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Abstract

An almost-bipartite graph is a non-bipartite graph with the property
that the removal of a particular single edge renders the graph bipar-
tite. A graph labeling of an almost-bipartite graph G with n edges
that yields cyclic G-decompositions of the complete graph Kant+1
was recently introduced by Blinco, El-Zanati, and Vanden Eynden.
They called such a labeling a vy-labeling. Here we show that the
class of almost-bipartite graphs obtained from a path with at least 3
edges by adding an edge joining distinct vertices of the path an even
distance apart has a ~v-labeling.

1 Introduction

If a and b are integers we denote {@,a+1,...,b} by [a,}] (ifa > b, [a,b] = 0).
Let N denote the set of nonnegative integers and Z,, the group of integers
modulo n. For a graph G, let V(G) and E(G) denote the vertex set of G
and the edge set of G, respectively. The order and the size of a graph G
are |V(G)| and |E(G)|, respectively.

Let V(Ki) = Z and let G be a subgraph of K. By clicking G, we
mean applying the isomorphism i — i + 1 to V(G). Let H and G be
graphs such that G is a subgraph of H. A G-decomposition of H is a
set A = {G1,Gs,...,G;} of pairwise edge-disjoint subgraphs of H each of
which is isomorphic to G and such that E(H) = U!_, E(G;). If H is Ky, a
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G-decomposition A of H is cyclic if clicking is a permutation of A. For a
comprehensive source on graph decompositions we refer the reader to [2].

Let V(Ki) = {0,1,...,k — 1}. The length of an edge {i,5} in Ki is
min{|i — j|,k — [¢ — j|}. Note that clicking an edge does not change its
length. Also note that if & is odd, then K, consists of k edges of length %
fori=1,2,...,5>.

For any graph G a one-to-one function f : V(G) — Nis called a labeling
(or a valuation) of G. In [6], Rosa introduced a hierarchy of labelings. We
add a few items to this hierarchy. Let G be a graph with n edges and
no isolated vertices and let f be a labeling of G. Let f(V(G)) = {f(u) :
u € V(G)}. Define a function f : E(G) — Z* by f(e) = |f(u) — f(v)l,
where e = {u,v} € E(G). We will refer to f(e) as the label of e. Let
E(G) = {f(e) : e € E(G)}. Consider the following conditions:

(&) V() < [0,2n],
(£2) f(V(G)) < (0,7,

(£3) E(G) = {z1,z2,...,%n}, where for each i € [1,n] either z; = i or
i =2n+1-1,

(¢4) E(G) =[1,n].
If in addition G is bipartite with bipartition {4, B} of V(G) consider also
(¢5) for each {a,b} € E(G) with a € A and b € B, we have f(a) < f(b),

(¢6) there exists an integer A (called the boundary value of f) such that
f(a) < Aforalla e Aand f(b) > A for all be B.

Then a labeling satisfying the conditions:
(£1),(€3) is called a p-labeling,
(£1),(£4) is called a o-labeling;

(£2), (¢4) is called a B-labeling.

A f-labeling is necessarily a o-labeling which in turn is a p-labeling. If G is
bipartite and a p, o or S-labeling of G also satisfies (£5), then the labeling
is ordered and is denoted by pt, ot or 8%, respectively. If in addition (£6)
is satisfied, the labeling is uniformly-ordered and is denoted by p*+, o**
or B+, respectively.

A p-labeling is better known as a graceful labeling and a uniformly-
ordered (-labeling is an a-labeling as introduced in [6]. Labelings of the
types above are called Rosa-type because of Rosa’s original article [6] on



the topic. A dynamic survey on graph labelings is maintained by Gallian
[5].

Labelings are critical to the study of cyclic graph decompositions as
seen in the following two results from [6] and [4], respectively.

Theorem 1 Let G be o graph with n edges. There exists a cyclic G-
decomposition of Kanty if and only if G has a p-labeling.

Theorem 2 Let G be a graph with n edges that has a p*-labeling. Then
there exists a cyclic G-decomposition of Koneyy for all positive integers t.

If G with n edges is not bipartite, then the best that could be obtained
up until recently from a Rosa-type labeling was a cyclic G-decomposition
of Kan41. A non-bipartite graph G is almost-bipartite if G contains an edge
e whose removal renders the remaining graph bipartite (for example, odd
cycles are almost-bipartite). In [1], Blinco et al. introduced a variation
of a p-labeling of an almost-bipartite graph G of size n that yields cyclic
G-decompositions of Kanet1. They called this labeling a y-labeling. They
showed that odd cycles (other than C3) and certain other 2-regular almost-
bipartite graphs admit «-labelings. In (3], it is shown that every 2-regular
almost-bipartite graph other than C3 and C3 U C; admits a v-labeling.

In this article, we show that the class of almost-bipartite graphs obtained
from a path with at least 3 edges by adding an edge joining distinct vertices
of the path an even distance apart has a v-labeling.

2 Additional Definitions and Notation

Let G be a graph with n edges and h a labeling of the vertices of G. We
call h a v-labeling of G if the following conditions hold.

(g1) The function 4 is a p-labeling of G.

(82) The graph G is tripartite with vertex tripartition 4, B,C with C =
{c} and b € B such that {b,c} is the unique edge joining an element
of B toc.

(g3) If {a,v} is an edge of G with a € A, then h(a) < h(v).
(g4) We have h(c) — h(b) = n.

Note that if a nonbipartite graph G has a y-labeling, then it is almost-
bipartite as defined earlier. In this case, removing the edge {c,b} from G
produces a bipartite graph. Figure 1 shows v-labelings of Cs and of Cy.

To simplify our consideration of the labelings, we will henceforth con-
sider graphs whose vertices are named by distinct nonnegative integers,
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Figure 1: y-labelings of Cs and of Cy.

which are also their labels. Recall that by the label of the edge {z,y} in
such a graph we mean |z — y|. If G is a graph with n edges and if m is the
label of an edge e, let m* = min{m,2n + 1 — m} (thus m* is the length of
e). If S is a set of edge labels, let §* = {m* : m € S}.

We denote the directed path with vertices zo,2y,...,Zk, Where z; is
adjacent to zi+1, 0 < @ < k — 1, by (®o0,71,...,2k). The first vertex
of this path is zo, the second vertez is z;, and the last vertez is z). If
G, = (z0,T1,.--,%;) and G2 = (yo,¥1,...,¥x) are directed paths with
; = Yo, then by G + G2 we mean the path (2o, 1,...,%;,¥1,¥2,- .-, ¥k).

Let P(k) be the path with k edges and k + 1 vertices 0,1,...,k given
by (0,k,1,k— 1,2,k —2,...,[k/2]). Note that the set of vertices of this
graph is AU B, where A = [0, |k/2]], B = [|k/2] + 1,k], and every edge
joins a vertex of A to one of B. Furthermore the set of labels of the edges
of P(k) is [1, k]. .

Now let a and b be nonnegative integers with a < b and let us add
a to all the vertices of A and b to all the vertices of B. We will denote
the resulting graph by P(a,b, k). Note that this graph has the following
properties.

P1: P(a,b,k) is a path with first vertex a and second vertex b+ k. If k is
even, its last vertex is a + k/2.

P2: Each edge of P(a,b, k) joins a vertex of A’ = [a, |k/2] +a} to a larger
vertex of B = [|k/2] + 1+ b,k +b].

P3: The set of edge labels of P(a,b,k)is b—a+1,b—a+ k.

Now consider the directed path Q(k) obtained from P(k) replacing each
vertex i with k—i. The new graph is the path (k,0,k—1,1,...,k—[k/2]).
The set of vertices of Q(k) is A”UB", where A” = k—B = [0,k—|k/2] —1]
and B" = k— A = [k — |k/2], k], and every edge joins a vertex of A” to
one of B”. The set of edge labels is still [1,%]. The last vertex of Q(k) is
k/2 € B" if k is even and (k — 1)/2 € A" if k is odd.

We add a to the vertices of A” and b to vertices of B, where a and
b are integers, 0 < a < b. This graph is (k + bja,k+b—1,a+1,...).



Let Q(a,b,k) =(...,a+ 1,k +b—1,a,k + b) be the latter graph with its
orientation reversed. Note that this graph has the following properties.

Q1: Q(a,b,k) is a path with last vertex k + b. Its first vertex is b+ k/2 if
k is even and a + (k — 1)/2 if k is odd.

Q2: Each edge of Q(a, b, k) joins a vertex of A” = [a,a + k — |k/2) — 1]
to a larger vertex of B” = [b+ k — |k/2],b+ k].

Q3: The set of edge labels of Q(a,b,k) is [b—a+1,b—a+ k.
"0q 1 29 3p 34 4. 54 6 50 49 35 6 5 4. 3
(a) (b) () ()
Figure 2: (a) P(6), (b) P(3,5,6), (c) Q(3,5,6), (d) R(3,5,6).
0 1 2 3 4 5 5 4 3 5 4 3
(€Y ®) © @
Figure 3: (a) P(5), (b) P(3,5,5), (c) Q(3,5,5), (d) R(3,5,5).

Finally let R(a, b, k) be the path P(a, b, k) with its orientation reversed.
Note that this graph has the following properties.

R1: R(a,b,k) is a path with last vertex a. If k is even, its first vertex is
a+k/2.

R2: Each edge of R(a, b, k) joins a vertex of A’ = [a, |k/2] + a] to a larger
vertex of B’ = [ k/2] + 1+ b,k + b)].

R3: The set of edge labels of R(a,b,k) is [b —a+1,b—a + k).

3 Main Result

Theorem 3 Let G(x,y,z) denote the graph formed by adding the edge
{vz) 42y} to the path (vo,v1,...,Vz42y+2), where z, y, and z are non-
negative integers with y > 1. Then G(z,y,z) has a v-labeling unless

(z,y,2) =(0,1,0).

69



Proof. The graph G(z,y,2) is not bipartite, since it contains a cycle of
length 2y + 1, but it is clearly almost-bipartite. Without loss of generality
we can assume that = > z. Note that G(0, y, 0) is the odd cycle Cyy4;which
was shown in 1] to admit a y-labeling unless y = 1. We break the rest of
the problem into 5 cases. Set t = —z +y+z —2.

Casel y=1land z=0.

Note that £ > 0 since our path has at least 3 edges. We will take
our path to be F + Q(4,6,z — 1) + (z + 5,0,2) and the added edge to be
(z +5,2). Here F is an edge that will be defined below. This graph has
n = =+ 3 edges, which is the length of the added edge (z +5,2). Note that
by Q1 and Q3 the path Q(4,6,z — 1) has last vertex = + 5 and edge label
set [3,z + 1). The labels of the edges in (z + 5,0,2) are 4+ 5 and 2, and
(z +5)* =z + 2. Thus if S is the set of labels of the edges other than F,
then S$* =2,z + 3] = [2,n].

(@ (b)

Figure 4: y-labelings of: (a) G(6,1,0) and of: (b) G(5,1,0).

Now if z is even we take F = (4+z/2, 3+ z/2), which has label 1. Note
that since z—1 is odd, the first vertex of Q(4,6,z—1) is 44+ (x—-2)/2 =3+
/2. The vertex sets of Q(4,6,z—1) are A" = [4,4+z-1—(2-2)/2~1] =
[4,3+z/2) and B" = [6+z—1—(2—2)/2,64+z—1] = [6+2/2,z+5]. The
additional vertices are 44 z/2 from F and 0 and 2 from (z+ 5,0, 2). Since
0<2<[4,3+z/2) <4+z/2 <[6+z/2,z+ 5], the vertices are distinct
and we have a p-labeling. In fact we have a +-labeling with ¢ = z + 5 and
b=2.

Likewise if z is odd we take F = ((9+z)/2, (11+x)/2), which has label
1. Since z — 1 is even, the first vertex of Q(4,6,x— 1) is 6+ (x —1)/2 =
(11 4 z)/2. The vertex sets of Q(4,6,z — 1) are A" =[4,d+z—-1—(z -
1)/2-1=[4,(5+z)/2] and B” =p+2z—-1—-(z—-1)/2,6+z-1] =
[(11 + z)/2,z + 5]. The additional vertices are (9 + z)/2, 0, and 2. Since
0<2<[4,(5+2)/2 < (9+z)/2 <[(11+z)/2,z + 5], the vertices are
distinct. Again we have a y-labeling with c =z +5 and b = 2.
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Case 2 tisevenandt > 0.

Note that since t is even +z + y + z is even for any choice of signs. We
will take our graph to be Gy + (z + 3y + 22+ 1,0) + G2 + G3 + G4 plus the
edge (z + 3y + 2z + 1,y + z), where (recalling that z > z)

G1=Q(y+z+1,3y+2z+1,z),
G2 =P0,z+3y+2z+1,z+y—2),

— 5
Cv'3=P($+g z,5x+ y2+z+4,_x+y+z_2)’

G4=P(y—1,y—1,z+1).

Notice that by Q1, P1, and the assumption that ¢ is even the last vertex of
G is z+3y+22+1, the first vertex of G3 is 0 and the last (z+y—2)/2, the
first vertex of G3 is (z+y— 2)/2 and the last is y — 1, and the first vertex of
G4 is y—1 and the second is y+2. Thus Gy +(z+3y+22+41,0)+G2+G3+Gy
is a path of length 42y +2 and in it v, = z+3y+2z+1 and vz49y = y+2.

12 11 0 1 2 3 4 5 6 7

29 ®30 10 €9 8

Figure 5: A v-labeling G(4, 6, 4).

We start by showing that the vertices in our graph are distinct. For
1 < i <4let A; and B; denote the sets labeled A’ or B’ in P2 or A" or
B" in Q2, as appropriate, corresponding to the path G;. Then using Q2,
P2, and the assumption that ¢ is even we compute

Ai=ly+z+1l,z2— |Z| +y+2,
Bi=[z— %] +3y+2z+1,z+3y+2z+1],

- 3
A2=[0,x+g z], By =] $+7y2+3z+4,2x+4y+z+1],
- 7
Aa:[f%i’y_ll, B3= [2x+3y+z+2,-3z—t—2—y—+-3_z],

A4=[y—1,y+l 5 J—l], B4=[y+|_%1J,y+21o
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Using the assumptions that z > z and y > 0 we can check that Az <
Az < Ay < By < A, < By < B3 < B;. (Note that G and G share the
vertex (z + y — 2)/2 € A2 As and Gs and G4 share the vertex y — 1 €
A3 A4.) Thus the vertices of our graph are distinct.

Figure 6: A ~-labeling G(5,5,2).

Now let E; denote the set of edge labels of G;, 1 < i < 4. Note that our
graph has n = z + 2y + 2z + 1 edges, and 2n + 1 = 2z + 4y + 2z + 3. Using
Q3, P3, and the assumption that ¢ is even we compute

El=[2y+z4+1,z4+2y+z* =2y+2+1,z+2y+2],
Ey=[z+3y+22+22z+4y+2z+1]"=[2+2,z+y+1],
Ej=[2z2+2y+z+3,z+3y+22]"=[z+y+3,2y+2|,
E;j=[z+1]*=[1,z+1).

Note that the edges {z + 3y + 2z + 1,0} and {z + 3y + 2z + 1,y + 2}
have labels z + 3y + 2z + 1 and z + 2y + z + 1 = n, respectively, and
(x+3y+2z+1)* =z + y+ 2. Ordering these sets as

Lz+1,[z+2,z+y+1],{z+y+2},[z+y+3,2y+2],[2y+ 2+ 1,2+
2y +z2),{z+2y+2+1},

we see that our graph has a p-labeling. _
If we take ¢ = z + 3y + 22 + 1 and b = y + 2, we easily check that the
other conditions for a -labeling are satisfied.

Case 3 tiseven,t <0, and (y,2) # (1,0).

Notice that ¥ + z — 2 > 0 by the assumption that (y, z) # (1,0). We
will take the path Gy + G2 + (z + 3y + 22 + 1,0) + G3 + G, plus the edge
(z + 3y + 22+ 1,y + z), where G, will be a path with -t =z -y —2+2
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edges depending on the parity of z,

Ge=Qy+z+1,z+2y+2z+3,y+2-2),
Gs=P(0,2z+ 2y + 2+ 3,2y — 2),
Ga=P(y—-1,y—1,z+1).

Note that the last vertex of Gz is = + 3y + 2z + 1, the first vertex of G3
is 0 and the last is y — 1, the first vertex of G4 is y — 1 and the second is
y + z. Thus, assuming that the last vertex of G is the first vertex of Gs,
G1+ G2+ (z+3y+22+1,0) + G3 + G4 will be a path of length z + 2y + 2
andinit v =z 43y +22+1 and vpqoy =y + 2.

For 1 <i <4 let A; and B; denote the sets of vertices of G; labeled A’
and B’ in P2 or R2 or A” and B" in Q2, as appropriate, and let E; be
the set of edge labels of G;. Then we compute

Az =[y+2z+1,2y+2z—2— |E22=2|),
By=[z+3y+2z+1— 452|243y +22+1],

A3 =[0,y-1], B3 =[2x+3y+2z+3,2c+4y+z+1],
+1 z+1
A4=[y_1)y+[’z_2—J—1]: B4=[y+l D) Jay'*'z]'

It can be checked that A3 < A4 < B4 < A3 (note that G3 and G4 share
the vertex y—1) and B, < Bj (recall the assumption £ > z). Thus to show
that the vertices are distinct it suffices to show that A; < 4; < B; < By
and that G, and G, intersect only in the last vertex of G;, which is also
the first vertex of Gs.

Furthermore

E}=[z4+y+3,z+2y+2]*=[z+y+3,z+2y+ 2],
Ei=02z+2y+z+4,2x+4y+2+1)"=[2+2,2y+2-1],
Ei=[12+1)"=[1,z+1].

The edges (z + 3y + 22+ 1,0) and (z + 3y + 2z + 1,y + z) have the labels
z+3y+2z+1 and z4-2y+2+1, respectively, and (z+3y+2z+1)* = z+y+2.
Thus if S is the set of edge labels not in G1, we have §* = [1,2y+2-1]U
[+y+2,7+2y+2+1]. We see that we need that if T} is the set of edge
labels of Gy, then T} = [2y + z,z +y + 1].

We finish this case by defining G; according as z is even or odd. If z is
even, then let

3y+324+2 Ty+52
G =Q(Y 5 y2 E—y—2z+2).
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Figure 7: A v-labeling of G(10, 3, 5).

Since t = —z + y + z — 2 < 0, this path has the positive length —¢, and
since ¢ and z are even, y and z have the same parity. We compute

3y+324+2 z4+2y+2z+2
A1= ) ’
2 2
[:c+6y+4z+2 2x+5y+3z+4]
Bl= D) ) 2 )

and E) = [2y + z,z + y + 1], which is the desired set of edge labels. Fur-
thermore, the inequalities A2 < A; < By < Bj are easily checked, where
B; and B; overlap only in the vertex (2z + 5y + 3z + 4)/2. Note that by
Q1 this is the last vertex of G; and, since y + z — 2 is even, also the first
vertex of Gos.

Figure 8: A y-labeling of G(7,4, 3).

Now suppose z is odd. We let

3y+3z2—1 Ty+5z-3
2 ! 2

G; = R( yT—y—z+2)

74



This path has the positive length —t, and since t = —z +y + z — 2 is even
and z odd, y and 2z have opposite parities. We compute

3y+3z-1 z+2y+22+1
A= » »
2 2
[x+6y+4z+1 2m+5y+3z+1]
Bi= 2 : 2 ’

and E; = [2y+z,2+y+1), which is the desired set of edge labels. Further-
more, the inequalities A2 < A; < By < Bs are easily checked, where 4; and
A2 overlap only in the vertex (3y+ 3z —1)/2. Note that by R1 and Q1 this
is the last vertex of G, and, since y+2—2 is odd, also the first vertex of G,.

Case 4 tisodd and ¢t > 0.

Notice that since t is odd +x+y=+2z is odd for any choice of signs. We will
take our graph to be the path G1+(z—|z/2|-1,2z—|z/2] +3y+22+1,z—
|z/2])+ G2+ G3 plus the edge (2z— |z/2] +3y+22+1,z— | /2] +y+2),
where G; will be a path with z — 1 edges depending on the parity of z,

xr

Gz=P(:c- I.EJ’%_ l-;_' +y+2,—z+y+z—1),

e N )]

Note that by P1 and the assumption that ¢ is odd the first vertex of G2
is z — /2] and the last is (z + y 4+ z — 1)/2 — |z/2], the first vertex
of Gz is (z +y+ 2 —1)/2 — |z/2]. Thus, assuming that the last vertex
of Gy is z — |z/2] — 1 and G3 contains the vertex z — |z/2] + y + 2,
Gi+ (z~-2/2) — 1,2z — |z/2] + 3y + 22+ 1,z — [z/2]) + G2 + G3 will
be a path of length  + 2y + z and in it v, =2z — [2/2] + 3y + 2z +1 and
Vzyzy =T — |7/2] +y+ 2.

For 1 <i <3 let A; and B; denote the sets of vertices of G; labeled A’
and B’ in P2 respectively and let E; be the set of edge labels of G;. Then
we compute

I e !

B = -W— I_;J,x— [§J+2y+z+1],
e[t gy =
By = .x+?;-z+1 3 l_g_l + lw;—yJ’3z+3y2+z—1 3 '_:';'J]
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It can be checked that A; < A3 < B3 < B; (note that G2 and G5 share
the vertex (z +y + 2z —1)/2 — |z/2]).
Furthermore

Eg =[1,x+y]* =[1’x+y].

The edges (z — |z/2] — 1,2z — |z/2] + 3y + 22 +1), 2z - |z/2] + 3y +
2z+1,z - |z/2]), and (22 — |z/2] + 3y + 22+ 1,z — |x/2) + y + z) have
the labels (z + 3y +22z+2)* =z +y+1, (z+3y+ 22+ 1) =z +y+2,
and z + 2y + z + 1, respectively. Thus if S is the set of edge labels not in
G1, we have S* = [1,2y + z + 1)U {z + 2y + z + 1}. We see that we need
that if T} is the set of edge labels of Gy, then T} = [2y+ 2z + 2,2+ 2y + z].

Figure 9: A v-labeling of G(4,6, 3).

We finish this case by defining G; according as x is even or odd. If x
even, then let

Gi=Q2c+2y+2+1,0)+P0,z+2y+2+2,2—2).

Since t = —z+y+2—2is odd and z is even, ¥ and 2z have opposite parities.
We compute

A; = {0}U [o,xgz] = [o,f—;-g],

4 4
By={2z+2+z+1}U [3‘” y,:"z” ,2z+2y+z]

- [3x+4y;2z+4,2x+2y+z+1],

E}={2z+2y+z+1}*Ufz+2y+2z+3,2z+2y +2]*
=[2y+z+2,2+2y+2].

We see that this is the desired set of edge labels. Furthermore, note that
A; < A3 < By < Bj and that the path (z — [z/2] — 1,2z — |z/2] + 3y +
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Figure 10: A ~-labeling of G(5, 5, 3).

2z + 1,z — |z/2]) of length 2 starts at the last vertex of G; and ends at
the first of Gs.
Now suppose z is odd. We let

G, =P0,z+2y+2+2,z—1).

Since ¢ and z are odd, y and z have the same parity. We compute

z-1
A= [OTJ
3 2
B, = [ :c+4y2+ z+5,2x+2y+z+1],

El=[r+2y+2+3,2z+2y+2z+1" =2y +2+2,z+ 2y +2|.

We see that this is the desired set of edge labels, Furthermore, note that
A < A; < B3 < B and that the path (z — [z/2] — 1,2z — |z/2] + 3y +
2z + 1,z — |z/2]) of length 2 starts at the last vertex of G; and ends at
the first of Gs.

Case 5 tisodd and t < 0.

We will take our graph to be the path Gy + G2 + G3 plus the edge
(22— |z/2] +3y+22z+ 1,z — [z/2] +y + z), where G; will be a path with
y + z — 2 edges depending on the parity of z,

Gz=p(ﬁ£;z_—3_l:;.J,%”y;sz—?'_[gJ,x_y-Hs),

Ga=P(z— [ng— [i;-J,zy+z—1).

Note that by P1 and the assumption that ¢ is odd the first vertex of G is
(z+y+2—3)/2— /2] and the last is z — |z/2], the first vertex of G3 is
z— |z/2]. Thus, assuming that the last vertex of Gy is (x+y+2—3)/2—
|z/2) and G2 and G3 contain the vertices 2z — |z/2] + 3y + 2z + 1 and




z—|z/2|+y+z, respectively, G1 + G2 +G3 will be a path of length z+2y+-2
and in it v; =2z — |z/2) + 3y + 22+ 1 and vo4oy =2z — |2/2] + y + 2.

For 1 < i < 3 let A; and B; denote the sets of vertices of G; labeled A’
and B’ in P2 respectively and let E; be the set of edge labels of G;. Then
we compute

A2=:zc_+_wf_z;3_lzj,z_[£”,

) 2 )
B, = :2:c+3y+2z+1— [-;-J,53+5y;3z+3— [g]]
o= = 5o 51+

Bs=|z+1- [-;J + [%’;;_JJ T2tz —1— [;J]

It can be checked that A; < Az < B3 < Bz (note that G2 and G3 share
the vertex z — |z/2]).
Furthermore

E}=[r+3y+2z+1,2c+2y+z4+3]"=2y+z,z+y+2|,
E}=[12y+2-1]"=[1,2y+2-1].

The edge (2z — |z/2} + 3y + 2z + 1,z — |z/2] + y + z) has a label of
z+2y+ 2+ 1. Thus if S is the set of edge labels not in G;, we have
S* =[1,z+y+2U{z+2y+2+1}. We see that we need that if T} is the
set of edge labels of Gy, then T? = [z +y + 3,z 4+ 2y + 2|.

Figure 11: A v-labeling of G(6, 3, 4).

We finish this case by defining G; according as x is even or odd. If z
even, then let

G =(z+3y+220)+P0O,z+2y+2+2,y+2-3).
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Since t = —z+y+z—2 is odd and z is even, y and z have opposite parities.
We compute
={0}u o,ﬂi_z_"_é = o,ﬂz___‘? ,
2 2
B, ={z+3y+22}U [2w+5y2-i-3z+3’x+3y+22_ 1]

_ [2m+5y+3z+3
2
El={z+3y+22}"U[z+2y+2+3,2+3y+22-1]*
=z+y+3,z+2y+z].

,:x:+3‘y+2z],

We see that this is the desired set of edge labels. Furthermore, the inequal-
ities A} < Ay and B3y < B; < B; are easily checked, where A; and A;
overlap only in the vertex ¥£2=3. Note that since y + z — 3 is even, £+2=2
is the last vertex in G; and it is also the first vertex of Gs.

0 1 2 3 4 5 6 7 8

23 €22 @29 10 ®9

Figure 12: A +-labeling of G(7,4,2).

Now suppose z is odd. We let
GL=P0,z+2y+2+2,y+2-2).

Since t and z are odd, y and z have the same parity. We compute
A = [0, %""—2] ,

22+ 5y+32+4+4
Bl=[ y2 +

=[z+2y+2+3,x+3y+22*=[z+y+3,2+2y+2|.

,m+3y+22],

We see that this is the desired set of edge labels. Furthermore, the inequal-
ities A; < Az and By < B; < B; are easily checked, where A; and A,
overlap only in the vertex 1";"-;-‘—- Note that since y + z — 2 is even, ¥2=3
is the last vertex in G; and it is also the first vertex of Gs.
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Thus, in each of the cases the given labeling satisfies the conditions for
a v-labeling. : ]

Although C3 does not admit a <-labeling, it is known that there ex-
ists a cyclic C3-decomposition of Kg:+1 for all positive integers ¢ (see [2]).
Therefore we have the following corollary.

Corollary 4 Let G(z,y, z) denote the graph with n edges formed by adding
the edge {vz,vz4+2y} to the path (vo,v1,...,Vz42y+z), where z, y, and z are
nonnegative integers with y > 1. Then there exists a cyclic G(z,y, 2)-
decomposition of Kantq1 for all positive integers t.
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