forn=34

Figure 1 illustrates LT Q3 and LTQ4. According to Definition 1, we can
denote LTQn, = LOR, where L = 0LTQn—1 and R = 1LTQ,,;. The edges
between L and R are called crossed edges and denoted by E. = (uz,ug),
where u;, € L and ug € R.

Let {0,1}" denote the set of all binary strings of length n. The lo-
cally twisted cubes can also be equivalently defined with the following non-
recursive fashion.

Definition 2 Let n > 2. The n-dimensional locally twisted cube LTQ,,
is a graph with {0,1}" as the vertex set. Two vertices u = un ... usu; and

53



v = v, ...vqv; are adjacent if and only if one of the following conditions
are satisfied.

(1) There is an integer 3 < k < n such that
(a) uk # Vi
(b) uk—1 = V-1 © u;
(c) all the remaining bits of u and v are identical.

(2) There is an integer k € {1,2} such that u and v differ only in the
k-th bit.

From the above definitions, LT'Q,, is an n-regular graph, and the labels
of any two adjacent vertices of LTQ,, differ in at most two successive bits.
It is known that the diameter of LT'Q,, is | 2525’-] forn > 5 and D(LTQ3) =
2 [14).

An edge in LTQ,, is called 2-dimensional edge if its end-vertices differ
in the 2-th position. Let E, be the set of 2-dimensional edges. Clearly, E;
is a perfect matching of LTQ, and there are exactly 2n—1 2_dimensional
edges in LTQ,. By Definition 2, if (ur,v.) is a 2-dimensional edge in L,
then (ug,vgr) is also a 2-dimensional edge in R, where (ur,ur), (vL,vR)
are two crossed edges of LT Q.

3 Properties

In this section, some properties of LTQ, are established, which are
useful to construct fault-free paths in LT'Q, described in the next section.
Lemmal [8] Letn >3and F C V(LTQn)UE(LTQy), then LTQ, — F
is Hamiltonian if [F| < n — 2, and Hamiltonian-connected if |F| < n — 3.
Lemma 2 [6] For any two different vertices u and v in LT'Qn (n 2> 3),
there exists a uv-path of length [ with d(u,v) +2<1<2" -1,

Lemma 3 For any two different vertices u and v in LT'Q3, there exists a
uv-path of length ! with 3 <1< 7.

Proof. For any u,v € V(LTQ3) with u # v. Since D(LTQ3) = 2, then
d(u,v) = 2 if v is not adjacent to v. Thus, by Lemma 2, there exists a
uv-path of length ! with d(u,v) +2 <! < 7. We only need to prove the
lemma for d(u,v) = 2 and ! = 3. Since LTQs is a vertex symmetric graph
shown in Figure 1(b), we only need to verify the lemma for v = 000,
and v € {001,111,110,010}. Paths of length 3 between u and v are
as follows. (000,010,011,001); (000,100,101, 111); (000,001,111,110);
(000, 100,110, 010).

The lemma holds. 1
Lemma 4 For any | € {4,5,7}, and z € V(LTQ3), there are at least
three 2-dimensional edges that lie in a cycle C of length ! in LTQ3 — z.
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Proof. Since LTQ; is a vertex symmetric graph shown in Figure 1(b), we
may assume z = 000. For any integer [ € {4,5,7}, in what follows, we
will provide the cycles of length I that contain at least three 2-dimensional
edges (labelled by underlines) in LTQ3 — z.
(001,011,101,111,001); (110,100,101, 111,110); (001,011,010,110,111,001);
(111,101,011, 010, 110, 111); (110 (110,100,101, 011, 010, 10,110);
(001,011,010, 110, 100, 101, 111, 001). ]
Lemma 5 For any | € {6 7}, and u,v € V(LTQ3) with u # v, there
exist at least two 2-dimensional edges of LT'Q3 that lie in a path of length
! between u and v in LT Q3.
Proof. In view of the vertex symmetry of LT'Q3; shown in Figure 1(b), we
only need to consider the case for v = 000 and v € {001,111, 110, 010}. For
any | € {6,7}, all uv-paths of required length, whose 2-dimensional edges
are labeled by underlines, are constructed as follows.
The paths of different lengths between 000 and 001 are listed as follows:
Ps = (000,100,110,111,101,011, 001).
P; = (000,100,110, 010,011,101,111,001).
The paths of different lengths between 000 and 111 are listed as follows:
Ps = (600, 100,110,010, 011, 101, 111).
P; = (000,010, 110, 100, 101,011,001, 111).
The paths of different lengths between 000 and 110 are listed as follows:
P6 = (000,001,111, 101,011,010, 110).

P; = (000, 100, 101 011,001,111,110).
P; = (000,010,011,001,111,101, 100, 110).
The paths of different lengths between 000 and 010 are listed as follows:
P = (000,001,111, 101,100, 110, 010).
P, = (000,100, 101, 011,001,111, 110, 010).

P, = (000,001,111, 110, 100,101,011, 010). 1
Lemma 6 Let F C V(LTQ4) U E(LTQ4) and |F| < 1. For any two
different vertices u and v in V(LT Q4 — F), there exists a uv-path of length
lwith 7 <I<|V(LTQ4 - F)| - 1.

Proof. 1If |F| =0, by Lemma 2, the lemma holds. As a result, we suppose
|F| = 1. Recall that LTQ4 = L ® R, where L = OLT'Q3 and R = 1LTQs.
We have the following two cases.

Case 1 F = {z} C V(LTQ,). Without loss of generality, we may
assume = € V(L). Three subcases are further considered:

Subcase 1.1 w,ve V(L) - {z}.

Suppose that 7 < I < 14. We can write ! = (lp — 2) + (/; + 2) where
4<lp <7and3 <[} <7. Wecan mark the faulty vertex z as temporarily
fault-free. By Lemma 3, there exists a path Py of length lp between u
and v in the amended L. If P, passes the vertex z, then we denote Py as
Py = (u, Po(u,y),y,x, z, Po(2,v),v) (Notice that u and y or z and v may
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Figure 2 Ilustretion for Lemma 6
A straight line represents an cdge and a curve line represents a path between two vertices

be the same vertex); otherwise, we select a vertex a (a ¢ {u,v}) in B
and denote Py as Py = (u, Po(u,y),¥,a, z, Po(z,v),v). We use yr and zg
to denote the neighbors of y and z in R, respectively. Since FN R = @,
there exists a path P; of length /; between yg and zg in R. Therefore, P =
(u, Po(u,¥), ¥, YR, P, 2R, 2, Po(2,v), v) is a uv-path of length  in LTQ4— F
(See Figure 2(a)).

Subcase 1.2 u € V(L) — {z},v € V(R).

Suppose that 7 < | < 14. We can write ! =i+1;+1 where 3 <7 < 6 and

3 <!y < 7. By Lemma 1, there exists a cycle C = {u,u;,u,...,us, u) of
length 7 in L — F. There are two different paths of length i starting from u
in the cycle, one of which is (u,uy,...,u;) and another is (u,ug, ..., ur_s).

It is clear that u; # u7_; for any 3 < i < 6. Let v; € {ui, u7—;} such that
vip # v. Without loss of generality, let v; = u;, where u;, is the neighbor
of u; in R. By Lemma 3, there exists a path P, of length !; between u;,
and v in R. Therefore, P = (u,uy,..., ui, i, P1,v) is a uv-path of length
lin LTQ4 — F (See Figure 2(b)). :

Subcase 1.8 u,v € R. By Lemma 3, there exists a path P; of length
3 <l; < 7 between « and v in R. Hence, we only need to consider the case
for 8 <1l <14.

Suppose that 8 <! < 9. We can write { =!; — 1+ 3, where ; € {6,7}.
By Lemma 5, there exist at least two 2-dimensional edges (yr,2r) and
(¥R, zg) that lie in paths of length I; between v and v in R. We may
assume (YR, 2g) lie in uv-path P, of length {; in R such that = ¢ {yr,zL}.
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Then P = (u, P\(4,YR), YR, YL, 2L, 2R, P (2R, ), v) is a uv-path of length [
in LTQ4 — F (See Figure 2(c)).

Suppose that 10 < ! < 14. We can write | = lo + !; + 1, where
lo € {3,4,6} and /; € {6,7}. By Lemma 4, there is at least three 2-
dimensional edges that lie in cycles C of length lp + 1 in L — z. By Lemma
5, there is at least two 2-dimensional edges that lie in paths of length
ly in R. Since there exists four 2-dimensional edges in L and R, respec-
tively. Then, there exists a 2-dimensional edge (yr,z.) in C of length
lo+1 in L — {z} such that (yr,zr) is the 2-dimensional edge in P, of
length !; in R, where (yr,yr), (zL,2Rr) are the crossing edges. Denote
P, = (u, P(u,YR), YR, 2R, P(2R,v),v) and Py = C — (yr,2L) is a yr2r-
path of length lo. Therefore, (u, P(v,yr), ¥R, YL, Po, 2L, 2R, P(zR,v),v) is
a uv-path of length [ in LT'Q4 — F (See Figure 2(d)).

Case 2 F C E(L) or F C E(R). Without loss of generality, we may
assume F' C E(L).

Let e = (z,y) be the faulty edge. By Lemma 1, there exists a path
of length 15 between any two different vertex in LTQ4 — {e}. Hence, we
only need to consider the case for 7 < [ < 14. Three subcases are further
considered:

Subcase 2.1 u,v € V(L).

Suppose that 7 < | < 14, we can write | = (lp — 1) + {; + 2, where
3<lp<7and 3 <!, <7. We can mark the faulty edge e = (z,y) as
temporarily fault-free. By Lemma 3, there exists a path P, of length ly
between u and v in the amended L. If the path P, passes the faulty edge
(z,y), we denote Py as Py = (u,Py(u,z),z,y, Po(y,v),v); otherwise, we
select an edge (a,b) in P, and denote Py as Py = (u, P(u,a), a, b, Po(b,v), v).
Since R is fault-free, there exists a path P, of length I; between z and yg
or ag and bg in R. Therefore, P = (u, Po(u, z), z,zr, P1,yRr, ¥, Po(y,v),v)
or P = (u,Po(u,a),a,agr, P1,br,b, Py(b,v),v) is a uv-path of length ! in
LTQ4-F.

Subcase 2.2 u e V(L),ve V(R).

Suppose that 7 < ! < 14, we can write ] = i + I; + 1, where i €
{3,5,6} and 3 < l; < 7. By Lemma 1, there exists a Hamiltonian cycle
C = (u,u1,u2,...,u7,u) in L — F. There are two different paths of length
i starting from u in the cycle, one of which is {u,u,,...,u;) and another
is (u,u7,...,us—;). It is clear that u; # ug_; for any i € {3,5,6}. Let
v; € {ui,us—_;} such that v;, # v. Without loss of generality, let u; = v;,
where u;j, is the neighbor of u; in R. By Lemma 3, there exists a path P, of
length /; between u;, and v in R. Therefore, P = (u,u1,...,u;, tig, P1,v)
is a uv-path of length [ in LTQ4 - F.

Subcase 2.3 wu,v € V(R). By Lemma 3, there exists a path P; of length
{1 between u and v in R with 3 <!; < 7. Hence, we only need to consider
the case for 8 <! < 14.

57



Suppose that 8 <! < 9, we can write ! = (l; — 1) + 3, where !, € {6,7}.
By Lemma 5, there exist at least two 2-dimensional edges (yr,2zr) and
(vky zR) that lie in paths of length /; between u and v in R. We may
assume (yg, zg) lie in uv-path Pg of length !, in R such that e # (yL,2L).
Then P = (u, Pr(u,yR), ¥R, YL, 2L, 2R, PR(2R, V), V) i8 a uv-path of length
lin LTQ, - F.

Suppose that 10 < I < 14. We can write | = lg + I; + 1, where Iy €
{3,4,6} and !; € {6,7}. By Lemma 4, there is at least three 2-dimensional
edges that lie in cycles C of length o + 1 in L — e. By Lemma 5, there
exists a path P; = {u, P(u,¥),¥, 2, P(2,v),v) of length {; in R, such that
(y,z) is a 2-dimensional edge and (yr,zz) lies in the cycle C of length
lo+1in L —e. Then P(yr,zr) = C — (yr,2L) is a ypzL-path of length
lo. Therefore, {u, P(u,¥),9,vr, P(yL, 2L), 2L, 2, P(z,v),v) is a uv-path of
length ! in LTQ4 — F.

Case 3 F C E.. Two subcases are further considered:

Subcase 3.1 wu,v € V(L) or u,v € V(R). Without loss of generality,
we may assume u,v € V(L). By Lemma 3, there exists a uv-path P of
lengthlin Lwith3<I1<7.

Suppose that 8 <! < 15. We can write ! =lo+1; +1, where4 < o <7
and 3 < l; < 7. By Lemma 3, there is a uv-path Py of length Iy in L.
There must exist an edge (y,z) in P such that F ¢ {(y,yr) (2, 2r)}.
By Lemma 3, there is a ygrzr-path P, of length /; in R. Therefore,
(’U., PO(u) y)) Y, YRy P (yRa ZR)’ ZR, 2, PO(Z’ 'U),’U) is a uv-path of length lin
LTQ4-F.

Subcase 3.2 v € V(L),v € V(R).

Suppose that 7 < [ < 15. We can write | = lp + {; + 1, where
3<ly<T7and3 <1l; <7 Thereis a fault-free edge (ur,vr) € E,
such that vy # u and vg # v. By Lemma 3, there exist a uur-path
Py, of length lp in L and a vgv-path Pg of length /; in R. Then P =
(u, Pp(u,ur),uL, vR, PR(VR,v),v) is a uv-path of length I in LTQ4— F. 1
Lemma 7 [4] Let z,y,u,v be four distinct vertices in LTQp, where n >
4. There exist two vertex-disjoint paths P, and P, such that: (1) P,
connects u to v, (2) P, connects z to y, and (3) V(P,)UV(P;) = V(LTQx).
Lemma 8 Forn >3 and! € {2" —2,2" — 1}, any two different vertices
u,v € V(LTQy), there exist at least 2"~2 2-dimensional edges of LTQx
that lie in a path of length ! between u and v in LT'Qs.

Proof. We prove the lemma by induction on n. By Lemma 5, the lemma
holds for n = 3. Assume the Lemma is true for n — 1. We now consider
LTQ,, for n > 4. We identify the following two cases:

Case 1 u,v € V(L) or u,v € V(R). Without loss of generality, we
may assume u,v € V(L).

Suppose that | = (lp — 1) + {1 + 2, where [y € {2"~! — 2,271 — 1}
and §; = 2"1 — 1. By the induction hypothesis, there is at least 2"~3
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2-dimensional edges of L that lie in paths of length Iy between u and v in
L. For any uv-path Py of length lo, there exists an edge (a,b) ¢ E3 in Py,
then (ar,br) € E,. By the induction hypothesis, there is at least 27—3
2-dimensional edges of R that lie in paths of length /; between ag and bg
in R. The paths of length lo combining with the paths of length I, form
the uv-paths of length ! which contained at least 2"~2 2-dimensional edges.

Case 2 ue V(L),v€ V(R).

Suppose that [ = lo + {; + 1 where i € {27! — 2,2"1 — 1} and
Il =271 — 1. There is a vertex a # u in L such that ag # v in R. By
the induction hypothesis, there is at least 2"~3 2-dimensional edges of L
that lie in paths of length [y between v and a in L and at least 2"—3 2-
dimensional edges of R that lie in-paths of length [; between ag and v in
R. The paths of length Iy combined with the paths of length {; form the
uv-paths of length ! which containing at least 2”2 2-dimensional edges. §

4 Main result

Theorem For any integer n > 3, F C V(LTQ,) U E(LTQ,) with |F| <
n — 3, and any integer [ with 2"~1 -1 <[ < |V(LTQ, — F)| — 1, there is
a path of length ! between any two distinct vertices in LTQ, — F.

Proof. We prove the theorem by induction on n. By Lemma 3 and Lemma.
6, the theorem holds for n € {3,4}. Assume that the theorem is true for
LTQn_, with n > 5. We now consider LT'Q,. We denote F£ = FNn L,
FR=FQR, F, = FNV(LTQy), F. = FNE(LTQ,), f, = |Fol, fE =
|FyNV(L)|, fE = |F, nV(R)|. Without loss of generality, we may assume
[FY| > |FR|. Let u and v be any two different vertices in LTQ, — F.
By Lemma 1, we only need to prove that there is a uv-path of length [ in
LTQ, — F, for any integer  with 2"~1—-1<1< V(LT Qn — F)| — 2. We
will construct the desired paths according to the following two cases.

Case 1 |FL| < n—4, then |FR| < n — 4. We further consider the
following subcases:

Subcase 1.1 u,v € V(L — FL) or u,v € V(R — FR). Without loss of
generality, we may assume u,v € V(L — F%),

Suppose that 2"~!1 -1 <1< 2" - f, — 1. Wecan write l =lp +{; + 1
where 272 —1< g <2 1—fl—land 2" 2-1<i, <"1 fR_
By the induction hypothesis, there exists a fault-free uv-path Py of length
lp in L. Since lp > 2"~% — 1, there must exist an edge (a,b) on the path
Po = (u, Po(u,a),a,b, Py(b,v),v) such that the two crossed edges (a,ar)
and (b,bgr) are fault-free. Suppose to the contrary that there does not
exist such an edge. Then there are at least [(27~2 — 1)/2] = 2"~2 faults
outside L. However, 2% > n — 3 for n > 5, a contradiction. Since
|FR|<|F¥|<n—4and 2""2-1<l; <21~ fR_1 by the induction
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hypothesis, there exists a fault-free agbp-path P of length /; in R. Then
(u, Po(u,a),a,ar, P1,br,b, Po(b,v), v} is a uv-path of length ! in LTQ, —F'
(See Figure 3(a)).

L R L R
u
[ v
L\ﬂ a
R R 3 A
b b,
v a a,
(@) ®
Figure 3 [ih ion for Case | of Th

A streight line represents an edge and a curve line represeats a path between two vertices

Subcase 1.2 ue V(L - FF),veV(R-F&).

Since |F| < n — 3 and there are 2"~! crossed edges between L and R,
there exists a fault-free crossed edge (ar,ar) in LTQ, where ay # u and
ap #v. For 21 -1 <1< 2"~ f, -1, we can write l = o +1; +1
where 2" 2 -1 < lp < ™! —fl-1and 2"2-1< | <21 -
fE — 1. By the induction hypothesis, there exist a fault-free uar-path
Py of length lp in L and a fault-free agv-path P; of length [; in R. Then
(u, Po(u,aL),ar,ar, Pi(ar,v),v) is a uv-path of length ! in LTQ,, — F (See
Figure 3(b)).

Case 2 |FY| =n—3,then FL =F.

We have the following subcases:

Subcase 2.1 wu,v € V(L). We have the following two subcases:

Subcase 2.1.1 F, #0.

Suppose that 2"~1—1 < | < 2" f,,—1. We can write ! = (lo—2)+11+2,
where 22 —1<lp < 2" ! —f, and [ +2< "2 < <271 -1
Let z € F,. We can mark the faulty vertex z as temporarily fault-
free. Since |F — {z}| = n — 4, by the inductive hypothesis, there ex-
ists a fault-free path P, of length lp between u and v in the amended
L. If the path P, passes the faulty vertex z, we denote Po as Py =
(u, Po(u,a),a,z,b, Po(b,v),v); otherwise, we select a vertex c in Fo and
denote Py as Py = (u, Po(u,a),a,c,b, Po(b,v),v). By Lemma 2, there ex-
ists a path P; of length [; between ar and bg in R. Therefore, there
exists a uv-path P = (u, Py(u,a),a,ar, P1,br,b, Po(b,v),v) of length I in
LTQ, — F (See Figure 4(a)).

Subcase 2.1.2 F, =0. Then FL = F,.

Suppose that 21 -1 <1 < 2" - f,—1, we can write l = (lo—1)+1;+2,
where 2"~2-1<lp < 2" ! = f,—land [22]+2< 22 <y <2711,
Let (z,y) € F.. We can mark the faulty edge (z,y) as temporarily fault-
free. Since |F — {(z,y)}| = n — 4, by the inductive hypothesis, there
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exists a fault-free path Py of length /o between u and v in the amended
L. If the path Py passes the faulty edge (z,y), we denote Py as Py =
(u, Po(u,a),a,b, Po(b,v),v) with a = z,b = y; otherwise, we denote Py as
Po = (u,Po(u,a),a,b, Po(b,v),v). By Lemma 2, there exists a path P,
of length l; between ar and bg in R. Therefore, there exists a uv-path
P = (u, Py(u,a),a,ar, P;,br,b, Po(b,v),v) of length ! in LTQ,, — F (See
Figure 4(b)).

Subcase 2.2 ueV(L),v e V(R).

Suppose that 2"~! —1 <1< 2" — f, — 1. We can write | = lg +{; + 1,
where 2772 -1 < lp < 2"! - f, —1 and [ # %’-ﬁ'—, [1’2&] +2 <
2"=2 -1 < lj < 2! — 1. By Lemma 1, there is a cycle C of length
2"~ — f, in L — F. There are two different paths of length I starting
from u in cycle C. Then, there exists a ua-path P, of length Iy in C such
that a is not incident to v. By Lemma 2, there exists a path P; of length
l) between ar and v in R. Therefore, P = (u, Py(u,a),a,ar, P,v) is a
uv-path of length ! in LTQ,, — F (See Figure 4(c)).

Subcase 2.3 u,v € V(R). By Lemma 2, there exists a uv-path of length
l with 2"~1 —2 <1 < 2"~ —1 in R. Hence, we only need to consider the
case for 2"l <1< — f, — 1.

Suppose that { = 2*~!, By Lemma 8, there exist at least 2(*=3) 2.
dimensional edges of R that lie in paths of length I; = 2"~! — 2 between
u and v in R. Since 2(®=3) > n —3 = |F| for n > 4, there exists an edge
(a,b) € E; in a path P, of length 2*~! — 2 in R such that (az,by) ¢ F.
Then P = (u, Pi(u,a),a,ar,br,b, P(b,v),v) is a uv-path of length [ in
LTQ, - F.
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Suppose that 2"~! +1 <1< 2" — f, — 1. We can write ! = lg + [, + 2,
wherel < lp < 2"‘1—f.,—1 and /; = 2"~1-2. By Lemma 1, there is a cycle
C of length 271 —f, in L—F. There exist two different verticesa and bin C
such that the length of ab-path Py in C is lp and ag, bR ¢ {u,v}. By Lemma
7, there exist two vertex-d18]oxnt paths P, and P in R such that: P;
connects ag to u, P, connects b to v and V(PI)UV(P1 ) =V(R). Let]; =
|Pl| + 'Pl l Therefore, (u Pl (u9 GR), ar,a, PO(ai b) b br, Pl (bRa 1)) ‘U)
is a uv-path of length ! in LT'Q, — F (See Figure 4(d)).

This completes the proof of the theorem. ]
Remarks The conditions in Theorem are tight in the following senses:
(1) For n > 3, if | < 27~! — 2, then the theorem is not necessary true. For
example, there is no path of length 2 between any two adjacent vertices in
LTQ;.

(2) For n > 3, if |F| > n — 2, then the theorem is not necessary true. For
example, let F' = {000}, then there are no paths of lengths 3 and 5 between
two vertices 011 and 010 in LTQ3; — F
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