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Abstract

A total coloring of a simple graph G is called adjacent vertex distinguishing if for any
two adjacent and distinct vertices u and v in G, the set of colors assigned to the vertices
and the edges incident to u differs from the set of colors assigned to the vertices and
the edges incident to v. In this paper we shall prove the adjacent vertex distinguishing
total chromatic number of outer plane graph with A < 5 is A +2 if G have two adjacent
meximum degree vertices, otherwise is A+ 1.
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1. Introduction

In this paper we consider only simple, finite and undirected graphs. Let G be a graph.
We denote its vertex set, edge set, maximum degree and minimum degree by V(G),
E{(G), A(G) and §(G), respectively. Let d(u) and N(u) denote the degree of vertex u
and the set of vertices adjacent to u in a graph G, respectively. Let Vo = {v [ v €
V(G) and d(v) = A(G)}, G[Va] is the subset graph induced by V. A total coloring of
graph G is a mapping from V(G) U E(G) to set C which satisfy no two adjacent vertices
or edges of G have the same color and the color of each vertex of G is distinct from the
colors of its incident edges. A total coloring of a simple graph G is called adjacent vertex
distinguishing if for any two adjacent and distinct vertices u and v in G, the set of colors
assigned to the vertices and the edges incident to u differs from the set of colors assigned
to the vertices and the edges incident to v., where the set of colors assigned to the
vertices and the edges incident to u is denoted by flu] = {f(u)} U {f(uv)luv € E(G)}.
The minimal number of colors required for a adjacent vertex distinguishing total coloring
of G is denoted by xat(G) .

In 2002, Zhang Zhongfu [1) introduced the notion of adjacent vertex distinguishing
(edge) coloring. A similar concept was discussed in [3]. Other articles involving such
colorings appear in [2,3,4,7,9].
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In 2004, Zhang Zhongfu [5] first introduced the concept of adjacent vertex distin-
guishing total coloring. Adjacent vertex distinguishing total coloring conjecture given
by Zhang Zhongfu [5] is as follows.

Conjecture For any simple graph G, then xqt(G) < A(G) + 3.

The conjecture appears to be difficult even when the graph G are some special graphs
such as paths, cycles, complete graphs and so on, they were proven by Zhang Zhongfu in
[5). In [8], Wang et al. prove that series paralled graph with maximum degree 3 satisfy
adjacent vertex distinguishing total coloring conjecture. It is clear, for any simple graph
G, xat(G) 2 A(G) + 1, If graph G has two adjacent vertices of maximal degree, then
Xat(G) = A(G) +2.

Let G be a plane graph, if all vertices of G are on the boundary of one face fo, then
G is called outer plane graph, and the face fg is called the outer face (the others interior
face). In this paper we shall prove the adjacent vertex distinguishing total chromatic
number of outer plane graph with A < 5 is A 42 if G has two adjacent maximum degree
vertices, otherwise is A + 1.

Definitions not given here may be found in [10,11,12,13].
2. Main result

Theorem 2.1 Let G(V, E) be a 2-connected outer plane graph with A(G) = 2,
then xq¢(G) < 5.

Proof. Because G(V, E) be a 2-connected outer plane graph with A(G) = 2, hence
G is cycle Ch, by [5], we know Xat(Cn) = 5,when n = 3; xat(Cn) =4, whenn > 4. B

Lemma 2.2(6 Let G(V, E) be a 2-connected outer plane graph with A(G) = 3,
then at least one of the following 2 items is true.
1. 3u,v € V(G), s.t. d(u) =d(v) = 2,uwv € E(G);
2. Ju,v,w € V(G), s.t. uwv,uw,vw € E(G), d(u) = 2,d(v) =d(w) =3. B

Theorem 2.3 Let G(V, E) be a 2-connected outer plane graph with A(G) = 3,
then xa:(G) = 5.

Proof. Because G(V, E) is a 2-connected outer plane graph with A(G) = 3, then
Xat(G) 2 5. We now prove xat(G) < 5 by using induction method on p =| V(G) |. Let
C ={1,2,3,4,5} be a color set.

If | V(G) |= 4, then G(V, E) is a graph formed by deleting an edge from the complete
graph K4. By enumeration, the conclusion is true. Assume that the conclusion is true
when | V(G) |< p. We prove the conclusion is true for | V(G) |= p. By lemma 2.2, we
may distinguishing the following two cases.

Case 1. Ju,v € V(G), st. d(u) = d(v) = 2,uv € E(G). Suppose N(u) =
{uo0,v}, N(v) = {vo,u}. We may assume that d(up) # 2 (Otherwise u, v are replaced by
ug, u, and so on). Let G* = G — u + upv. Then G* is also a 2-connected outer plane
graph with A(G*) = 3 and | V(G*) |=| V(G) | -1 < p. By induction hypothesis, G*
has a 5-adjacent vertex distinguishing total coloring f*. Now we extend f* of G* to a
5-adjacent vertex distinguishing total coloring f of G.

1. Let f(uou) = f*(uov).

2. If d(vo) # 2 or f*(v) € f*[vo], then let f(uv) € C — { f(uou), f*(vov), f*(v)}; If
d(vo) =2 and f*(v) € f*[vo), then let f(uv) € C — f*[vo) — {f(uou)};

3. Let f(u) € C — {f*(uo), f*(v), f(uou), f(uv)}. The coloring of other elements is
the same to f*.

Case 2. If 1 of lemma 2.2 is not appear in G, then 3u,v,w € V(G), s.t. uv,uw,vw €
E(G), d(u) = 2,d(v) = d(w) = 3. Let N(v) = {u,v1,w}, N(w) = {u,v,w1}. we denote
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a new graph G* = G — u. Then G* is also a 2-connected outer plane graph with
A(G*) =2 or A(G*) =3 and | V(G*) |=| V(G) | =1 < p. By theorem 2.1 or induction
hypothesis, G* has a 5-adjacent vertex distinguishing total coloring f*. Now we extend
f* of G* to a 5-adjacent vertex distinguishing total coloring f of G.

Subcase 2.1. If d(w1) # 3 and d(v1) # 3, then

(1) Let f(uw) € C — {f*(ww1), f*(wv), f*(w)};

(2) Let flw] = {f(vw)} L f*[w],

if f*v] C flw], then let f(uv) € C — flw]; otherwise let f(uv) € C — {f(uw),
I (wv), £*(v), f*(vv1)

(3) Let f(u) € C — {f(uw), f(uv), f*(w), f*(v))}; The coloring of other elements is
the same to f*.

Subcase 2.2. If d(w1) = 3 or d(v1) = 3, without lose of generality, we may assume
that d(wy) = 3 and d(v;) # 3 then

(1) If f*[w] C f*[un), then let f(uw) € C— f*[w); Otherwise let f(uw) € C— f*[w];

(2) Let flw] = {f(vw)}Uf*[w], if £*[v] C flw], then let f(uv) € C— fw]; Otherwise
let f(uv) € C — f*[v] — {f(vw)};

(3) Let f(u) € C — {f(uw), f(uv), f*(w), f*(v)}. The coloring of other elements is
the same to f*.

Subcase 2.3. If d(w)) = 3 and d(v1) = 3, then,

2.8.1If f*[w] € f*[w1] and f*[v] € f*[v1], then the discussion is the same as case
2.1

2.8.2 If f*[w] C f*[w1] or f*[v] € f*[v1], without lose of generality, we may
assume that f*[w] € f*[w1] and f*[v] C f*[v1], then

(1) Let f(uv) € C — f*[n1];

(2) let flv] = {f(uv)}U f*[v}, if f*[w] C flv], then let f(uw) € C — f[v]; Otherwise
let f(uw) € C— f*[w] — {f(uwv)};

(3) Let f(u) € C — {f(rvw), f(uv), f*(w), f*(v)}. The coloring of other elements is
the same to f*.

2.8.3 If f*[w] C f*[w1] and f*[v] C f*[v1], then

(1) Let f(uw) € C — f*[w);

(2) Let flu] = {f(uw)} U f*[ul,

if flw] = f*[v1], then let f(uv) € C — f*[v1];

if flw] # f*[v1), then let a € flw] — f*[v1),B € f*[v1] — f['w],

—ifa ¢ f*[v],B8 € f*[v] and f(uw) # o, then let f(uv) =

—ifa ¢ f*[v],8 € f*[v] and f(uw) = a, then exchange the colors of uw and vw,
let f(uw) € C — {f(uw), f(wv), f*(v), f*(vv1)};

— if a,8 ¢ f*[v], then there are the following 3 cases to be considered.

a) If f(w) # a, then let f(v) = a, f(uv) = B;

b) If f(w) = a, f(v1) # B, then let f(v) = B, f(uv) = o

c) If f(w) = a, f(v1) = B, then exchange the colors of uw and w, and recolor vertex
v, let f(v) = o, f(uv) =8.

(3) Let f(u) be the color in C s.t. f(u) is not the colors of uw, vv, w, v. The coloring
of other elements is the same to f*.

With all cases considered , f is a 5- adjacent vertex distinguishing total coloring of
G. 1

Lemma 2.4(6] Let G be a 2-connected outer plane graph with A(G) = 4. Then at

least one of the following 5 items is true:
(1) Ju,v € V(G), s.t. d(u) = d(v) = 2 and uv € E(G);
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(2) Ju,v,w,u3,v1 € V(G), s.t. d(u) = d(v) = 2,d(u1) = d(v1) = d(w) = 4 and
wu, wu, wuy, wWu1, uut, v, w101 € B(G);

(3) Ju,u1,v,v1,v2,w, w1 € V(G), st. d(u) = d(v) = d(w) = 2,d(v1) = d{v2) =
d(u1) = d(w1) = 4 and uuy, uvy, uyv1, vv1, V2, V1 V2, V2w, vawy, ww) € E(G);

(4) 3u,v,w € V(G), s.t. uwv,uw,vw € E(G),d(u) = 2,d(v) = d(w) = 3;

(5) 3u,v,w € V(G), s.t. uwv,uw,vw € E(G),d(u) = 2,d(v) = 3,d(w) =4.

Theorem 2.5 Let G(V, E) be a 2-connected outer plane graph with A(G) = 4, if
E(G[Va)) =0, then xat(G) = 5.

Proof. Because E(G([Va]) = 0 , then xa:(G) > 5. We now prove xa¢(G) < 5 by
using induction method on p =| V(G) |. Let C = {1, 2, 3, 4, 5} be a color set.

If | V(G) |=5, then G(V, E) is a fan with order 5. By enumeration, the conclusion
is true. Assume that the conclusion is true when | V(G) |< p. We prove the conclusion
is true for | V(G) |= p. Since E(G[Va]) =@ and lemma 2.4, we know that item 2 and 3
do not hold, hence we may distinguish the following three cases:

Case 1. If 3u,v € V(G), s.t. d(u) = d(v) = 2 and uv € E(G). In this time, the
discussion is the same as case 1 of theorem 2.3.

Case 2. If item (1) of lemma 2.4 does not hold, but item (4) of lemma 2.4 holds.
ie. Ju,v,w € V(G), s.t. uv,uw,vw € E(G),d(u) = 2,d(v) = d(w) = 3. The proof is
the same as case 2 of theorem 2.3.

Case 3. If both (1) and (4) of lemma 2,4 do not hold, then (5) of lemma 2,4 must
hold. i.e. Ju,v,w € V(G), 8.t. w, vw,vw € E(G),d(u) = 2,d(v) = 3,d(w) = 4.

Assume that N(v) = {v1,u, w}, N(w) = {u,v,w1, w2} and w; # ws. We define
a new graph G* = G — u. Then G* is also a 2-connected outer plane graph with
A(G*)=3o0r A(G*) =4 and | V(G*) |=| V(G) | =1 < p. By theorem 2.3 or induction
hypothesis, G* has a 5-adjacent vertex distinguishing total coloring f*. Now we extend
f* of G* to a 5-adjacent vertex distinguishing total coloring f of G.

(1) Let f(uw) € C - f*[ul;

(2) If £°[o] ¢ £°[v1) or d(v) # d(w), then let f(uv) € C — F*[u] - {f(uw)};

If f*[v] € f*[v1), d(v) = d(v1) and f(uw) € f*[v1], then let f(uv) € C — f*[v1);

If f*[v} € f*[v1], d(v) = d(v1) and f(uw) ¢ f*{v1], then redefine the color of v as
follows: f(v) = f(uw), let f(uv) € C — {f(uw), f*(wv), f*(vv1)}

(3) Let f(u) € C — {f(uw), f(uv), f*(w), f(v)}. The coloring of other elements is
the same to f*.

From what discussed above, the conclusion is true. B

Theorem 2.6 Let G(V, E) be a 2-connected outer plane graph with A(G) = 4, if
E(G[Va)]) # 9, then xat(G) =6.

Proof. Because E(G[VA]) # 0, then xa:(G) = 6. We now prove xqt(G) < 6 by
using induction on | V(G) |=p. Let C = {1,2,3,4,5,6} be a color set.

By enumeration, the conclusion is true for the outer plane graph with order |
V(G) |= 6 and E(G[Va]) # 0. Assume that the conclusion is true when | V(G) |< p.
We prove the conclusion is true for | V(G) |= p. By lemma 2.4, we may distinguishing
the following five cases.

Case 1. If Ju,v € V(G), s.t. d(u) = d(v) = 2 and uv € E(G). In this time, the
discussion is the same as case 1 of theorem 2.3.

Case 2. If item (1) of lemma 2.4 does not hold, but item (2) of lemma 2.4 holds.
ie. 3u,v,wu,v € V(G), st. d(u) = d(v) = 2,d(u;) = d(v1) = d(w) = 4 and
wu, WY, wuy, wyy, uuy, vuy, u1v1 € E(G). We define a new graph G* = G —u. Then G*
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is also & 2-connected outer plane graph with A(G*) =4 and | V(G*) |=| V(G) | -1 < p.
By induction hypothesis or theorem 2.5, G* has a 6-adjacent vertex distinguishing total
coloring f*. Now we extend f* of G* to a 6-adjacent vertex distinguishing total coloring

fofG.

Suppose u2 € N(u1) — {u, w,vn1}.

Subcase 2.1 If d(uz) = 4 and f*{u2] = f*[v4].

(1) Supposel € C— f*[ug] = C— f*[n1). Ifl € f*[u1], then let f(uvu;) € C— f*[w1];
If 1 ¢ f*[u1), then let f(uu1) =1.

(3) Suppose I € £°[u1] = (f*[u1] U {f(uu1)}).

a) If ,I' € f*[w], then let f(uw) € C — f*[w] — {f(uu1)};

b) Ifl € f*[w], I’ ¢ f*[w], then let f(uw) =1';

c) Ifi ¢ f*[w],l’ € f*[w] and f(uwy) # I, then let f(uw) ={;

d) Ifl ¢ f*[w),!! € f*[w] and f(uu1) = I, suppose f*(u1w) = a, and exchanges
the colors of uu; and ujw, ie. f(uiu) = a, f(ui1w) = [, and then let f(uw) € C -
{l,e, f*(w), J*(wn), f*(wv)};

e) If ,I' ¢ f*[w], firstly, we redefine the colors of wv and v as follows: f(wv) =
L f(v) € C — {f*(vv1), f(wv), f*(w), f*(v1)}, then let fluw) =1

(3) Let f(u) be the color in C s.t. f(u) is not the color of wu;, uw,u,w. The
coloring of other elements is the same to f*.

Subcase 2.2 If d(uz) = 4 and f*[uz] # f*[v1].

(1) Suppose c1 € f*[v1] — f*[u2),c2 € f*[ua] — f*[n].

- If c1,c2 € f*[u1], then let f(uu;) € C — f*[wm];

-Ifc1 ¢ f*u1),c2 € f*]u1), then let f(uuy) =cy;

~Ife1 € f*[ur), ca € f*u1), then let fuug) = co;

-1Ifc1,c2 € f*[u1), then let f(uu;) = ¢1, meanwhile, modify the colors of uyw, w, wv
as follows (Note: new colors are still denoted by f*(ujw), f*(w), f*(wv) hereinafter):
f‘(ulw) = c2, f‘(‘w) € C—{Cz, f‘(wvl)i f.(‘l)), f.(vl)y f.(ul)}’ f’(wv) € C_{c29 f‘(wvl)y
fr(vn), £*(w), £ (v)}.

(2) Suppose ' = {f* (uyw), £*(woy), £*(wo), *(w)}, flur) = {F*(w), £* (wrua), £*(urva),
f*(u1w), f(vur)} and L € f*[v1] — flu1].

1) If c2,1 € C’, then let f(uw) € C - C' — {f(uuy)};

2) Ifep € C',1 ¢ C, then let f{uw) =1;

3)Ifcy ¢ C',1 € C' and f(uuy) # c2, then let f(uw) = c2;

4) If cp ¢ C',1 € C' and f(uuy) = c2, firstly, suppose f*(u1w) = c3 and exchanges
the colors of uu; and vjw i.e. f(uiu) = c3, f(uiw) = ca, then let f(uw) € C —
{e2, c3, £*(w), £* (wn1), f* (wv)};

5) If co,1 ¢ C', firstly, modify the color of wv and v as follows: f(wv) = e2, f(v) €
C — {f*(vv1), f(wv), f*(w), f*(v1)}, then let f(uw) =1

(3) Let f(u) be the color in C s.t. f(u) is not the color of uuy, uw,u1,w. The
coloring of other elements is the same to f*.

Subcase 2.3 If d(u2) # 4.

(1) If f*fu1] € f*[v1], then let f(uui) € C — f*[u1]; Otherwise let f(uu1) €
C - f*|v).

(2) Suppose f[u1) = f*[u1] U {f(uur)}, obviously, flu1] # f*[v1), let e1 € flu;] -
f*lv1), 2 € f*[wn1) = f[wa] and C' = {f*(uaw), f* (ww1), f*(wv), f*(w)}.

o If c1,c2 € C', then let f(uw) € C ~C' — {f(uu1)};

e Ifcy € C',,c2 & C', then let f(uw) = c2;

o Ifc; € C',,co € C’ and f(uu1) # ci1, then let f(uw) =c1;

elfcy ¢ C',,c2 € C' and f(uu1) = c1, then after exchange the color of uu; and
ww, let f(uw) € C — {f(uw1), f(urw), f*(wvy), f*(wo), £*(w)}

o If c1,c0 ¢ C/, firstly, modify the color of wv and v as follows: f(wv) = ¢y, f(v) €
C - {c1, f*(vv1), f*(w), f*(v1)}, then let f(uw) = ca.
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(3) Let f(u) € C ~ {f(uu1), f(uw), £*(u1), f*(w)}. The coloring of other elements
is the same to f*.

Case 8. If item (1) and (2) of lemma 2.4 do not hold, but item (3) of lemma
2.4 holds. ie. 3u,uy,v,v1,v2,w,w1 € V(G), s.t. d(u) = d(v) = d(w) = 2,d(v1) =
d(v2) = d(u1) = d(w1) = 4 and uu1, uvy, uivy, vy, VU2, Y1v2, V2w, vow, wwy € E(G);
We define a new graph G* = G — v. Then G* is also a 2-connected outer plane graph
with A(G*) =4 and | V(G*) |=| V(G) | =1 < p. By induction hypothesis or theorem
2.5, G* has a 6-adjacent vertex distinguishing total coloring f*. Now we extend f* of
G* to a 6-adjacent vertex distinguishing total coloring f of G.

(1) If f*[v1] € f*[v1], then let f(vv;) € C — f*[u1); Otherwise, let f(vv1) €
C - f*ln).

(2) Suppose flv1] = f*{v1] U {f(vv1)}.

- If flr1] = f*[w], then let f(vv2) € C — f*[w1] when f*[va] C f*[w1); f(vv2) €
C — f*[va] - {f(w01)} when f*[vz] € f*[wa);

— If flv1] # f*[w1], the proof is same as the proof of subcase 2.3.

(3) Let f(v) € C = {f(vv1), f(vv2), f*(v1), f*(v2)}. The coloring of other elements
is the same to f*.

Case 4. If item (1), (2) and (3) of lemma 2.4 do not hold, but item (4) of lemma
2.4 holds. The discussion is the same as case 2 of the proof of theorem 2.3.

Case 5. If item (1), (2), (3) and (4) of lemma 2.4 do not hold, but item (5) of lemma
2.4 holds. i.e. 3u,v,w € V(G), s.t. uv,uw,vw € E(G),d(x) = 2,d(v) = 3,d(w) = 4.
We define a new graph G* = G — u. Then G* is also a 2-connected outer plane graph
with A(G*) = 4 and | V(G*) |=| V(G) | —1 < p. By induction hypothesis or theorem
2.5, G* has a 6-adjecent vertex distinguishing total coloring f*. Now we extend f* of
G* to a 6-adjacent vertex distinguishing total coloring f of G.

Suppose v1 € N(v) — {u, w}; w1, w2 € N(w) — {u,v}.

Subcase 5.1 d(wi1) # 4 and d(w2) # 4. The discussion is similar to the case 3 of
theorem 2.5.

Subcase 5.2 d(w;) = 4 or d(wz) = 4. Without loss of generality, we assume that
d(wy) = 4 and d(wz) # 4.

(1) Let f(uw) € C — f*[wy] when f*[w] C f*[wi]; f(vw) € C - f*[w] when
frlw] € f2[wa];

(2) If f*[v] € f°[v1] and d(v) = d(vl), then let f(uv) € C — f*[u1] — {f(uw)};
Otherwise let f(uv) € C — f*[v] - {f(uvw)};

(3) Let f(u) € C — {f(uw), f (uv) f (w), f*(v)}. The coloring of other elements is
the same to f*.

Subcase 5.8 d(w)) = 4 and d{ws) = 4.

(1) o If f*[w1] = f*[ws2), then when f*[w] € f*[wi] let f(uw) € C — f*[w]. Other-
wise let f(uw) € C — f*[wy];

o If f*lw1] # f*[ws], suppose e1 € f*[w1] — f*[wa],c2 € f*[w2] — f*[w1]. This
time we will recolor the edge wv and the vertex v, then let f(uvw) = ci, f(wv) =
and f(v) € {f(wv), f*(vo1), f*(w), f*(n1)} or f(uw) = ez, f(wv) = 1 and f(v) €
{f(wv), f*(ver), f*(w), £*(v1)} so that f(wv) # f*(vv1).

(2) Suppose f*[v] = {f(wv), f(v), £*(vv1)}, then if f*[v] C £*[v1] and d(v) = d(v1),
then let f(uv) € C — f*[v1] — {f(uw)}; otherwise let f(uv) € C — f*[v] — {f(zw)}.

(3) Let f(u) € C — {f(uw), f(uv), f(w), f*(v)}. The coloring of other elements is
the same to f*.

From what stated above, the proof is completed. B
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Lemma 2.7 Let G(V, E) be a 2-connected outer plane graph with A(G) 2 5. Then
at least one of the following statements holds in G.

1. There exist two adjacent vertices « and v of degree 2.

2. There exist two vertices u and v of degree 2 adjacent to one vertex w of degree

3. There exists one vertex u of degree 2 adjacent to one vertex v of degree 3.

Lemma 2.7 has been proved in [6]. B

Theorem 2.8 Let G(V, E) be a 2-connected outer plane graph with A(G) = 5, if
E(G[Va]) = 0, then xa¢(G) =6.

Proof. Because E(G[Va]) = @ , then xa:(G) > 6. We now prove xa¢(G) < 6. by
using induction method on p =| V(G) |. Let C = {1,2,3,4,5,6} be a color set.

If | V(G) |= 6, then G(V, E) is a fan with order 6. By enumeration, the conclusion
is true. Assume that the conclusion is true when | V(G) |< p. We prove the conclusion
is true for | V(G) |=p.

Case 1. Assume that the statement 1 of Lemma 2.7 holds, and d(u) = d(v) =
2,uv € E(G), uo,vo are the another adjacent vertex of u and v respectively, obviously,
ug # vg. We define a new graph as G* = G — u + uov. It is clear that G* is also
a 2-connected outer plane graph, where | V(G*) |=| V(G) | -1 < p, A(G*) = 5 and
E(G”[Va]) = 0. By the induction hypothesis, there is a 6-adjacent vertex distinguishing
total coloring f* of G*. Now we extend f* of G* to a 6-adjacent vertex distinguishing
total coloring f of G.

Subcase 1.1 If d(u0) > 3 and d(wo) 2= 3, then let f(uug) = f*(uov), f(uv) €
C - f(uuo) — f*(vvo) — f*(v), f(u) € C — f*(uo) — £*(v) — f(uou) — f(uv).

Subcase 1.2 If d(up) = d(vo) = 2, then let f(uug) = f*(uov), f(uv) € C— f*[vo]—
f*(v) = f(uou), f(u) € C — f*[uo] — f*(v) — f(uv).

Subcase 1.8 If d(uo) = 2,d(vo) = 3 or d(ug) = 3,d(vo) = 2. The proof methods
of two cases are same, so we only consider the case d(up) = 2,d(vg) = 3, let f(uug) =

f*(uov), f(uv) € C — fluuo) — £*(vvo) — f*(v), f(u) € C — f*[uo] — £ (v) — f(wv).
The coloring of other elements is the same to f*.

Case 2. Ifstatement 1 of Lemma 2.7 does not appear, but statement 2 of Lemma 2.7
holds. Assume that d(u) = d(v) = 2, d(w) = 4, vw,vw € E(G),v1(# w) and v1(# w)
are another one adjacent vertex of u and v, respectively, and wy, w2 ¢ {u,v} are another
two adjacent vertices of w. Thus it follows from the assumption that d(u;) > 3,d(v1) >
3.

Subcase 2.1 If u; ¢ {w), w2} and v1 ¢ {w1, w2} (v1 # v1),, we define a new graph
as G* = G—u—v+wuy +wvy. Thus G* is also a 2-connected outer plane graph, where
| V(G*) |< p, A(G*) = 5 and E(G*[Va]) = 0. By the induction hypothesis, there is a
6-adjacent vertex distinguishing total coloring f* of G*. Now we extend f* of G* to a
6-adjacent vertex distinguishing total coloring f of G.

Let f(uw1) = f*(wu1), fvv1)) = f*(wu1), fluw) = f*(wn), flvw) = f*(wuy),
f(u) € C— f(uwy)— f(uw) — f*(w) = f*(u1), f(v) € C— f(wv)— f(vv1)—f* (w)— f* (1)

The coloring of other elements is the same to f*.

Subcase 2.2. If u; ¢ {w1, w2} and v1 € {w1, w2}, without loss of generality we
may assume that v; = wp. We define a new graph as G* = G—u+ujw. Thus G* is also
a 2-connected outer plane graph, where | V(G*) |< p, A(G") = 5 and E(G*[Va]) = 0.
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By the induction hypothesis, there is a 6-adjacent vertex distinguishing total coloring
f* of G*. Now we extend f* of G* to a 6-adjacent vertex distinguishing total coloring
f of G. First, we color edge uui, let f(uu1) = f*(wu1).

I f*(wu1) # f*(vw2), then let f(uw) = f*(wv), f(wv) = f*(ww1), f(v) =
C - f*(w) - f*(m1) - f(uw) - f(uwm).

If f*(wu1) = f*(vw2), then let f(wwz) = f*(wu1), f(wev) = f*(wws),
f(uw) = f*(wwz), f(u) = C — f*(w) = f*(w1) = fuw) = fuwm).

The coloring of other elements is the same to f*.

Subcase 2.8. If vy € {w1, w2} and v; € {w), w2}, without loss of generality, we
may assume that u; = wi,v1 = wa.

2.3.1 If w1 and wp are not adjacent, because statement 1 of Lemma 2.7 does not
appear, then d(w;) > 3,d(wz) > 3, we will distinguish 6 cases in proof.

1. When d(w;) = d(wz) = 3, we define a new graph as G* = G — u — v + wyws.
Thus G* is also a 2-connected outer plane graph, where | V(G*) |< p, A(G*) = 5 and
E(G*[Va]) = 0. By the induction hypothesis, there is a 6-adjacent vertex distinguishing
total coloring f* of G*. Now we extend f* of G* to a 6-adjacent vertex distinguishing
total coloring f of G.

Let f(uwi) = f(vwz) = f*(wiws2), f(uw) € C — f(wrv) — f*(w1w) ~ f*(waw) —
S (w), flvw) € C= fuw) — f* (wiw) — f* (wow) — f(wav) — f*(w), f(u) € C—f*(w1)—
fr(w) — fwin) — f(wu), f(v) € C — f*(w2) — f*(w) — f(wv) — fwav).

2. When d(w;) = 3,d(w2) = 4, we define a new graph a8 G* = G — u — v + wywa.
Thus G* is also a 2-connected outer plane graph, where | V(G*) |[< p, A(G*) = 5 and
E(G*[Va]) = 9. By the induction hypothesis, there is a 6-adjacent vertex distinguishing
total coloring f* of G*. Now we extend f* of G* to a 6-adjacent vertex distinguishing
total coloring f of G.

First, we color edges uw; and vwy, let f(uw;) = f(vwz) = f*(wiwsz), the col-
oring of other elements is the same to f*, then we obtain a partial 6-adjacent vertex
distinguishing total coloring f’ of G. Suppose C — f'[wa] = «

If f/(wiw) = @ or f/(w) = a, then let f(uw) € C — f(w1u) — f'(wi1w) — f'(wow) —
f(w), f(vw) € C - f(uw) — f'(wrw) — f'(waw) — f(wazv) - f'(w), f(u) € C— f'(w1) -
f'(w) — f(wry) — f(wu), f(v) € C — f'(w2) = f'(w) = f(wy) — f(wav).

If f/(wiw) # a and f'(w) # a, then let f(wv) = «, f(uw) € C — f(wu) -
f(waw) = f'(waw) — f'(w) — fwv), f(u) € C = f'(w1) = f'(w) = f(wru) - flwu),
f(v) € C = f'(w2) — f'(w) — f(wv) = fwzv).

8. When d(w;) = 3,d(w2) = 5, we define a new graph as G* =G — u — v + wywa.
Thus G* is also a 2-connected outer plane graph, where | V(G*) |< p, A(G*) = 5 and
E(G*[Va)]) = 0. By the induction hypothesis, there is a 6-adjacent vertex distinguishing
total coloring f* of G*. Now we extend f* of G* to a 6-adjacent vertex distinguishing
total coloring f of G.

Let f(uw1) = f(vwz) = f*(wiwe), f(uw) € C — f(wiu) — f*(wiw) - f*(waw) —
f*(w), fvw) € C— f(uw) = f*(w1w) — f* (waw) — f(w2v) — f*(w), f(u) € C—f*(w1)—
F*(w) = f(wru) = fwu), f(v) € C — f*(w2) — f*(w) — f(wv) — f(wav).

4. When d(wy) = d(w2) = 4, we define a new graph as G* = G — u — v + wywa.

Thus G* is also a 2-connected outer plane graph, where | V(G*) |< p, A(G*) = 5 and
E(G*{Va]) = 0. By the induction hypothesis, there is a 6-adjacent vertex distinguishing
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total coloring f* of G*. Now we extend f* of G* to a 6-adjacent vertex distinguishing
total coloring f of G.

First, we color edges uw) and vwa, let f(uw;) = f(vwa) = f*(wiwsz), the col-
oring of other elements is the same to f*, then we obtain a partial 6-adjacent vertex
distinguishing total coloring f’ of G.

By f/, we know that | f/[w;] N f’[wz} |= 4, then existing two colors a, 8 € C such
that a € f'[wi1], but a & f'{wz]; B € f'w2), but B & f'|wi].

— If f/(wiw) = o, f'(waw) = B, then let f(uw) € C - f(wiu) — f(ww) —
J(waw) — f'(w), f(vw) € C — f(uw) — f'(w1w) — f/(waw) ~ f(wzv) — f'(w), f(u) €
C = f'(w1) — f'(w) — f(wru) — f(wu), f(v) € C = f'(w2) = f'(w) — f(wv) — f(w2v).

— If f/(w1w) = @, f'(waw) # B, then

If f/(w) = B, let f(uw) € C — f(wiu) — f'(wrw) — f'(waw) — f'(w), fvw) € C —
Fluw)— ' (wrw) — f'(waw) — f(wzv) — f'(w), f(u) € C—f'(w1) - f'(w)—flwru) - fwu),
f(v) € C - f'(w2) — f'(w) — f(wv) — f(wzv).

If f/(w) # B, let f(uw) =B, f(vw) € C — f(uw) - f'(w1w) — f'(waw) — flwav) -
f'(w), f(u) € C—f'(w1) = f'(w) = f(wiu) — f(wu), f(v) € C— f'(wa) - f'(w) = f(wv) -

J(wav).
— If f/(w1w) # o, f'(waw) # B, then

If f'(w) € { B}, let f(uw) =B, f(vw) =, f(u) € C— f'(w1) — f'(w) - flwrn) -
f(wu), f(v) € C = f'(w2) — f'(w) - f(wv) — flwzv).

If f'(w) € {a, B}, without loss of generality, we may assume f'(w) = &, let f(uw) =
B, f(vw) € C = f(uw) = f'(w1w) — f'(waw) — f(wav) — f'(w), f(u) € C— f'(w1) -
f'(w) = flwru) = fwu), f(v) € C = f'(w2) — f'(w) — f(wv) — f(wzv).

Thus f is a 6-adjacent vertex distinguishing total coloring of G.

5. When d(w1) = 4 and d(wz) = 5, suppose N(wz) = {z,y,2,w,v}. We define
a new graph as G* = G — v. Thus G* is also a 2-connected outer plane graph, where
| V(G*) |[< p, A(G*) =4 or A(G*) =5 and E(G*[Va]) = 0. By the theorem 2.5 or the
induction hypothesis, there is a 6-adjacent vertex distinguishing total coloring f* of G*.
Now we extend f* of G* to a 6-adjacent vertex distinguishing total coloring f of G.

First, we color edge wav, let f(wav) = C— f*(waz)— f*(way) — f* (w2z)— f* (waw) -~
f*(w2), suppose C — f*(w1) = o,

If f*(waw) = a or f*(w) = a or f*(vw) = a, then let f(vw) € C — f*(uw) —
f*{wrw) = f*(waw) — f(wzv) — f*(w), f(v) € C = f*(w2) = f*(w) — f(wv) — fw2v).

If f*(waw) # o, f*(w) # a, f*(uw) # o and f(wzv) = q, then let f(wwz) =
a, f(wav) = f*(waw) (i.e. to exchange the colors of edges wwy and vwz), f(vw) €
C - f*(uw) — f*(wiw) — f*(waw) — f(w2v) — f*(w), f(v) € C — f*(w2) - f*(w) —
flwv) = f(wav).

If f*(waw) # o, f*(w) # o, f*(uw) # a and f(wzv) # «, then let f(wv) =
a, f(v) € C = f(w2) = f*(w) = f(wv) — fwzv).

6. When d(w;) = d(w2) = 5, We define a new graph as G* = G—v. Thus G* is also
a 2-connected outer plane graph, where | V(G*) |< p, A(G*) = 5 and E(G*[Va]) = 0.
By the induction hypothesis, there is a 6-adjacent vertex distinguishing total coloring
f* of G*. Now we extend f* of G* to a 6-adjacent vertex distinguishing total coloring
fofG.
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let f(wzv) = C — f*(w2z) — f*(way) — f*(w22) — f*(w2w) — f*(w2), f(vw) €
C — f*(uw) - f*(wiw) — f*(waw) — f(wav) — f*(w), f(v) € C - f*(w2) - f*(w) -
f(wv) = f(wzv).

2.8.2 If w; and w2 are adjacent, because statement 1 of Lemma 2.7 does not appear,
G is a 2-connected graphs and E(G*[Va]) = 0, then d(w1) > 4,d(w2) > 4, and d(wy) =
d(wq) = 5 is impossible, we will distinguish 2 cases in proof.

1. When d(w)) = d(w2) = 4, We define a new graphas G* = G —u—v+z +
zw) + zwz, * ¢ V(G). Obviously, G* is also a 2-connected outer plane graph, where
| V(G*) |< p, A(G*) =5 and E(G*[Va]) = 0. By the induction hypothesis, there is a
6-adjacent vertex distinguishing total coloring f* of G*. Now we extend f* of G* to a
6-adjacent vertex distinguishing total coloring f of G.

First, we color edges uw; and vws, let f(uwy) = f*(zw1), f(vwz) = f*(zw2), the
coloring of other elements is the same to f*, then we obtain a partial 6-adjacent vertex
distinguishing total coloring f/ of G.

By f’, we know that | f'{w)] N f/[wa) |= 4, then existing two colors &, 8 € C such
that a € f'lw1}, but a & f'[wa]; B € f'[wz], but B & f/[w).

— If f/(wiw) = a, f'(waw) = B, then let f(vw) € C - f(wiu) — f'(wrw) -
f!(waw) ~ f'(w), f(vw) € C ~ f(uw) — f'(wyw) — f'(waw) — f(wav) - f'(w), f(u) €
C = fl(w1) = f'(w) — f(wiu) — f(wu), f(v) € C — f'(w2) — f'(w) — fwv) — f(wzv).

— If f(wiw) = a, f'(wyw) # B, then

If f'(w) = B, let f(uw) € C — flwu) — f'(wrw) — f'(w2w) — f'(w), f(vw) € C -
fluw)—f'(wiw) - f (waw) - f(w2v) - f'(w), f(u) € C—f'(w1)—f'(w)—fwrr)— f(wu),
f(v) € C = f'(w2) = f'(w) = f(wv) = f(wzv).

If f'(w) # B, let f(uw) = B, f(vw) € C - f(uw) — f'(wiw) = f'(wow) — f(wav) —
ﬁ(W),)f(u) € C—f'(w1) - f'(w) - f(w1u) — f(wu), f(v) € C— f'(w2)— f'(w) — f(wv) -
wav).

— If f/(w1w) # o, f'(waw) # B, then

If f'(w) € {a, B}, let f(uw) = B, f(vw) = a, f(u) € C—f'(w1) - f'(w) - flwru) -
flwu), f(v) € C — f'(w2) - f'(w) = f(wv) — f(wzv).

If f'(w) € {a, B}, without loss of generality, we may assume f’(w) = q, let f(uw) =
B, f(vw) € C = f(uw) — f'(w1w) — f'(wow) — f(wav) — f'(w), f(u) € C = f'(w1) -
F(w) = f(wru) — f(wu), f(v) € C — f(w2) — f'(w) = f(wv) — f(wav).

Thus f is a 6-adjacent vertex distinguishing total coloring of G.
2. When d(w;) = 4 and d(wz) = 5, the proof is similar to 5 of 2.3.1.

Case 3. If both statements 1 and 2 of Lemma 2.7 do not hold, then statement
3 of Lemma 2.7 must hold. Suppose d(u) = 2 and d(v) = 3, N(u) = {w,v}, N(v) =
{u,v1,v2}, obviously, uv € E(G), w # v and d(w) > 3.

For this case, it is easy to prove that there is a group of vertices u,v, w such that
w € {v1,v2}. Otherwise, we define a new graph G* by deleting all such vertex u from G
and adding edge wv into G, then G* is also an outer plane graph, by the assumption of
case 3, all statements 1, 2 and 3 of Lemma 2.7 do not occur in G*, it is a contradiction.

So we may suppose that all such u,v,w satisfy w € {v1,v2}. Without loss of
generality, we may assume that w = va.

First, we define a new graph as G* = G — {u}. Thus G" is also a 2-connected outer
plane graph, where | V(G*) |< p, A(G*) = 5 and E(G*[Va]) = 0. By the induction
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hypothesis, there is a 6-adjacent vertex distinguishing total coloring f* of G*. Now we
extend f* of G* to a 6-adjacent vertex distinguishing total coloring f of G.

Subcase 8.1 When d{w) = 3, Let N(w) = {u, v, w1}, then,

1 When d(w;) = 3, then,

AL If f*(w) & f*[wn] or f*(wv) & f*(w1), then,

Firstly, we color edge wu,

Let f(uvw) € C — f*(wwy) — f*(w) — f*(wv) — f*(v) — f*(vv1).

Next, we color edge uv,

—— If d(v1) # 3, then, let f(uv) € C — f(uw) — f*(wv) — f*(v) = f*(ve1).

—— If d(v1) = 3, then,

(1) If f*(v) & f*[n1] or f*(wv) € f*[v1], then, let f(uv) € C — f(uw) — f*(wv) —
) = f*(vn1)

(2) If £*(v) € f*[v1] and f*(wv) € f*[v1], then, let f(uv) € C — f*[v1] — fluw).

Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) — f(uw) — f(uv)

AA If f*(w) € f*(w1] and f*(wv) € f*[wi], then,

ATEf*(0) € £*funl, £*(ow1) € F*fun] oF £2(0) & £*[w1), £*(vwn) € f*[w1], the proof

of two cases is same, so we only considered the case f*(v) € f*[wi], f*(vv1) ¢ f*[w1]
Firstly, we color edge wu,

let f(uw) € C — f*|wi] — f*(vv1).

Next, we color edge uv,

—— If d(v1) # 3, then, let f(uv) € C — f(uw) — f*{(wv) — f*(v) — f*(vv1).

—— If d(v1) = 3, then,

1) If f*(v) & f*[v1] or F*(wv) ¢ f*[v1], then, let f(uv) € C — f(uw) — f*(wv) —
fr(v) = f*(vn1)

(2) If f*(v) € f*[v1] end f*(wv) € f*[v1], then, let f(uv) € C — f*[v1] — fuw).

Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) — f(uw) — f(uv)

A If f*(v) € f*{wi), f*(vv1) € f* w1}, then,

Firstly, we color edge wu, let f(uw) € C — f*[w;].

Next, we color edge uv,

—— If d(v1) # 3, then, let f(uv) € C — f(uw) — f*(wv) — f*(v) = f*(vn1).

—— If d(v1) = 3, then,

(1) If f*(v) € f*[v1] or f*(wv) & f*[v1], then, let f(uv) € C - f(uw) — f*(wv) -
f*(v) = f*(vvy)

(2) If f*(v) € f*[v1]) and f*(wv) € f*[v1], then, let f(uv) € C — f*[v1] — fuw).

Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) — f(uw) — f(uv)

A Xf f*(v) € f*[wr), f*(vv1) € f*{w1), then,
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Firstly, we color edge wu,

let f(uw) € C — f*[w1], then we know f(uw) € {f*(v), f*(vv1)}

Next, we color edge uv,

— If d(v1) # 3, then, let f(uv) € C — f*(wv) — f*(v) — f*(vv1) — f*(ww1).

—— If d(v1) = 3, then,

(1) If f*(v) € f*[v1] or £*(wv) ¢ f*[v1), then, let f(uv) € C — f*(wv) - f*(v) —
f*(v1) = f*(wwn)

(2) If f*(v) € f*[v1) and f*(wv) € f*[v1], then, let f(uv) € C = f*[v1] - f* (ww1).

Finally, we color vertex u, let f(u) € C — f*(w) = f*(v) — f(vw) — f(uv)

2 When d(w;) # 3, then,

Firstly, we color edge wu,

Let f(uw) € C — f*(ww1) — f*(w) - f*(wv) - £ (v) - £*(vv1).

Next, we color edge uv,

—— If d(v1) # 3, then, let f(uv) € C — f(uw) — f*(wv) — f*(v) = f*(vvy).

—— If d(v1) = 3, then,

(1) X f*(v) € f*[v1] or f*(wv) € f*[v1], then, let f(uv) € C — f(uw) — f*(wv) -
£7(v) = £*(vv1)

(2) If £+(v) € f*[vn] and f*(wv) € f*[u1), then, let f(uo) € C — f*ur] — f(uww).

Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) — f(uw) — f(uv)

Subcase 3.2 When d(w) = 4, Let N(w) = {u, v, w1, wa}, then,

e 3.2.1 . If d(w;) # 4 and d(w2) # 4,

Firstly, we color edge uw, then, let f(uw) € C — f*(ww;) — f*(ww2) — f*(w) —
f*(wv).

Next, we color edge uv,

— If d(v1) # 3, then, let f(uv) € C — f(uw) — f*(wv) — f*(v) — f*(vv1).

—— If d(v1) = 3, then,

(1) If f*(v) & f*{v1) or f*(wv) & f*[v1), then, let f(uv) € C — f(uw) — f*(wv) —
(@) = f*(vv1)

(2) If f*(v) € f*[v1] and f*(wv) € f*[v4], then, let f(uv) € C — f*[v1] — f(uw).

Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) — f(uvw) — f(uv)

¢ 3.2.2 o . If d(w1) = d(w2) = 4, then 4 <| f*(w1) N f*(wz) |< 5,

A If| fo[un}nf*[wz] |= 4, = existing 2 colors a, B € C such that a € f*[w), buta ¢
é;[wzl, B € flwa], but B & f*[w1] = ¢ fo[un]Nf*[w2) and B & f*[w1)Nf*[w3) (a #

oo If f*[wi] N £*[wa] = {f* (wwi), £*(wwz), £*(w), £*(wv)).
o If f*(v) ¢ {, B} and f*(vv1) & {a, B}, then,
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Firstly, we color edge uw, let f(uw) € {a, 8}, without loss of generality, we may
assume f(uw) = a,

Next, we color edge uv, first we recolor edge wv, let f(wv) = B,

If d(v1) # 3, then, let f(uv) € C — f(uw) — f(wv) — f*(v) — f*(vvy).

If d(v;) = 3, then,

(1) If f*(v) & f*[v1) or f*(wv) & f*[v1], then, let f(uv) € C — fluw) — f*(wv) —
fr(v) = f*(vv1)

(2) If f*(v) € f*[v1} and f*(wv) € f*{v1], then, let f(uv) € C — f*[v1] — f(uw).

Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) = f(uw) — f(uv).

o If f*(v) € {a, 8} and f*(vv1) € {a, B} or f*(v) ¢ {a, B} and f*(vv1) € {a,B8}.

The proof methods of two cases are same, so we only consider the case f*(v) € {a, 8}
and f*(vv1) € {a, 8} without loss of generality, we may assume f*(v) = o

Firstly, we color edge uw, let f(uw) = a,

Next, we color edge uv, first we recolor edge wv, let f(wv) =8,

If d(v1) # 3, then, let f(uv) € C — f(uw) — f(wv) — f*(v) — f*(vv1).

If d(v1) = 3, then,

(1) If f*(v) ¢ f*[v1] or f*(wv) ¢ f*[v1], then, let f(uv) € C — f(uw) - f*(wv) -
() = f*(vn1)

(2) If f*(v) € f*[v1) and f*(wv) € f*[1], then, let f(uv) € C — f*[v1] — f(vw).

Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) - f(uw) — f(uv).

o If f*(v) € {a, B} and f*(vvy) € {e, B}, without loss of generality, we may assume

frv) =81 (vn)=ca.
Firstly, we color edge uw, let f(uw) = «,

Next, we color edge uv, first, we recolor edge wv, let f(wv) = B, second, we recolor
vertex v, let f(v) € C — f*(w) — f*(v1) — flwv) — f*(vn1).

If d(v1) # 3, then, let f(uv) € C — f(uw) — f(wv) — f*(v) — f*(vv1).

If d(v1) = 3, then,

(1) If £*(v) ¢ £[o1] or £*(wv) & £*[1n], then, let f(uv) € C — fluw) — f*(wv) -
fr(v) = f*(vv1)

(2) If f*(v) € f*[v1] and f*(wv) € f*[v1], then, let f(uv) € C — f*[v1] — fluw).

Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) — f(uw) — f(uv).

oo If f*[w1] N f*wa] # {f*(ww), f* (ww2), f*(w), f*(wv)}, then,

o First, we color edge uw,

If a or B € {f*(wwy), f*(wws), £*(w), f*(wv)}, without loss of generality, we may
assume a € {f*(ww1), f* (ww2), f*(w), f*(wv)} and B ¢ {f*(ww1), f*(ww2), f*(w), f* (wv)},
then, let f{uw) = 8,

Ifaand 8 € {f. (wwl)u f.(ww2)) f'(’lU), f'(’LU'U)}.
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Let f(uw) € C — f*(ww1) — f*(wwz2) — f*(w) = f*(wv)

e Second, we color edge uv,

If d(v1) # 3, then, let f(uv) € C — f(uw) — f(wv) — f*(v) — f*(vnn).
If d(v1) = 3, then,

(1) If f*(v) & f*[v1) or f*(wv) ¢ f*[v1), then, let f(uv) € C — f(uw) — f*(wv) —
() = f*(vv1)

(2) If f*(v} € f*[v1] and f*(wv) € f*[v1), then, let f(uv) € C — f*[v1] — f(uw).

o Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) — f(uw) — f(uv).

A If | f*lw1) N f*[w2] |= 5 (w1, w2 are not adjacent), = f*[w1] = f*[wz).
Firstly, we color edge uw,

If f2(w) ¢ f*lw](= f*lw2]) or f*(wr) ¢ f*[wi)(= f*[w2)), let fuw) € C -
f* (wwn) — f*(wwz) = f*(w) = f* (wv).

fl If]f‘(w) € f*[wil(= f*(wz]) and f*(wv) € f*lun](= f*[wa]), let f(uw) € C -
*[wy

Next, we color edge uv,

If d(vy) # 3, then, let f(uv) € C — f(uw) — f*(wv) — f*(v) — f*(vvy).

If d(v1) = 3, then,

(1) If f*(v) & f*[v1] or f*(wv) & f*[v1], then, let f(uv) € C — f(uw) — f*(wv) —
() = f*(ve1)

(2) If f*(v) € f*[wv1] and f*(wv) € f*{v1], then, let f(uv) € C — f*{n1] — f(uw).

Finally, we color vertex u, let f(u) € C - f*(w) - f*(v) = f(uw) — f(uv).

e 3.2.8 . If d(w1) = 4,d(w2) # 4 or d(w1) # 4,d(w2) = 4. The proof methods of
two cases are same, so we only consider the case d(w;) = 4,d(w2) # 4 .

Firstly, we color edge uw,
I fr(ww2) € f*lwi] or fr(wv) € fr[wi] or fr(w) ¢ F*lwi], Let f(uw) € C -
fr(wwy) = f*(ww2) — f*(w) — f*(wv);
If f*(ww2) € f*[w1], f*(wv) € f*[un] and f*(w) € f*[w1], let f(uw) € C— f*[w);
Next, we color edge uv,
If d(vy) # 3, then, let f(uv) € C — f(uw) — f*(wv) — f*(v) — f*(vv1).
If d(vy) = 3, then,

(1) If f*(v) ¢ f*[v1] or f*(wv) & f*[v1), then, let f(uv) € C — f(uw) — f*(wv) -
fr(v) = £*(vw1)

(2) If f*(v) € f*[v1] and f*(wv) € f*[v1], then, let f(uv) € C — f*[v1] — f(uw).
Finally, we color vertex u, let f(u) € C — f*(w) — f*(v) — f(vw) — f(uv).

Subcase 3.3 When d(w) = 5, because E(G[Va]) = 9, then the proof is easy, and
omitted here.
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With all cases considered , f is a 6- adjacent vertex distinguishing total coloring of
G.=

Theorem 2.10 Let G(V, E) be a 2-connected outer plane graph with A(G) = 5, if
E(G[VA)) # 0, then xat(G) =17.

Proof. Because E(G[VA]) # 0, then xae(G) > 7. We now prove xat(G) < 7 by
using induction on | V(G) |[= p. By enumeration, the conclusion is true for the outer
plane graph with order | V(G) |= 8 and E(G[Va]) # 0. Assume that the conclusion is
true when | V(G) |< p. We prove the conclusion is true for | V(G) |=p.

The proof of theorem 2.10 are the same as that of theorem 2.8 except
2.3.2 of subcase 2.3 and subcase 3.3 of theorem 2.9.

Hence we only prove the 2.3.2 of subcase 2.3 and subcase 3.3. Let C = {1, 2,3,4,5,6, 7}
be denote a color set and the same notations as the 2.3.2 of subcase 2.3 and subcase 3.3.

2.3.2 (1) If d(w1) = d(w2) = 5, first we define a new graph G* =G ~u~—v 4z +
zw) + zwg, where x ¢ V(G). Obviously, G* is also a 2-connected outer plane graph,
where | V(G"*) |< p, A(G*) = 5 and E(G*[Va]) # 0 . By the induction hypothesis,
there is a 7-adjacent vertex distinguishing total coloring f* of G*. Now we extend f*
of G* to a T-adjacent vertex distinguishing total coloring f of G.

First, we color edges uw; and vwy, let f(vw1) = f*(zw1), fvwa) = f*(zws).

Next, we color edges uw, vw, let f(uw) € C — f(uwy) - f*(wwy) — f* (ww2) — f*(w);
f(vw) € C = f(uw) — f*(wwn) — f*(ww2) — f*(w) — f(w2v).

Finally, we color vertices u, v, let f(u) € C — f*(wy) — f*(w) — f(uw1) — fuw);
f(v) € C — f*(w) — f*(w2) — fvw) — f(vwa).

The coloring of other elements is the same to f*, thus f is a 7-adjacent vertex
distinguishing total coloring of G.

(2) The proofs of other cases are same as that of theorem 2.2.

Subcase 3.3 When d(w) = 5, first we define a new graph G* = G — v + wy;,
obviously, G* is also a 2-connected outer plane graph, where | V(G*) |< p, A(G*) =
5 and E(G*[VA]) # 0 . By the induction hypothesis, there is a 7-adjacent vertex
distinguishing total coloring f* of G*. Now we extend f* of G* to a 7-adjacent vertex
distinguishing total coloring f of G.

First, we color edge wv, let f(wv) = f*(wv1);
Next, we color edges uv, v,

If d(v1) = 3, suppose N(v1) = {v,z,y}, then let f(uv) € C — f*(u) — f*(wu) —
f(wv) = f*(v1) = f*(n1z) = £* (n1y), f(vv1) € C — f(uv) - f(wv) - f*(v1) — f* (n1z) -
£ (vay);

Finally, we color vertex v, let f(v) € C — f*(u) — f*(w) — f*(v1) — f(uv) — f(wv) —
flvvr).

The coloring of other elements is the same to f*, thus f is a 7-adjacent vertex
distinguishing total coloring of G.

With above cases considered , theorem 2.10 is then proven. B

This method of proof and this result are helpful for proving the adjacent vertex
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distinguishing total chromatic number of outer plane graph with A > 6is A+ 2if G
have two adjacent maximum degree vertices, otherwise is A + 1, since when A(G) > 5,
they have same property lemma 2.7, but analysis of many cases are different, therefore
we will find more effectual method to prove the general result in future works.
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