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Abstract
The Hosoya polynomial of a graph G is defined as H(G,z) = ¥ d(G, k)z*,
k>0

where d(G, k) is the number of the vertex pairs at distance k in G. The calculation
of Hosoya polynomials of molecular graphs is a significant topic because some im-
portant molecular topological indices such as Wiener index, hyper-Wiener index,
and Wiener vector, can be obtained from Hosoya polynomials. Hosoya polyno-
mials of zig-zag open-ended nanotubes have been given by Xu and Zhang et al.
A capped zig-zag nanotube T'(p, ¢)[C, D; a] consists of a zig-zag open-ended nan-
otube T(p, q) and two caps C and D with the relative position a between C and
D. In this paper, we give a general formula for calculating Hosoya polynomial of
any capped zig-zag nanotube. By the formula, Hosoya polynomial of any capped
zig-zag nanotube can be deduced. Furthermore, it is also shown that any two
non-isomorphic capped zig-zag nanotube T'(p, q)[C, D;ai], T(p,q)[C, D; a2) with
g 2 q¢* 2 p+ 1 have the same Hosoya polynomial, where ¢* is a integer which
depends on structures of C and D.
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1 Introduction

The Wiener index was first introduced by Wiener (28] in 1947 for
approximating the boiling points of alkanes. The Wiener indez of a graph

G is defined as:
W)= Y  de(u,v)
{u.v}CV(G)

where dg(u,v) is the distance between a pair of vertices u and v of G.

The Wiener index was originally defined for acyclic structures only, and
the definition was later extended to general graphs by Hosoya (as the sum
of distances); and in another maybe more natural way by Gutman (called
Szeged index) [9]). Since then, Wiener index has been shown to correlate
with many other properties of molecules [3, 4, 12, 13, 14, 15, 20, 28].

The hyper-Wiener index of an acyclic structure was first introduced
by Randié [25], and was extended by Klein [22] so as to be applicable for
any (cycle-containing) structure. For a graph G, the hyper-Wiener indez
R(G) of G is defined as:

RG)=R=%1 Y (dg(u,v)+ d%(u,v)).

{u,v}CV(G)

The Wiener vector of a graph G is introduced by Guo et al. (17} as
follows:

For a connected graph G, let Wi = 31, ,1cv(G), do(uv)=k 96 (% V),
k=1,2,.---. The vector (W;,W,---) is called the Wiener vector of G,
denoted by WV (G).

Clearly, the sum of all components of the Wiener vector of G is just
equal to the Wiener index of G, and Wiener vectors have higher discrimi-
nation than do Wiener indices.

The Hosoya polynomial of a connected graph G, introduced by Hosoya
[18], is defined as:

H(G,z) =) _d(G,k)z*,
k>0

where d(G, k) is the number of vertex pairs at distance k in G.

Hosoya polynomials are also called Wiener polynomials, Wiener-Hosoya
[8] and Hosoya-Wiener polynomials (34], because Wiener index, hyper-
Wiener index, and Wiener vector of a graph G can be obtained from Hosoya
polynomial H(G) of G.

It was shown in Refs. [2, 17, 18, 27, 33] that W(G) = H'(G,1), R(G) =
H'(G,1) + $H"G, 1), and the Wiener vector WV(G) = (W}, Wy, ...) con-
sists of the coefficients of the derivative H'(G, z) of the Hosoya polynomial,
where W is equal to the coefficient kd(G, k) of z*~! in H'(G, z).
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Hosoya polynomial of a graph contains more information about dis-
tance in the graph than any of the hitherto proposed distance-based topo-
logical indices, not only these, but some celebrated topological indices of a
graph are often obtained directly from its Hosoya polynomial [1, 21, 24, 26).
So Hosoya polynomial and the quantities derived from it will play a sig-
nificant role in QSAR/QSPR studies, and abundant literature appeared
on this topic for the theoretical consideration [10, 11) and computation

(15, 16, 23, 25, 27, 30, 31, 32, 33).

In ref. {27, 32, 33), Sagan, Yang, Yeh, Yan et al. computed some
Hosoya polynomials for some common graphs, and a dendrimer (a certain
highly regular tree of interest to chemists), and certain graphs of chemical
interest. Gutman et al. [16] gave Hosoya polynomials of some benzenoid
graphs. Diudea [6] gave analytical formulas for calculating Hosoya polyno-
mials in several classes of toroidal nets. Xu, Zhang, and Diudea [30, 31]
gave Hosoya polynomials of open-ended nanotubes and benzenoid chains.

Layer q-1 v

(a) (b)

Fig. 1: (a). A zig-zag open-ended nanotube T'(p,q) with p = 6 and ¢ = 12
in a planar mode; (b). A capped zig-zag nanotube in a planar mode.

A zig-zag open-ended nanotube [5, 30] is a finite section of a polyhex
cylinder, described by two parameters p and g, denoted by T(p,q) [23],
which can be denoted in a planar mode as shown in Fig. 1(a), where the
axis of T'(p, q) is vertical and the left bold boundary is identical with the
right bold boundary with cutting off the nanotube T'(p, q).

A capped zig-zag nanotube [23, 29], denoted by T(p,q)[C, D;a), is
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constructed by adding two suitable caps C and D to the upper open end
and lower open end of a zig-zag open-ended nanotube T'(p, g) respectively,
where a denotes the relative position between C and D (see Fig. 1(b)).
Since T'(p, ) is symmetric round its axis, a cap, say D, may be arbitrarily
fixed to the lower open end of T'(p, q), and then the other cap C may have
2p different positions corresponding to D for adding C to the upper open
end of T(p,q). Let e =0,1,2,--- ,p—1; p,p+1,p+2,---,2p—1 denote
the 2p different position of C corresponding to D, let T(p,q)[C, D;0] be
such a capped zig-zag nanotube, let T'(p, q)[C, D; p] be the capped zig-zag
nanotube obtained from T(p, q)[C, D;0] by overturning the cap C' round
a horizontal axis, and let T'(p,q)[C, D;a*] (resp. T(p,q)(C,D;p + a*})
denote the capped zig-zag nanotube obtained from T'(p, q)[C, D;0] (resp.
T(p,q)[C, D; p]) by rotating the cap C 95'- circle round the axis of T'(p, q)
anticlockwise where a* € {0,1,2,--- ,p—1}.

Note that if one of C and D has a rotation automorphism of order
p round the axis of T'(p,q) and one of C and D has a reflection auto-
morphism about a plane passing through the axis of T'(p,q)), then the
2p capped zig-zag nanotubes T'(p,q)(C, D;a] for ¢ = 1,2,.--,2p — 1 are
pairwise isomorphic. In the case, we also simply denote the 2p isomor-
phic capped zig-zag nanotubes by T'(p, q)[C, D). If each of two caps has no
reflection automorphism and no rotation automorphism of order p round
the axis of T(p, g), then either the 2p capped nanotubes are pairwise not
isomorphic or some (not all) of the 2p capped nanotubes might be isomor-
phic. However, we shall show that any two non-isomorphic capped zig-zag
nanotubes T'(p, ¢)[C, D; a1], T(p, ¢)[C, D; ag] with ¢ > ¢* > p + 1 have the
same Hosoya polynomial (where ¢* is defined in Definition 1 in the next
section).

Recently, Xu and Zhang [30] obtained the Hosoya polynomial of the
zig-zag open-ended nanotubes T'(p, q) as follows:

Theorem 1.1 [Xu and Zhang [30]] (1) Ifq¢< &,
H(T(p,),) = 2pq +p X237 *(—i? + 3qi)z* + 2pg® L0, =* +pa(2g — 1)a”
+2p Y0 (p+ g — )22,
(2) If & < g < p, H(T(p,q), %) = 2pg +p X0=; (—i* +3¢i)z* + p(3pg —
p’—q)zP+p Z?i;il (2p% +4pg +1i% — dpi — gi)z* +2p 2:’;‘3;‘ (p+g—1)%z'.
3) a2 p+1, HT(p,q),7) = 2pg + p X0y (i + 3qi)a’ + p(3pq —

p? — q)aP +p Y1701 (202 + 4pg + 4% — dpi — i)zt + p? L5 (20 — )2t

For a capped zig-zag nanotube T'(p, q)[C, D;a] consisting of an zig-
zag open-ended nanotube T'(p, q) and two caps C and D, because of the
variety of caps and that two vertices in T(p, q) might have the distance
in T(p,q) different from the distance in T'(p,q)[C, D;a), the calculation
of Hosoya polynomials of capped zig-zag nanotubes is more difficult than
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zig-zag open-ended nanotubes.

In this paper, we focus on Hosoya polynomials of capped zig-zag nan-
otubes. In order to calculate Hosoya polynomial of a capped zig-zag nan-
otube, we divide the capped zig-zag nanotube into three parts so that any
two vertices in a part have the same distance in both the part and whole
capped zig-zag nanotube, and then obtain a general formula for calculating
Hosoya polynomial of any capped zig-zag nanotube from Hosoya polynomi-
als of their three parts and from some other terms between the three parts.
By the formula, the Hosoya polynomial of any capped zig-zag nanotube
can be deduced. Furthermore, it is shown that any two non-isomorphic
capped zig-zag nanotube T'(p, ¢)[C, D; a1), T(p, q)[C, D;az) with ¢* > p+1
have the same Hosoya polynomial.

2 Hosoya polynomials of capped zig-zag nan-
otubes

Note that a zig-zag open-ended nanotube T'(p, ) is bipartite, its ver-
tices can be colored such that every vertical edge connects a black top
vertex with a white bottom vertex. For convenience, we denote by layer
0,1,---,q — 1, the horizontal zig-zag lines in the planar mode of T'(p, q)
from top to bottom, respectively. The layer k& corresponds to a cycle Cj
of length 2p, Cr = woxvi,k---v2p—1,kV0,x Where vor corresponds to the
leftmost vertex in planar mode of T'(p, q) (see Fig. 1(a)). The cycles Cy
and C,_, are called the upper boundary and the lower boundary of T'(p, q)
respectively.

If two suitable caps C and D are added to T'(p, q) to obtain a caped
zig-zag nanotube T'(p, q)[C, D; a], then the boundary B(C) of C (resp. the
boundary B(D) of D) is identified with the boundary Cy (resp. C,—;) of

T(p,q).
For any two vertices in a cap C (resp. D), we need to investigate

under what condition the distance between v and v in T(p, q), denoted by
dr(p,q) (%, v), is equal to the distance dT(p,q)[C, D;a)(¥,v) in T(p,q)[C, D; a].

Lemma 2.1 Let T'(p, q)[C, D; a] be a caped zig-zag nanotube, and let u and
v be any two vertices in a cap C (or D). Ifq¢ > -}(p-— 1), then the distance
between u and v in T(p,q) is equal to the distance in T(p,q)(C, D;a], that
18, d7(p,q) (%) v) = dr(p,g)(C,D;a] (¥, V).

Proof. Clearly, dr(,,)ic,Dia) (%, v) < dr(p,q) (¢, v).

Assume that g > ;li(p— 1) but dr(p,g)(c, Dia) (%, V) < d7(p,q)(,v). Then
there is a shortest path P(u,v) in T'(p, q)[C, D; a] whose length I(P(u,v))
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is less than dp(,,q)(u,v). Hence, P(u,v) must contain some edges not in
C. Let v’ and v’ be the vertices on P(u,v) such that the path P(u,u’)
and the path P(v’,v) on P(u,v) are contained in C, and the path P(u/,v’)
on P(u,v) has the end edges not in C. Let Pp(c)(/,v’) be a path on the
boundary of C with length less or equal to p. Then P(u,u’)UPg(c)(v/,v')U
P(v',v) contains a path in C with end vertices u and v, say Pc(u,v). Thus
we have that {(P(u,u)) + I(Pp(c)(¥,v)) + I(P(¥',v)) > U(Pc(u,v)) >
drp.q) (¥, v) > I(P(u,v)) = I(P(u — ') + I(P(u',v")) + I(P(v' — v)), and
so [(P(u!,v")) < UPp(c)(w'sv')) < p.

Moreover, P(u’,v') must contain some edges in D which are not on
the boundary B(D) of D. Otherwise, P(u/,v') is contained in T'(p, q), and
so I(Pg(c)(w',v")) > I(P(«,v")), a contradiction. Let u” and v" be the
vertices on P(u/,v’) such that the path P(u’,u”) and the path P(v",v’)
on P(u',v') are contained in T'(p,q), and the path P(u”,v”) on P(v/,v")
has the end edges in D which are not on B(D). Then I(P(v/,u")) =
I(P(v",v")) = 2g and I(P(u",v")) > 1. Therefore, p > I(P(v/,7')) > 4¢+1,
that is, ¢ < 3(p — 1), again a contradiction. D

In the paper, we shall only consider longer caped zig-zag nanotubes
T(p,q)[C, D;a] with ¢ > %(p — 1). By the above lemma, for any two
vertices in a cap, their distance in the cap is the same with the distance
in T(p, q)[C, D;a). However, for two vertices in T(p,q), their distance in
T(p,q) may be different from the distance in T'(p, g)[C, D; a]. For example,
for two vertices v; and v; on the common boundary of T'(p,q) and C, if
de(vi, v5) < dp(c)(vi,v;), then dr(p,g)(vis ¥;) > dr(p,g)(C,Dia) (V35 V5)-

For a cap C of a caped zig-zag nanotube T'(p, ¢)(C, D; a], a vertex on
the boundary B(C) of C is said to be an attachment vertex of C if it is
adjacent to a vertex in T(p,q)[C, D;a] — V(C). Let V,(C) be the set of
attachment vertices of C, and let

m = max{dp(c)(vi, ;) — dc(vi,v;) | vi,v; € Va(O)}.

We will show that, for ¢ > [#2], any two vertices on the cycle C, (the
layer t) in T(p, q) have the same distance in both C; and T'(p,q)[C, D;a].

Theorem 2.2 Let T(p, q)[C, D;a] be a caped zig-zag nanotube, and m =
max{dg(c) ('U;', v,-)

— de(wi,v;) | vi,v; € Va(C)} 2 0. Ift > [2F2], then any two ver-
tices on the cycle C, in T(p,q) have the same distance in both C, and
T(p,q)(C, D; a).

Proof. By contradiction.

Assume that there are two vertices v; and v; on C; such that
dc, (vi,v;) — dr(pg)c,Dia}(¥i» v5) > 0 and it has the maximum value. Let
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P be a shortest (v; — v;)-path on Cy, and Q a shortest (vi — v;)-path in
T(p,q)[C, D; a]. Then Q must pass through some vertices in C— B(C). Let
Qc = QNC, and u; and u; the end vertices of the path Q¢. Let Pg be the
shortest (u;, u;)-path on Co = B(C). Denote by I(P) the length of a path
P. Then I(Pc)+2t > I(P) =dg, ('Ui;'vj) > dT(p,q)[C,D;a](vi"vj) =1Q) 2
2(2t — 1) + U(Qc), and so m > l(Pc) — {(Qc) > 2t — 2, that is, t < =f2,
This contradicts that ¢t > [242]. O

By Theorem 2.2, we can extend the cap C in T(p,q)[C, D;a] to C*
such that the boundary B(C*) of C* is C;, where t = [Z]. Note that if
m =0 then C* = C. Similarly, let

m' = max{dp(p)(vi, v;) — dp(vi,v;) | vi,v; € Va(D)},

we extend the cap D to D* such that B(D*) = Cy, wheret' =q—1~ [%']
Then T(p, q)[C, D;a] can be also denoted as the caped zig-zag nanotube
T(p,q*)[C*, D*;a] where ¢* = ¢ — [Z] — [1"2—'] and the layer & of T'(p, ¢*),
denoted by Cf, is just the layer k + ¢, Cxye. T(p,¢*)[C*,D*;a] can be
divided to three parts C*, D*, and T(p,q* — 2) = T(p,q*)[C*,D*;a] —
V(C*) — V(D*) so that any two vertices in a part have the same distance
in both the part and T'(p, ¢*)[C*, D*; a].

Definition 1. Let T(p, ¢)(C, D;a] be a capped zig-zag nanotube, let t =
[Z]andt' = g—1— [1"2-'] , and let C* and D* be the extended caps such that
layer L; of T(p, q) is B(C*) and layer Ly of T(p, q) is B(D*). Let T(p, ¢*)
be the reduced zig-zag open-ended nanotube whose layer 0 is just L, of
T(p, g) and layer ¢* — 1 is just Ly of T'(p,q), and so ¢* = ¢ — [%] - ["‘7']
Then T'(p, ¢*)[C*, D*;a] is called the associated capped zig-zag nanotube
of T(p, q)[C, D;a).

Definition 2. Let G be a connected graph, and let A and B be dis-
joint vertex-induced subgraphs of G. Let d(A, B, k) denote the number of
the pairs {a;, b;} of vertices with distance k for a; € V(4), b; € V(B).
Then the Hosoya polynomial H(A, B,z) between A and B is defined as
H(A,B,z) =3 ;.0d(A, B, k)z*.

Now we can obtain Hosoya polynomial of a capped zig-zag nanotube
T'(p,q)[C, D; a] from Hosoya polynomials of C*, D*, and T'(p,q* — 2), to-
gether with other terms corresponding to the distances between pairs of
vertices in different parts.

By definition of the Hosoya polynomial and the above partition of
T(p,q)[C, D;a] to C*, D*, and T(p,q* — 2), the Hosoya polynomial of
T(p,q)[C, D;a] = T(p,q*)[C*, D*;a] can be denoted as follows:
H(T(p,q)[C, D;a],z) = H(T(p,q*)[C*, D*; a], z)
= Zu,UGV(C‘) gde=(uv) 4 Z:u,vEV(D’) 29D (u,v)
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d -
+ zu,UEV(T(p,q'_2)) 29T (p.q*~2) (4:0)
+ TueV(C) eV (T(pigs —2)) T TE4IC D% (u,v)
d . * De*.
+ YLV (D) eV (T(pge —2)) T TP D73 (40)

+ Luev(ce)vev(pe) ETEanem el D),

Hence we have the following theorem.

Theorem 2.3 Let T(p,q)[C, D;a] be a capped zig-zag nanotube, and
T(p,q*)[C*, D*; a] the associated caped zig-zag nanotube. Then
H(T(p,q)[C, D;a),z) = H(T(p,q*)[C*, D*;a],x) = H(C*,z) + H(D*,z)
+ H(T(p,q* - 2),z) + H(C*,T(p,q* - 2),z) + H(D*,T(p,q" - 2),2)

+ H(C*,D*,z).

The Hosoya polynomial H(T'(p,q*—2),z) can be obtained by Theorem
1.1. The Hosoya polynomials H(C*,z) and H(D",z) can be calculated
directly. To obtain H(T'(p,q)[C, D;a},z), we need to give the methods for
calculating H(C*,T(p,q* —2),z), H(D*,T(p, ¢* —-2), z), and H(C*, D*,x).

Deflnition 3. Let T(p, g)[C, D;a] be a caped zig-zag nanotube, and
T(p,q*)[C*, D*;a] the associated caped zig-zag nanotube. Let V,(C*)
(resp. V,(D*)) be the set of attachment vertices of the cap C* (resp.
D*). For any vertex v; in C*, let dc-(v;, Va(C*)) denote the minimum
distance in C* from v; to a vertex in V,(C*). Then the Hosoya polynomial
H(C*,V,(C*),z) from C* to V,(C*) is defined as H(C*,V,(C*),r) =
Zv;GV(C‘) xdc‘ (vi,Va (C‘)). Slmlla.rly,

H(‘D"VG(D*)’z) - E":EV(D‘) de°(°i'Va(D‘))'

Definition 4. Let T(p, q)[C, D;a] be a caped zig-zag nanotube, and G =
T(p,q*)[C*, D*; a] the associated caped zig-zag nanotube. For a vertex
u; in C* and the vertex sequence of V5(C*), (vo,0,v2,0,"** ,¥2p-2,0), let
88 o = (dc-(ui,v0,0),do (ui,v20),+ ,do= (i, V2p-2,0)) denote the dis-
tance sequence from u; to attachment vertices of C*. For s = 1,2,.-.,
let S8, 5, = (do(us,v0,25), do(usi, v2,25), - -  di iy V2p—2,26))

( resp. S¥ o, = (da(ui,v1,2s), de(Uiyv3,25), - - yd(ui, V2p-1,25)) ) denote
the distance sequence from u; to the black (resp. white) vertices on layer
2s of T(p,q*), and let

SY 9e_1 = (de(us, v0,25-1), A (4iy V2,26-1), * G (Ui Vap—-2,25-1))

(resp. S8, 251 = (de(ti,v1,26-1), dG(is v3,25-1), - -+ dG (Ui, V2p—1,2s-1)))
denote the distance sequence from u; to the white (resp. black) vertices
on layer 2s — 1 of T(p,q*). The Hosoya polynomial from u; to layer k of

T(p,q*) is denoted by H(u;,C§,T) = ¥ ;0,1.9,... gp—1 TCMY54).

Lemma 2.4 Let G = T(p,q)[C, D; a} be a caped zig-zag nanotube, and
G = T(p,q*)[C*, D*;a] the associated caped zig-zag nanotube with
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¢* > p+1. Let S5 o = (dc-(ui,vo,0), de- (ui, v2,0), - -+ , Ao (i, Vap—2,0)) be
the distance sequence from a vertez u; in C* to attachment vertices of C*,
and de- (ui, Vo (C*)) = cy,. Then, fors=1,2,..-,

(7') S:);,Zs—l = 33.»,23-2 + (11 1! R 1)
= (dg(ui,vo,25-2) + 1, dg(us,v22-2) + 1, -+« , do(ui,vap-22s-2) + 1);
83, 20-1 = (min{dc(ui, vo,2s-1), da(ui, v2,2s-1)} + 1, min{de(ui,v2,26-1),
do(ui,v4,2e-1)} +1,- -+, min{de(ui, vap—2,2—1,dc(ui, vo,25-1} + 1));

(ii)‘gg"-ﬂs = 535,20—1 + (1! 1,---, 1)
= (de(ui,v1,2-1) + 1, do(ui,v32s-1) + 1, -+, da(ui,vap-1,2s-1) + 1);
85, 25 = (min{de(ui, vap—1,2:), da (i, v1,2)} + 1, min{dg(ui,v1,25),
do(ui v3,2s)} + 1, , min{de(usi, v2p—3,2e, do (Ui, vap_1,2:} + 1));

(i) if k > p, then Y, , = (2k—1+4ecu,, 2k—1+cy,, -, 2k—1+4¢y,),

i

Sz.‘,k = (2k +cua72k+cu“' c ,2k+cu-‘)'

Proof. (i) and (ii) are obvious. (iii) Let dc- (ui, v2j,0) = cu;. If de- (ui, v240)
is 2 unique minimum element in S5, o, then, by (i) and (ii), in S%_, there
are exactly k + 1 minimum elements for £ < p. Particularly, if k = p — 1,
then in S}/, . there are exactly p — 1 minimum elements, and every element

in S _; have a same value, and so if k > p

S b= (2k =14y, 2k — 1+ Cugy- -+ , 2k = 1+ c4,),
Sz.‘,k=(2k+c‘u“2k+cu“'" ’2k+cu‘-).

If dc- (ui,v2j,0) is not a unique minimum element in 53.-,0a then there
is a 7 < p such that every element in S}, | (resp. Szi,,, ) have the same
value, and for k£ > p > r the conclusion of (iii) also holds. O

By Lemma 2.4, we can divide T'(p, g* — 2) to two vertex disjoint nan-
otubes T; and T3 in which T; consists of layers 1,2, -- ,p—1 in T'(p, ¢*) and
T; consists of layers p,p+1,--- ,¢* — 2 in T(p, ¢*) so that H(C*,T(p,q" —
2),z) = H(C*,T1,z) + H(C*, T, z). Similarly, T(p,¢* —2) can be divided
as two vertex disjoint nanotubes T] and T3j in which T} consists of layers
¢ —p-1,---,¢*—2in T'(p,q*) and T} consists of layers 1,2,--- ,q* —p—2
in T'(p,q*) so that H(D*,T(p,q* — 2),z) = H(D*,T{,z) + H(D*, T}, z).
By Lemma 2.4, we have the following.

Theorem 2.5 Let T(p, q)[C, D;a) be a capped zig-zag nanotube, and
T(p,q*)[C*, D*;a] the associated caped zig-zag nanotube with

¢*2p+1. Then H(C*,T},z) = 2u.~eV(C*) Zi;i H(u:, Cy,z);
H(C*,Ty,z) = H(C*,Va(C*), ) - L322 p(1 + z)a?*-1;

H(C*,T(p,¢" - 2),2) = H(C*,T1,2) + H(C*, T),a)

= Tuevicr) Ziot H(wi, Gy, 2) + H(C*, Va(C"), 2) - TI52 (1 + 2)e 1,
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H(D*\T,z) = Zu.eV(D°)Zk_q —p—-lH(uHCk)x)l
H(D*,Tj,z) = H(D*,Va(D*),2) - Eq p(1 +$)='32'° 1

H(D".T(p.q" -2),2) = H(D", v '2) + H(D*,Tjrz)
zu.eV(D')zk - p—1 H(u,-,C,‘c‘,:n)

+H(D*,Va(D*),2) - 152 p(1 + )21,

Now we consider H(C*, D*,z). By Lemma 2.4(iii), for u,- € V(C*),
if ¢ > p, then S§ ._; = (2¢* — 3+ cu;y2¢* — 3+ cyuyy et 52¢" — 3 +
cy,), that is, the distance from u; to any white vertex on layer q —1,
an attachment vertex of D*, is equal to dc-(u;, V,(C*)) + 2¢* — 3. So,
for v; € V(D*), dr(pqe)ice,D*ia}(%i,v5) = do= (i, Va(C*)) +2¢* — 3 +
dp-(vj, Va(D*)). Therefore, we have the following.

Theorem 2.6 Let T(p, q)[C, D;a] be a capped zig-zag nanotube, and
T(p,g*)[C*, D*; a] the associated caped zig-zag nanotube. Then

H(C*,D*,z) = 22 ~3H(C*,V,(C*),z) - H(D*,V,(D*), ).

Theorem 2.7 Let T(p,q)[C, D;a] be a capped zig-zag nanotube, and
T(p,q*)[C*, D‘;a] the associated caped zig-zag nanotube with
q‘ 2p+1.
(T(p, 9)[C, D; a], z) = H(T(p, q*)[C*, D*; a], )
—H(C* w)+H(D* z) + H(T(p,q" - 2),7)
+ Eu.eV(C') Ek— H(’“’l’ Ck, )
+ H(C",Va(C¥), 2) - T2 p(1 + m)o-?
+ 214.€V(D‘) Ek—-q *—p—-1 H(u" Ck, z)
+ H(D*,Va(D*),2) - T2 p(1 + 7)1
+ 22" =3 H(C*, V,(C*),x) - H(D*,Vo(D*), z).

Corollary 2.8 Let T(p, q)[C,C;a] be a capped zig-zag nanotube, and
T(p,¢*)[C*, C"; a] the associated caped zig-zag nanotube with

g 2p+1.

H(T(p,9)[C, C; a],x) H(T(p,q")[C",C";a], 2)

= 2H(C",7) + H(T(5,4" ~ 2),2) +2 Zy,ev(c) Lhmt H(vis Cr2)
+2H(C™, Va(C*), ) - 152 p(1 + 2)2?*= + 22 —3(H(C, Vu(C*), 2))*.

From Theorem 2.7, it is not difficult to see that every term in
H(T(p, 9)[C, D;al, ) is not related to the position a of C' according to D.
So we have the following.
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Theorem 2.9 Let T(p, q)[C, D;a1] and T(p,q)[C, D;az] be any two non-
isomorphic capped zig-zag nanotubes, and

T(p,q*)[C*, D*;ay] and T(p,q*)[C*,D*;a;] the associated caped zig-zag
nanotubes with ¢* > p+1. Then H(T(p,q)[C, D; a1]) = H(T(p, q)[C, D; az)).

By Theorem 2.9, for any two non-isomorphic capped zig-zag nanotubes
T'(p,q)[C, D;a1], T(p,q)[C, D;az] and their associated caped zig-zag nan-
otubes T'(p,¢*)|C*, D*;a,] and T(p,q*)[C*, D*;ag] with ¢* > p + 1, they
have the same Hosoya polynomial. Therefore their Hosoya polynomial can
be simply denoted by H(T(p,q)[C, D)) and H(T(p,q*)[C*, D*)).

3 Discussion and Application

To calculate Hosoya polynomials of graphs by directly calculating dis-
tances of every dpair of vertices in graphs is tedious, although it can be
done so. A good method for calculating Hosoya polynomials of graphs is
to deduce formulae for special classes of graphs.

In the above section, for any capped zig-zag nanotube T'(p, g)[C, D], we
give a general formula for calculating Hosoya polynomial of T(p, q)[C, D),
in which the terms H(C*,z) + H(D*,z), Zu,.ewc-)zﬁ;i H(uy;, Cy, z),
Suiev(D+) Lhag—p-1 H (i, Cr, 2), H(C*,Va(C*), 2), H(D*,Va(D"), )
depend on the structures of caps C and D. However, for a much longer
capped zig-zag nanotube (that is, g is much large), p and the numbers of
vertices of caps C and D are much smaller than g, so the terms can be
easily and directly calculated, and then Hosoya polynomial of the capped
zig-zag nanotube can be easily deduced. We can conclude that the method
in the present paper is more efficient for calculating Hosoya polynomials of
much longer capped zig-zag nanotubes.

In the follows, we will show how to apply the previous theorems to
deduce the Hosoya polynomials of two capped zig-zag nanotubes.

Fig. 2: Two caps C, D and the extended caps C*, D*.

91



Example 1. Let T'(6,9)[C, D] be a caped zig-zag nanotube with ¢ > 11
and with caps C and D shown in Fig.2, and T'(6,4*)[C*, D*] the associated
caped zig-zag nanotube. Then
H(T(6,9)[C, D),z) = H(T(6,¢*)[C*, D*],z) = 12¢* + 38 + 99z + 210z% +
303z° +395z* + 46525 + 5052° + 50627 + 4822° +4502° + 432210 + 324! +
2287124156213 + 84214 41221546 Y5 _, (3¢* —6 —k)kz* +6(17¢* —70)z° +
6 i, (24(g° +1) — (¢* +22)k +k2)z* + 36 T30 2°(2¢* — 4 — k)z* +12(6+
6z + 62 + 623 + 624 + 25) 0 22(1 + z)z?*~1 +12(3 + 6z + 922 + 1223 +
152 + 1325 + 1028 + 727 + 478 + 2%)729" 3,
Proof. For the caps C and D, we have m=m/ =1,t =¢t' = [Z] =1,
¢* = q — 2, and the extended caps C* and D* are as shown in Fig. 2.
H(C*,z), H(D*,z), H(C*,V,(C*),z), H(D*,Vo(D*),z) can be cal-
culated directly.

H(C*,x) = 30 + 42z + 7822 + 93z3 + 962* + 7525 + 39z° + 12z7.
H(D*,z) = 32 + 45z + 842 + 102z + 107z* + 902> + 542° + 1427.
H(C*, Vo(C*),z) = 6(1 + = + 2% + 23 + z4).

H(D*,V,(D*),z) = 2(3 + 3z + 322 + 3z° + 3z% + z°).

In order to calculate H(C*,T},z), we divide vertices of C* to sym-
metry equivalence classes such that any two vertices in a same class are
in symmetric position in C*. Clearly, there are 5 symmetry equivalence
classes in C* each of which has 6 vertices. Take a representative u; in the
ith class, i = 1,2,3,4,5. It is easy to calculate that St ; =(0,2,4,6,4,2),
85 o = (1,1,3,55,3), S50 = (2,2,4,6,6,4), S5, o = (3,3,3,57,5),
535,0 = (4,4,4,5,6,5). Hence, by Lemma 2.4, the Hosoya polynomial
H(u;,Ct,z) from u; to layer k of T(p,g*), where i = 1,2,3,4,5 and
k= }11, 2,---,p—1, can be calculated easily, and it follows from Theorem
2.5 that

H(C", Ty,z) = 62“.’6 ug,u2,,us} Zi:l H(u;,Cy,z) = 6(z + 42 + 923 +
1624 +2525+342° 43927 43928 +362° +35210+2621! +18z1% +12213+ 6214),
H(C*,Ts,z) = 36(1 + = + 2% + 2° + %) 7 2 (1 + z)z?+1.

Similarly, we have

H(D*,T},z) = 2(3z +122% + 2723 + 48z + 752° + 104z° + 12327 + 1242% +
117z° + 111210 + 84z + 60x!2 + 4222 + 2424 + 6215),

H(D* T}, z) = 12(3 + 3z + 322 + 3% + 3% + 25) Y02 (1 + z)a?*- 1,
By Theorems 1.1 and 2.6,
H(T(6,q" - 2),z) = 12(q" — 2) + 6 X4, (3¢* — 6 — k)kz* + 6(17¢* — 70)z®
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+6 5L, (24(g* + 1) — (¢* + 22)k + k2)z* + 36 20 ~8(2¢" — 4 — k)z*,
H(C*,D*,z) = 12(3 4 6z + 922 + 1223 + 1524 + 1325 4+ 102° + 727 + 42® +
z9)2%9° -3,

Now, by Theorem 2.7, H(T'(6,q)(C, D},z) = H(T(6,¢*)[C*, D*] can
be given by the above calculating results. O
Example 2. Let T(10,¢)[C, D] be a caped zig-zag nanotube with q > 13
and with caps C' = D shown in Fig. 3, and T'(6,¢*)[C*, D*] the associated
caped zig-zag nanotube. Then
H(T(10,9)[C, D], z) = H(T(10, ¢*)[C*, D*], z) = 20¢* —80+190z+400z2+
60023 + 820z* + 100025 4 1180z° + 1330z7 + 1460z® + 1570z° + 1640z +

1650z} + 1610212 + 1540213 + 1500214 + 1440z15 + 1410218 + 1350217 +
1310218 + 104019 + 80022° + 600! + 400222 + 200223 + 100224

+1035_,(3(g* — 2) — k)kz* +10(29¢" — 158)z1° + 10 T2° | (40¢* +120—
(¢ +38)k+k2)z* +100 27 - -5(2¢* —4—k)z* +100(2+ 22+ 222+ 223+ 22 +
z° + 18) EZ;}%(I +z)z2%1 4 25(2+ 22 + 222 4 223 + 224 + 28 4 28)2220" -3,

CeD c<D

Fig. 3: Caps C = D and the extended caps C* = D*.

Proof. For the caps C = D, wehave m =m/ = 2, t =t' = [}] =1,
¢* = g — 2, and the extended caps C* and D* are as shown in Fig. 3.

Similarly, we have

H(C*,z) = H(D*, z) = 5(12 + 17z + 3222 + 4223 + 50z* + 502° + 4826 +
4227 + 32z° + 242° 4 13210 4 4711),

H(C*,V4(C*),z) = H(D*,Vo(D*), x) = 5(2+2z+222 4223 + 224 +25 + 26)

H(C*,T\,z) = H(D*,T{,z) = 5(2z + 8% + 18z + 32x% + 50z° + 70z° +
9177411428 +1332°+151210+ 161211+ 161212+ 154713 4150214 + 144715 +
14128 +135z'7 + 131218 4 10421° + 8022 4 6022 + 40?2 4 20223 + 10229).
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H(C*, T, z) = H(D*,T},z) = 50(2 + 2z + 222 + 223 + 224 + 2°
+2%) T o(1 + z)z% .
H(T(10,q" — 2),z) = 20(g" —2) + 10 Th_, (3(¢g" — 2) — k)kz* + 10(29¢* —
158)z10 + 10 82 |1 (40¢* + 120 — (¢* + 38)k + k2)z* 4 100 337 -5(2¢* —
4 - k)z*.
H(C*,D*,z) = 25(2 + 2z + 2z% + 2z° + 22* + 25 + 28)22%" -3,

By Corollary 2.8. the conclusion holds.
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