On b-coloring of cartesian product of graphs

RAMIN JAVADI and BEHNAZ OMOOMI

Department of Mathematical Sciences
Isfahan University of Technology
84156-83111, Isfahan, Iran

Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of G such that in each color class there exists a vertex having neighbors in all the other k-1 color classes. The b-chromatic number $\varphi(G)$ of a graph G is the maximum k for which G has a b-coloring by k colors. This concept was introduced by R.W. Irving and D.F. Manlove in 1999. In this paper we study the b-chromatic numbers of the cartesian products of paths and cycles with complete graphs and the cartesian product of two complete graphs.

Key Words: b-chromatic number, b-coloring, dominating coloring.

1 Introduction

Let G be a graph without loops and multiple edges with vertex set V(G) and edge set E(G). A proper k-coloring of graph G is a function c defined on the V(G), onto a set of colors $C = \{1, 2, ..., k\}$ such that any two adjacent vertices have different colors. In fact, for every i, $1 \le i \le k$, the set $c^{-1}(\{i\})$ is an independent set of vertices which is called a color class. The minimum cardinality k for which G has a proper k-coloring is the chromatic number $\chi(G)$ of G.

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of G such that in each color class i there exists a vertex x_i having neighbors in all the other k-1 color classes. We will call such a vertex x_i , a b-dominating vertex and the set of vertices $\{x_1, x_2, \ldots, x_k\}$ a b-dominating system. The b-chromatic number $\varphi(G)$ of a graph G is the maximum k for which G has a b-coloring by

k colors. The b-chromatic number was introduced by R.W. Irving and D.F. Manlove in [2]. They proved that determining $\varphi(G)$ is NP-hard for general cases, but it is polynomial for trees. An immediate and useful bounds for $\varphi(G)$ is:

$$\chi(G) \le \varphi(G) \le \Delta(G) + 1,\tag{1}$$

where $\Delta(G)$ is the maximum degree of vertices in G.

The cartesian product of two graphs G_1 and G_2 , denoted by $G_1 \square G_2$, is a simple graph with $V(G_1) \times V(G_2)$ as its vertex set and two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \square G_2$ if and only if either $u_1 = u_2$ and v_1, v_2 are adjacent in G_2 , or u_1, u_2 are adjacent in G_1 and $v_1 = v_2$. In the sequel, where $|V(G_1)| = m$ and $|V(G_2)| = n$, we consider the vertex set of the graph $G_1 \square G_2$, as an $m \times n$ array in which the entry (i, j) corresponds to the vertex $(i, j), i \in V(G_1)$ and $j \in V(G_2)$, and each column induces a copy of graph G_1 and each row induces a copy of graph G_2 . In Section 3, where $G_2 = C_n$, the neighbors of entry (i, j) in the row i are entries $(i, j \pm 1)$. In Section 4, where $G_2 = P_n$, the neighbors of entry (i, j) in the row i are entries $(i, j \pm 1)$, for $1 \le i \le n - 2$ and for $1 \le i \le n - 2$ and $1 \le i \le n - 2$ and $1 \le n - 2$ a

The b-chromatic number of the cartesian product of some graphs such as $K_{1,n} \square K_{1,n}$, $K_{1,n} \square P_k$, $P_n \square P_k$, $C_n \square C_k$ and $C_n \square P_k$ was studied in [3]. In this paper we study the b-chromatic numbers of the cartesian products of paths and cycles with complete graphs and the cartesian product of two complete graphs.

2 b-chromatic number of graph $K_m \square G$

In this section we present some results on the b-chromatic number of the cartesian product of the complete graphs with every graph G.

Proposition 1. Let c be a b-coloring of graph $K_m \square G$ by φ colors, where $\varphi > m$, and $v \in V(G)$. Then the column corresponding to the vertex v, contains at most $deg_G(v)$ b-dominating vertices.

Proof. By assumption $\varphi > m$, therefore in the b-coloring c there is at least one color that does not appear in the column corresponding to the vertex v of G, we denote this column by K_m^v . On the other hand this missing color must appear in the neighbors of all b-dominating vertices in K_m^v , which are obviously in different columns. Therefore the number of b-dominating vertices in K_m^v is at most $deg_G(v)$.

If $d=(d_1,d_2,\ldots,d_n)$ is the degree sequence of a graph G with n vertices, then by Proposition 1, in graph $K_m \square G$ each column, denoted by $K_m^{(i)}$, $1 \le i \le n$, contains at most d_i b-dominating vertices. Therefore, every b-dominating system of G contains at most $\sum_{i=1}^n d_i$ vertices. So we have the following upper bounds for $\varphi(K_m \square G)$ which improves the given upper bounds in [3].

Corollary 1. If $d = (d_1, d_2, \ldots, d_n)$ is the degree sequence of graph G with n vertices and e edges, then

$$\varphi(K_m \square G) \leq \sum_{i=1}^n d_i = 2e.$$

Now we prove a lemma on completing a partial proper coloring of graph $K_m \square G$ for every graph G. A partial proper coloring of a graph is an assignment of colors to some vertices of G, such that the adjacent vertices receive different colors.

Let S_1, \ldots, S_n be some sets. A system of distinct representatives (SDR) for these sets is an n-tuple (x_1, \ldots, x_n) of elements with the properties that $x_i \in S_i$ for $i = 1, \ldots, n$ and $x_i \neq x_j$ for $i \neq j$. It is a well known theorem that the family of sets S_i has an SDR if and only if it satisfies the Hall's condition, which is for every subset $I \subseteq \{1, 2, \ldots, n\}$, $|\bigcup_{i \in I} S_i| \geq |I|$, [1].

Lemma 1. Let G be a graph and m be a positive integer, which $m \geq 2\Delta(G)$. If c is a partial proper coloring of graph $K_m \square G$ by m colors, such that each column has no uncolored vertices or at least $2\Delta(G)$ uncolored vertices, then c can be extended to a proper coloring of graph $K_m \square G$ by m colors.

Proof. In a partial proper coloring of graph $K_m \square G$ by m colors, consider a column with $k \geq 1$ uncolored vertices v_1, v_2, \ldots, v_k , where by assumption $k \geq 1$

 $2\Delta(G)$. Without loss of generality we denote k missing colors by $1, 2, \ldots, k$. For each $i = 1, 2, \ldots, k$, let S_i be the set of colors that can be used to color the vertex v_i , properly, so $S_i \subseteq \{1, 2, \ldots, k\}$. For extending this coloring to a proper coloring of this column, it is enough to find an SDR for the family of sets S_i , $1 \le i \le k$. For this purpose we show that the family of sets S_i , $1 \le i \le k$, satisfies the Hall's condition. Let $I \subseteq \{1, 2, \ldots, k\}$, which |I| = r.

If $r \leq \Delta(G)$, then for some $i_0 \in I$ we have

$$|\cup_{i\in I} S_i| \ge |S_{i_0}| \ge k - \Delta(G) \ge \Delta(G) \ge r = |I|.$$

If $r > \Delta(G)$, then $\bigcup_{i \in I} S_i = \{1, 2, ..., k\}$. Because if a color say $i_0, 1 \le i_0 \le k$, does not appear in any set $S_i, i \in I$, then each vertex $v_i, i \in I$, has a neighbor say u_i of color i_0 in the row containing v_i . Since all of the vertices u_i have the same color, they are in different columns. Hence we must have $r = |I| \le \Delta(G)$, which is a contradiction. Therefore

$$|\cup_{i\in I} S_i| = k \ge |I|.$$

So the coloring of each column can be extended and the proof is completed.

Proposition 2. For every two graphs G and H, if graph H' is obtained by replacing one of the edges of H with a path of length 3, then $\varphi(G \square H') \ge \varphi(G \square H)$.

Proof. Let e = xy be an edge in H and H' be obtained by replacing e with the path xwzy. Moreover, assume that e is a e-coloring of graph e by e by e (e let e let

Corollary 2. For every positive integers m, n,

$$\varphi(K_m \square C_{n+2}) \ge \varphi(K_m \square C_n)$$
 and $\varphi(K_m \square P_{n+2}) \ge \varphi(K_m \square C_n)$.

Proof. Let $\varphi(K_m \square C_n) = k$. The graph C_{n+2} is obtained by replacing one edge e = xy in C_n by the path xwzy. So by Proposition 2, there is a b-coloring c of graph $K_m \square C_{n+2}$ by k colors. Furthermore by the proof of Proposition 2, we see that there is no b-dominating vertex in the columns corresponding to the vertices w and z in the coloring c. Thus c is also a b-coloring of graph $K_m \square P_{n+2}$, where P_{n+2} is obtained by deleting the edge wz in C_{n+2} .

3 b-chromatic number of graph $K_m \square C_n$

In this section we determine the exact value of $\varphi(K_m \square C_n)$. We know that $\chi(K_m \square C_n) = m$ and $\Delta(K_m \square C_n) = m + 1$. Therefore by (1),

$$m \le \varphi(K_m \square C_n) \le m + 2. \tag{2}$$

To prove our main theorem in this section, we need the following lemma.

Lemma 2. If c is a b-coloring of graph $K_m \square C_n$ by k colors and S is a b-dominating system in c, such that:

- (i) there is one b-dominating vertex, say (r,s), $r \neq m$, in a color class x, such that the vertices (r,s) and $(r,s\pm 1)$ are not in S,
- (ii) row m have no vertex in S,
- (iii) when n is odd, $c(m, s-1) \neq x$.

Then $\varphi(K_{m+1}\square C_n) \geq k+1$.

Proof. Without loss of generality we assume that (r, s) = (1, 1). We present a b-coloring c' of graph $K_{m+1} \square C_n$ by k+1 colors as follows:

$$c'(i,j) = \begin{cases} x & \text{if } (i,j) = (m+1,1), \\ k+1 & \text{if } (i,j) = (1,1), \\ k+1 & \text{if } (i,j) = (m+1,2t), \ 1 \leq t \leq \lfloor \frac{n}{2} \rfloor, \\ c(m,2t-1) & \text{if } (i,j) = (m+1,2t-1), \ 2 \leq t \leq \lceil \frac{n}{2} \rceil, \\ k+1 & \text{if } (i,j) = (m,2t-1), \ 2 \leq t \leq \lceil \frac{n}{2} \rceil, \\ c(i,j) & \text{otherwise.} \end{cases}$$

From the definition of c' and the property (iii) it is easy to see that c' is a proper coloring. Moreover, because of the properties (i), (ii) and since in coloring c' each

column has a vertex with color k+1, every vertex in S is a b-dominating vertex in c'. Also the vertex (1,1) is a b-dominating vertex with color k+1. Therefore c' is a b-dominating coloring by k+1 colors.

Theorem 1. For positive integers $m, n \geq 4$:

$$\varphi(K_m \square C_n) = \left\{ \begin{array}{ll} m & \text{if } m \ge 2n, \\ m+1 & \text{if } m = 2n-1, \\ m+2 & \text{if } m \le 2n-2. \end{array} \right.$$

Proof. Assume $m \geq 2n$. By Corollary 1, $\varphi(K_m \square C_n) \leq 2n$. Hence by (2), we have $\varphi(K_m \square C_n) = m$.

Now let m=2n-1, by Corollary 1, $\varphi(K_m \square C_n) \leq 2n=m+1$. To prove the equality we present a b-coloring of graph $K_m \square C_n$ by m+1 colors.

Consider an $(m+1) \times n$ array and fill some of the entries of this array as follows. We denote this partial proper coloring by c. All second components of entries are modulo n, $1 \le j \le n$, $1 \le k \le \lfloor \frac{n}{2} \rfloor$ and r = 0, 1.

$$c(2\lceil \frac{j}{2} \rceil - r, j) = 2j - r,$$

$$c(2k, 2k - 2) = 4k - 1, \ c(2k, 2k + 1) = 4k - 3,$$

$$c(m + 1, 2k - r) = 4k + 2r - 3.$$

If n is odd, then we also define

$$c(m+1,n) = c(n,n-1) = c(n+1,1) = 4.$$

In Figure 1, this array with the filled entries for n=4 is shown.

It is not hard to see that, this array with some filled entries is a partial proper coloring of graph $K_{m+1}\square C_n$, which each column has three filled entries. Since $m=2n-1\geq 7$, every column has at least 4 uncolored vertices. Hence by Lemma 1, c can be extended to a proper coloring of graph $K_{m+1}\square C_n$ by m+1 colors. Now to obtain the desired coloring, we delete the last row. Note that in this coloring of graph $K_m\square C_n$, each column has exactly one missing color. The set of vertices $\{(2\lceil j/2\rceil - r, j) \mid 1 \leq j \leq n, r = 0, 1\}$ is a b-dominating system.

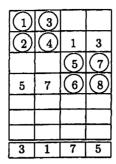


Figure 1: A partial proper coloring of graph $K_8 \square C_4$.

Because for $1 \le k \le \lfloor \frac{n}{2} \rfloor$, the missing color of column 2k is 4k-3 which is the color of vertices (2k, 2k+1) and (2k-1, 2k-1) and the missing color of column 2k-1 is 4k-1 which is the color of vertices (2k, 2k-2) and (2k-1, 2k).

Now assume $9 \le m \le 2n-2$; by (2), $\varphi(K_m \square C_n) \le m+2$. To show the equality, we present a b-coloring of graph $K_m \square C_n$ by m+2 colors. Consider an $(m+2) \times n$ array and fill some of the entries of this array as follows. We denote this partial proper coloring by c. All second components of entries are modulo n and the values are modulo m+2, $1 \le j \le \lceil m/2 \rceil +1$, $1 \le k \le \lceil \frac{m}{4} \rceil$ and r=0,1.

$$c(2\lceil \frac{j}{2} \rceil - r, j) = 2j - r,$$

$$c(2k - r, 2k - 2) = 4k + r - 1, \ c(2k - r, 2k + 1) = 4k + r - 3,$$

$$c(m + 1, 2k - r) = 4k + 2r - 3, \ c(m + 2, 2k - r) = 4k + 2r - 2.$$

If $m \equiv 0, 3 \pmod{4}$, then we also define

$$c(\lceil m/2 \rceil + 2 - r, \lceil m/2 \rceil) = 6 - r,$$

$$c(\lceil m/2 \rceil + 2 - r, \lceil m/2 \rceil + 2) = 5 + r,$$

$$c(m+1+r, \lceil m/2 \rceil + 1) = 6 - r.$$

In Figure 2, this array with the filled entries for m = 9 and n = 6 is shown.

It is not hard to see that, this array with some filled entries is a partial proper coloring of graph $K_{m+2}\square C_n$, which each column has four filled entries. Since $m \geq 9$, every column has at least 4 uncolored vertices. Hence by Lemma 1, c can be extended to a proper coloring of graph $K_{m+2}\square C_n$ by m+2 colors. Now to

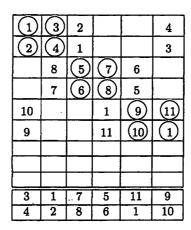


Figure 2: A partial proper coloring of graph $K_{11}\square C_6$.

obtain the desired coloring, we delete the last two rows. Note that in this coloring of graph $K_m \square C_n$, each column has exactly two missing colors. Similarly, it is not hard to see that the set of vertices $\{(2\lceil j/2\rceil-r,j)\mid 1\leq j\leq \lceil m/2\rceil+1, r=0,1\}$ is a b-dominating system. Because for $1\leq k\leq \lceil \frac{m}{4}\rceil$, the missing colors of column 2k are 4k-3 and 4k-2, while we have c(2k,2k+1)=c(2k-1,2k-1)=4k-3 and c(2k-1,2k+1)=c(2k,2k-1)=4k-2. Moreover, the missing colors of column 2k-1 are 4k-1 and 4k, while we have c(2k,2k-2)=c(2k-1,2k)=4k-1 and c(2k-1,2k-2)=c(2k,2k)=4k.

Now assume $4 \leq m \leq 8$ and $m \leq 2n-2$. In Figure 3 we provide a b-coloring of graphs $K_4 \square C_n$, n=4,5 and $K_7 \square C_n$, n=5,6. In these colorings the b-dominating system, S is the set of circled vertices. Then we apply Lemma 2 for the given coloring of $K_4 \square C_4$ twice, first for (r,s)=(3,4) and second for (r,s)=(2,3). Also, we apply that lemma for the given coloring of graph $K_4 \square C_5$, twice, first for (r,s)=(3,4) and second for (r,s)=(3,4). Thus we obtain the desired b-colorings of graphs $K_m \square C_n$, m=5,6, n=4,5. Moreover, we apply Lemma 2 for the given colorings of graphs $K_7 \square C_5$ and $K_7 \square C_6$ for (r,s)=(6,5) and obtain the desired b-colorings of graphs $K_8 \square C_n$, n=5,6. By Corollary 2, to obtain a b-coloring of graph $K_m \square C_n$, $n \geq t$, it is enough to have a b-coloring of graphs $K_m \square C_t$ and $K_m \square C_{t+1}$. Therefore, from the b-coloring obtained above we have the desired b-coloring of graphs $K_m \square C_n$, $4 \leq m \leq 9$ and $m \leq 2n-2$. \square

	$ \begin{array}{c} 1 \\ 2 \\ 5 \\ 4 \end{array} $	$ \begin{array}{c} 3 \\ 6 \\ 4 \\ 2 \end{array} $	(5) 2 1 4	6 3 4 2	1 2 5 4	$ \begin{array}{c} 3 \\ 6 \\ 4 \\ 2 \end{array} $	5 4 1 6	6 5 3	6 3 4 5	
3	2	5	9	1	(1)	(3)	2	3	7	4
4	1	4	8	2	(2)	4	1	4	8	3
7	(5)	9	4	8	7	8	(5)	7	6	9
6	3	8	6	7	9	7	6	(8)	5	8
8	4	1	2	5	5	9	4	1	(9)	2
9	(6)	(7)	3	4	6	5	9	2	3	1
5	8	2	7	6	8	6	3	9	4	7

Figure 3: A b-coloring of graphs $K_4 \square C_n$, n = 4, 5 and $K_7 \square C_n$, n = 5, 6.

4 b-chromatic number of graph $K_m \square P_n$

In this section, by using the results of Section 2, we determine the exact value of $\varphi(K_m \square P_n)$. We know that $\chi(K_m \square P_n) = m$ and $\Delta(K_m \square P_n) = m+1$. Therefore by (1),

$$m \le \varphi(K_m \square P_n) \le m + 2. \tag{3}$$

Theorem 2. For positive integers $m, n \geq 4$:

$$\varphi(K_m \Box P_n) = \begin{cases} m & \text{if } m \ge 2n - 2, \\ m + 1 & \text{if } 2n - 5 \le m \le 2n - 3, \\ m + 2 & \text{if } m \le 2n - 6. \end{cases}$$

Proof. Assume $m \ge 2n - 2$. By Corollary 1, $\varphi(K_m \square P_n) \le 2(n - 1)$. Hence by (3), $\varphi(K_m \square P_n) = m$.

If $\varphi(K_m \square P_n) = m+2$, then there is not any b-dominating vertex in the first and the last columns of graph $K_m \square P_n$, because the vertices in the first and the last columns are of degree m. Furthermore, by Proposition 1, the other n-2

columns each contains at most two b-dominating vertices. Therefore, $m+2=\varphi(K_m\square P_n)\leq 2(n-2)$. Hence for $m\geq 2n-5$, we have $\varphi(K_m\square P_n)\leq m+1$.

Now let $2n-5 \le m \le 2n-3$, we present a b-coloring of graph $K_m \square P_n$ by m+1 colors. We consider two cases.

Case 1. m = 2n - 3.

We define a coloring $c: V(K_m \square P_n) \to \{1, 2, ..., m+1\}$ by:

$$c(i,j) = \left\{ \begin{array}{ll} m-1 & \text{if } (i,j) = (m,1), \\ m+1 & \text{if } (i,j) = (3j-4,j), \ 1 \leq j \leq n-1, \\ m+1 & \text{if } (i,j) = (3n-6,n), \\ i+j-1 \pmod{m} & \text{otherwise.} \end{array} \right.$$

It is not hard to see that the above assignment is a proper coloring of graph $K_m \square P_n$. In fact this assignment presents a partial circular latin rectangle with the rest entries filled as above.

The set $S = \{(m-1,1), (3n-5,n), (3j-5,j), (3j-3,j) \mid 2 \leq j \leq n-1\}$ (the summations are modulo m) is a b-dominating system. Obviously, each vertex dominates m-1 neighbors on its column, which are in different color classes. So for a vertex to be a b-dominating vertex it is enough to dominate a vertex with the color which is missed in its column. The missing color in column j, $2 \leq j \leq n-1$ is 4j-5, in column 1 is m and in column n is 4n-7. Moreover, we have c(m-1,2)=m, c(3n-5,n-1)=4n-7, c(3j-5,j+1)=4j-5, and c(3j-3,j-1)=4j-5. Therefore, the set S is b-dominating system of colors $\{1,2,\ldots,m+1\}$. In Figure 5(a), this coloring is shown for m=5, where the circled vertices are b-dominating vertices.

Now let m = 2n - 5, consider a *b*-coloring of graph $K_m \square P_{n-1}$ by m+1 colors as above. We add a column and color it the same as column 1. This yields a *b*-coloring of graph $K_m \square P_n$ by m+1 colors.

Case 2. m = 2n - 4.

As illustrated in Figure 4, $\varphi(K_4 \square P_4) = 5$, the b-dominating vertices are circled.

(5)	2	5	4
1	3	4	1
3	5	1	2
4	\odot	(2)	3

Figure 4: A b-coloring of graph $K_4 \square P_4$ by 5 colors.

Assume $n \geq 5$, we define the coloring $c: V(K_m \square P_n) \to \{1, 2, \dots, m+1\}$ by:

$$c(i,j) = \begin{cases} m-1 & \text{if } (i,j) = (m,1), \\ m+1 & \text{if } (i,j) = (3j-4,j), \ 1 \leq j \leq \lceil \frac{n}{2} \rceil, \\ m+1 & \text{if } (i,j) = (3j-5,j), \ \lceil \frac{n}{2} \rceil + 1 \leq j \leq n-1, \\ m+1 & \text{if } (i,j) = (3n-7,n), \\ i+j-1 \pmod{m} & \text{otherwise.} \end{cases}$$

It is not hard to see that, the assignment above is a proper coloring of graph $K_m \square P_n$. Similar to Case 1, it can be easily checked that the set $\{(m-1,1), (3n-6,n), (3j-5,j), (3j-3,j), (i,3i-6), (i,3i-4) \mid \lceil \frac{n}{2} \rceil + 1 \leq i \leq n-1, \ 2 \leq j \leq \lceil \frac{n}{2} \rceil \}$ (the summations in the first components are modulo m and in the second components are modulo n) is a b-dominating system. In Figure 5(b) this coloring is shown for m=6, which the circled vertices are b-dominating vertices.

1	2	3	6				
2	6	4	(5)				
3	4	5	1				
6	5	(<u>1</u>)	2				
4	1	6	3				
	(a)						

1	2	3	7	5				
2	7	4	(5)	7				
3	4	5	6	1				
4	5	(6)	1	2				
\bigcirc	6	7	2	3				
5	1	2	3	4				
(b)								

Figure 5: A b-coloring of graphs $K_5 \square P_4$ and $K_6 \square P_5$ by 6 and 7 colors.

Now assume $m \leq 2n-6$, and let n'=n-2. Since $m \leq 2n'-2$, by Theorem 1, $\varphi(K_m \square C_{n'}) = m+2$, $n' \geq 4$. Hence by Corollary 2, $\varphi(K_m \square P_n) \geq m+2$. Therefore by (3), $\varphi(K_m \square P_n) = m+2$, for $n \geq 6$.

For n = 5 a b-coloring of graph $K_m \square P_n$ is shown in Figure 6, the b-dominating vertices are circled.

5	1	6	4	6
6	(2)	(19)	(3)	1
4	3	4	2	4
1	4	1	6	5

Figure 6: A b-coloring of graph $K_4 \square P_5$ by 6 colors.

5 b-chromatic number of graph $K_n \square K_n$

We know that $\chi(K_n \square K_n) = n$ and $\Delta(K_n \square K_n) = 2n - 2$. So by (1), $n \le \varphi(K_n \square K_n) \le 2n - 1$. In this section we improve these bounds and prove that $2n-3 \le \varphi(K_n \square K_n) \le 2n-2$. Finally we provide a conjecture that $\varphi(K_n \square K_n) = 2n - 3$, $n \ge 5$.

Lemma 3. Let c be a b-coloring of graph $K_n \square K_n$ by 2n-1 colors. If two vertices (i,j) and (i,t) are b-dominating vertices in the b-coloring c, then in columns j and t there are no other b-dominating vertices.

Proof. Let c be a b-coloring of graph $K_n \square K_n$ by 2n-1 colors. It is obvious that if a vertex (x,y) is a b-dominating vertex in the b-coloring c, then all its 2n-2 neighbors must have different colors. So the colors of the vertices in the row x and the column y are different. Now, assume to the contrary that the vertices (i,j), (i,t) and (i',j), $i'\neq i$, are b-dominating vertices. Since the vertex (i,t) is a b-dominating vertex, the vertices in row i and column t all have different colors. Therefore, if c(i',t)=a, then no vertex in row i has color a. On the other hand the vertex (i,j) is a b-dominating vertex, hence in column j we must have a vertex with color a. Now, in both row i' and column j we have vertices by color a. It-contradicts our assumption that the vertex (i',j) is a b-dominating vertex. By the same reason the vertex (i',t), for $i'\neq i$, is not b-dominating vertex. \square

Theorem 3. For every positive integer $n \geq 2$, we have

$$\varphi(K_n \square K_n) < 2n-2.$$

Proof. We know that $\varphi(K_n \square K_n) \leq 2n-1$. Let $\varphi(K_n \square K_n) = 2n-1$ and c be a b-coloring by 2n-1 colors. Without loss of generality we assume that rows 1

to r each has at least two b-dominating vertices and rows r+1 to n each has at most one b-dominating vertex. Moreover, without loss of generality, we assume that the b-dominating vertices in the first r rows are in the first s columns. By Lemma 3, in each column j, $1 \le j \le s$, there is only one b-dominating vertex. If r=0 or s=n, then we have at most n b-dominating vertices which is a contradiction. The size of the b-dominating system in coloring c is at most s+(n-r). Now if r>0 and s< n, then the number of b-dominating vertices is at most $s+(n-r) \le 2n-1-r < 2n-1$ which also contradicts our assumption. \Box

Theorem 4. For every positive integer $n \geq 5$, we have

$$\varphi(K_n\square K_n)\geq 2n-3.$$

Proof. We present a b-coloring c by 2n-3 colors, for two cases n odd and n even. First, we define a function $f: \mathbb{N} \to \mathbb{Z}$ by:

$$f(x) = \begin{cases} x & x \text{ is odd,} \\ x-2 & x \text{ is even.} \end{cases}$$

Case 1. n is odd.

In this case we define the assignment $c: V(K_n \square K_n) \to \mathbb{N}$ by:

$$c((i,j)) = \left\{ \begin{array}{ll} i+j-1 \pmod{n-1} & i \leq j \leq n-i-1, \\ f(i+j) \pmod{n-1} & n-i \leq j \leq n-2, i \leq j, \\ (i+j-2 \pmod{n-2}) + (n-1) & j < i \leq n-1, \\ (i,j) \neq (n-1,n-2), \\ n-3 & (i,j) = (n-1,n-2). \end{array} \right.$$

For columns n-1, n and row n, the assignment c is as follows.

$$c((i, n-1)) = \begin{cases} 2i-2 \pmod{n-1} & 1 \leq i \leq \frac{n-1}{2}, \\ 2i-1 \pmod{n-1} & \frac{n+1}{2} \leq i \leq n-2, \\ 2n-4 & i = n-1. \end{cases}$$

$$c((i,n)) = \begin{cases} (2i-2 \pmod{n-2}) + (n-1) & i \text{ odd, } i \le n-2, \\ i-2 \pmod{n-1} & i \text{ even, } i \le n-2, \\ n-2 & i = n-1. \end{cases}$$

$$c((n,j)) = \begin{cases} j-1 \pmod{n-1} & j \text{ odd, } j \leq n-3, \\ (2j-2 \pmod{n-2}) + (n-1) & j \text{ even,} \\ 2n-5 & j=n-2, \\ 1 & j=n. \end{cases}$$

The assignment c is a b-coloring and the set $S = \{(i,i), (j+1,j) \mid 1 \leq i \leq n-1, 1 \leq j \leq n-2\}$ is a b-dominating system. Because the vertices in S all have different colors and for each vertex in S the colors in its row and columns all have different colors except two entries. As an example such a coloring for n=7 is illustrated in Figure 7, the b-dominating vertices are circled.

1	2	3	4	5	6	11
7	3	4	5	1	2	6
8	9	(5)	1	6	4	10
9	10	(1)	(6)	3	1	2
10	11	7	(3)	(2)	3	9
11	7	8	9	4	(E)	5
6	8	2	7	9	11	1

Figure 7: A b-coloring of graphs $K_7 \square K_7$ by 11 colors.

Case 2. n is even.

In this case we define the assignment $c: V(K_n \square K_n) \to \mathbb{N}$ by:

$$c((i,j)) = \left\{ \begin{array}{ll} i+j-2 \pmod{n-2} & i+1 \leq j \leq n-i-1, \\ f(i+j-1) \pmod{n-2} & n-i \leq j \leq n-2, i+1 \leq j, \\ (i+j-1) \pmod{n-1} + (n-2) & j \leq i \leq n-1, \\ (i,j) \neq (n-1,n-2) \\ n-4 & (i,j) = (n-1,n-2). \end{array} \right.$$

For columns n-1, n and row n, the assignment c is as follows.

$$c((i, n-1)) = \begin{cases} 2i-2 \pmod{n-2} & 1 \le i \le \frac{n-2}{2}, \\ 2i-1 \pmod{n-2} & \frac{n}{2} \le i \le n-3, \\ 2n-5 & i = n-2, \\ 2n-4 & i = n-1, \\ n-3 & i = n. \end{cases}$$

$$c((i,n)) = \begin{cases} (2i \pmod{n-1}) + (n-2) & i \text{ odd, } i \leq n-2, \\ i-2 \pmod{n-2} & i \text{ even, } i \leq n-2, \\ n-3 & i = n-1, \\ 1 & i = n. \end{cases}$$

$$c((n,j)) = \begin{cases} (2j-2 \pmod{n-1}) + (n-2) & j \text{ odd, } 3 \leq j \leq n-3, \\ j-2 \pmod{n-2} & j \text{ even, } j \leq n-3, \\ n-4 & j=1, \\ 2n-5 & j=n-2. \end{cases}$$

The assignment c is a b-coloring and the set $S = \{(i,i), (j-1,j) \mid 1 \leq i \leq n-1, 2 \leq j \leq n-2\} \cup \{(n-1,n-2)\}$ is b-dominating system. Because the vertices in S all have different colors and for each vertex in S the colors in its row and columns all have different colors except two entries. As an example such a coloring for n=8 is illustrated in Figure 8, the b-dominating vertices are circled. \Box

7	1	2	3	4	5	6	8
8	9	3	4	5	1	2	6
9	10	(1)	(5)	1	6	4	12
10	11	12	13	6	3	1	2
11	12	13	7	8	(3)	3	9
12	13	7	8	9	(E)	11	4
13	7	8	9	10	4	12	5
4	6	10	2	7	11	5	1

Figure 8: A b-coloring of graphs $K_8 \square K_8$ by 13 colors.

Remark. For n=3 the only way to have a b-coloring by 4 colors is Figure 9(a), with the circled vertices as b-dominating vertices; which is impossible, so $\varphi(K_3 \square K_3) = 3$. For n=4 there is a b-coloring of graph $K_4 \square K_4$ by 2n-2=6 colors, see Figure 9(b).

Finally, we propose the following conjecture.

Conjecture 1. For every positive integer $n \geq 5$, $\varphi(K_n \square K_n) = 2n - 3$.

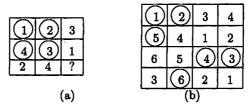


Figure 9: A partial b-coloring of graphs $K_3 \square K_3$ and $K_4 \square K_4$.

References

- P.J. Cameron, Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press 1996.
- [2] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Applied Math. 91, (1999) 127-141.
- [3] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256, (2002) 267-277.