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Abstract: The pebbling number f(G) of a graph G is the smallest
number n such that, however n pebbles are placed on the vertices of
G, we can move a pebble to any vertex by a sequence of moves, each
move taking two pebbles off one vertex and placing one on an adjacent
vertex. Graham conjectured that for any connected graphs G and H,
f(Gx H) < f(G)f(H), where G x H represents the Cartesian product of
G and H. In this paper, we prove that f(Gx H) < f(G)f(H) when G has
the two-pebbling property and H = K ¥, a graph obtained from the rx s
complete bipartite graph K, by deleting k edges which form a matching.
We also show that Graham’s conjecture holds for K% x K;%2.
Ke{words: pebbling; Graham conjecture; Cartesian product; K,‘,fl X
K74
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1. Introduction

Pebbling in graph was first considered by Chung [1]. Consider a graph
G with a fixed number of pebbles placed on its vertices (i.e., a pebbling of
the graph G). A pebbling move consists of the removal of two pebbles from
a vertex, and the placement of one of those pebbles on an adjacent vertex.
The pebbling number of a vertex v in a graph G is the smallest number
f(G,v) such that it is possible to move a pebble to v by a sequence of
pebbling moves for every placement of f(G,v) pebbles on G. The pebbling
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number of a graph G, denoted by f(G), is the maximum of f(G,v) over all
vertices v. It is clear that f(G) > |V(G)| and f(G') > f(G), where G’ is a
spanning subgraph of G.

We say a graph G satisfies the two-pebbling property (respectively, the
odd-two-pebbling property) if two pebbles can be moved to any specified
target vertex when the total starting number of pebbles is 2f(G) — g +1
(respectively, 2f(G) —r+1), where g is the number of vertices with at least
one pebble (respectively, r is the number of vertices with an odd number
of pebbles). Evidently, graphs which are two-pebbling are also odd-two-
pebbling. Given a pebbling of G, a transmitting subgraph of G is a path
ZoZy - - - Tx such that there are at least two pebbles on zp and at least one
pebble on each of the other vertices in this path, except possibly zx. In
this case, we can transmit a pebble from g to zx.

Graham’s Conjecture: [1] For any connected graphs G and H,

f(Gx H) < f(G)f(H).

There are a few results supporting Graham’s conjecture. Chung [1]
proved this conjecture when G is a complete graph Ky, on m vertices and
H has the two-pebbling property. Moews [6] confirmed this conjecture
for trees. Snevily and Foster [7] further proved it when G is a tree or an
even cycle of at least 10 vertices and H has the two-pebbling property.
Herscovici and Higgins [5) proved it when G = H = Cs. Herscovici [4]
also proved it when G is a cycle for a variety of graphs H, including all
cycles. Wang [8] verified the case where G is a complete multi-partite graph
and H has the two-pebbling property. Recently, Feng and Ju [2,3] proved
Graham’s conjecture when G and H are fan graphs or wheel graphs, and
also showed it when G is a complete bipartite graph and H has the two-
pebbling property. In this paper, we prove that f(G x H) < f(G)f(H)
when G has the two-pebbling property and H = K_, k where s > 1 > 4
and k < 7. We also show that Graham’s conjecture holds for K- x K k2,
where s >r >4, n>m >4, kg <7 and ks < m. Our proof technique
closely follows that of [3].

Throughout this paper G will denote a simple connected graph with
vertex set V(G) and edge set E(G). For any vertex v of G, p(v) will refer
to the number of pebbles on v.

2. The pebbling number and the two-pebbling
property for K F

In this paper, without loss of generality, we always assume that {u,,...,u,}
and {v1,...,v,} is the bipartite partition of the vertex set of K,,, and K ¥
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is the graph obtained from K ; by deleting edges ujv;, ugve,. .., ukvk.

Theorem 2.1. Let s >r > 4. Then f(K J)=r+s.

Proof. Let r+s pebbles be placed on K" and p(z) denote the number
of pebbles on the vertex z. We first consider the target vertex u;, where
1 < ¢ < r. Without loss of generality, we assume that the target vertex
is 43 and p(u;) = 0. If there is a vertex in {vs,vs,...,v,} with at least
two pebbles or p(v;) > 2%, then we can put one pebble on u;. If there
is a vertex in {ug,us,...,u,} with at least four pebbles or there are at
least two vertices in {ug,us,...,u,} with at least two pebbles each, then
we can put one pebble on u;. Assume that p(v;) < 1fori=2,3,...,sand
p(v1) < 2% — 1. We consider the following cases.

Case 1. 6 < p(v1) < 7. There exists a vertexz € {ug,...,ur,v2,...,vs}
such that p(x) > 1. If p(u;) > 1 (¢ # 1), then we can move three pebbles
from v; to u;, and hence a pebble can be moved to u; from u;. If p(v;) > 1
(4 # 1), then we can move two pebbles from v; to ux, where 2 < k < r and
k # j, and hence {uk,v;,u;} forms a transmitting subgraph.

Case 2. 4 < p(v1) < 5. If p(vj,) = 1 for some jo, then two pebbles
can be moved to u;, from v, where i # jo. Therefore, {ui,, vj,,u1} forms
a transmitting subgraph. Suppose p(v;) =0fori =2,3,...,s. There must
be at least (T + s — 5) pebbles on {ug, u3,...,u,}. If p(u;,) > 2 for some i,
then we can move two pebbles from v; to u;,. By using four pebbles on u;,,
we can put a pebble on u; from u;,. Assume p(u;) <1fori=2,3,...,7.
Then there are at least two vertices in {ug,us,...,u,} with one pebble
each. Let p(u;,) = 1 and p(u;,) = 1. We can move a pebble from v; to u;,
and a pebble from v; to u;,. Therefore, one pebble can be moved to u;.

Case 3. 2 < p(v1) < 3. If p(uy,) = 3 for some iy, then we can move a
pebble from v; to u;,. The total number of pebbles on u;, is at least four,
and hence one pebble can be moved to u; from u;,. Suppose p(u;) < 2 for
2 < i < r. If there are two vertices u;, and u;, with p(ui,) = p(uj,) = 2,
then one pebble can be moved to u;. If there are two vertices u;, and
uj, With p(us) = 2 and p(uj,) = 1. We can move one pebble from v,
to uj,. Hence we can put one pebble on u;. Assume that p(u;) < 1 for
1=2,3,...,r. Since p(v;) < 1fori=2,...,s, we can choice two vertices
u;,v; such that p(u;) = p(v;) = 1 and i # j. Therefore, {v1,u;,v;,u1}
forms a transmitting subgraph.

Case 4. p(v1) < 1. It is impossible that p(u;) < 1 for i = 2,3,...,7.
We may assume that there is only one vertex u;, € {up,us,...,u,} with
2 < p(ui,) < 3. We can choice one vertex v; such that j # 1,ip and
p(vj) = 1. Therefore, {ui,,v;,u;1} forms a transmitting subgraph.

Similarly, we can prove that one pebble can be moved to v; for every
placement of r + s pebbles on K7 for the case of the target vertex v,
where 1 <i<s. So f(K;;)=r+s DO
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Since K, is a spanning subgraph of KT % Kk is a spanning subgraph
of K, , and f (Krs) =1+ s (see [3]), we have the followmg

Corollary 2.1. Let s> r >4 and k < r. Then f(X; )—r+s

Theorem 2.2. Let s > r > 4. Then K7 satisfies the two-pebbling
property.

Proof. Let p be the number of pebbles on K7, g be the number of
vertices with at least one pebble and p + ¢ = 2(r + s) + 1. Firstly, we
consider the target vertex u;, where 1 < i < r. Without loss of generality,
we assume that the target vertex is u;. If p(ui) = 1, then the number
of pebbles on all the vertices except u; is 2(r+s8)+1—g—-12r+s.
Since f(K; ;) = 7 + s, we can put one additional pebble on u, by using
2(r+s)+ 1—g—1 pebbles. If p(u;) = 0, then we consider the following
two cases.

(1) Suppose that p(v;) = 0 for some v;, where 2 < i < s. It is obvious
that ¢ < 7 + s — 2. If there is a vertex in {vg,vs,...,vs} with at least two
pebbles or there exists a transmitting subgraph {u;, vg,u1}, then by using
no more than three pebbles, we can put one pebble on u;. Clearly, the
remaining 2(r + s) + 1 — ¢ — 3 pebbles will be sufficient to put one more
pebble on u;. Otherwise, we consider the following subcases.

(1.1) Suppose that there are at least two vertices in {v2,vs,...,vs}
with one pebble each. Let p(vi,) = p(vj,) = 1, where 4p,jo > 2. We may
assume that p(ux) < 1 for k € {2,3,...,r}. If there is no more than one
vertex in {up, us, ..., ur} with one pebble, then ¢ < s+1,2(r+s)+1—¢g >
2r + s pebbles on K7 and p(v1) > 2r > 8. Then it is possible to move 4
pebbles total from v; to any two vertices u’ and 4" adjacent to v; and form
transmitting graphs {v’, viy,u1} and {u”,vj,,u1}. If there are at least two
vertices in {ug,us,...,u,} with one pebble each. Let p(ux,) = p(ug,) = 1.
Since g < r+5-2,2(r+8)+1—q > r+3+3 pebbleson K7 and p(v1) > 4,
we can move a pebble to uk, and a pebble to ug,. Therefore, {uz,, vy, u1}
and {ug,, vjo, U1} (Or {uey, Vig, U1} and {ug,, vj,, u1}) form two transmitting
subgraphs.

(1.2) Suppose that there is only one vertex in {v2,vs,...,v,} with
one pebble. Clearly, ¢ < r + 1. Let p(vi,) = 1, where ip > 2. We
may assume that p(ux) < 1 for ux € N(v;,). If there is an integer jo €
{2,8,...,7} such that p(u;,) = 1 and jo # io, then {v1,uj,, iy, u1} forms a
transmitting subgraph. By using no more than four pebbles, we can move
one pebble from the transmitting subgraph to ;. Clearly, the remaining
2(r+s)+1—-qg—42>2(r+s)+1—(r+1) —4 pebbles will be sufficient
to put one more pebble on u;. Let p(u;) = 0 for each i # 4p. Then ¢ < 3.
So 2(r + 8) +1 —gq > 2(r + s) — 2 pebbles on K-]. There are at least 13

pebbles on {vy,u;}. If p(ui,) = 3, then [ﬂ;'-’l] pebbles can be moved to

100



U4, from v;. The total number of pebbles on u;, is p(ui,) + [-m_#“l] >8.

So we can move 2 pebbles to uy. If 1 < p(u;,) < 2, then p(v;) > 11. So we
can move 3 pebbles to u;, and move 2 pebbles to u;,, where jo # io. Thus
{jos Vig, u1} forms a transmitting subgraph and there are at least four
pebbles on u;,. Therefore, two pebbles can be moved to u;. If p(u;) =0,
then p(v;) > 13. We can move 6 pebbles to uj,, where jo # 0. Thus,
3 pebbles can be put on v;,. The total number of pebbles on v;, is four.
Therefore, two pebbles can be moved to u; from v;,.

(1.3) Suppose that p(v;) =0 for 2 <7 < s. It is clear that ¢ < r and
p 2 28+ 7 + 1. If there is one vertex in {ug,us,...,u,} with at least four
pebbles or there are at least two vertices in {ug,us,...,u,} with at least
two pebbles each, then we can always move one pebble to u; by using four
pebbles. So there are still 2s+7+1 -4 > (r + s) + (s — 4) + 1 pebbles
on {ug,us,...,u,,v1}. Hence we can put one more pebble on u;. If there
is only one vertex in {ug,us,...,u,} with three pebbles (and the other
vertices with at most one pebble), then we can move one pebble from v,
to this vertex . So by using four pebbles on this vertex, one pebble can
be moved to u;. There are still 2s+7+1—5 > (r + 3) + (s — 4) pebbles
on {ug,us,...,ur,v1}, and we can put one more pebble on u;. We now
assume that p(u2) + p(uz) +... +p(u,) < 2+ (r —2) =r and p(u;) < 2 for
2<i<r Thenp(vy)) > 2s+r+1-r=25+1.

If ¢ > 5, then there exist four vertices u;y,u;, ,ui, and u;, with p(u;, ) > 1
for 0 < k < 3. So we can put a pebble on each of the four vertices from
v1. Thus each has two pebbles. Therefore two pebbles can be moved to u;
from these vertices.

If ¢ = 4, then there exist three vertices u;,, u;, and u;, with p(u;,),
p(uz,), p(uj) > 1. Obviously, p = 2(r + s) + 1 — 4. If p(uy,) = p(u;,) =
P(ujs) = 1, then p(v;) > 10. So we can move one pebble to each of u;, and
uj,, and move three pebbles to u;,. We can move two pebbles from those
vertices to u; . If p(uj) + p(uj,) + p(us) = 4, then p(v;) > 9. So two
pebbles can be moved to the vertex which has two pebbles. In addition, we
can move a pebble to each of the other two vertices. Therefore two pebbles
can be moved to u; from these vertices.

If ¢ = 3, then we can move two pebbles to u; similar to the case ¢ = 4.

If ¢ = 2, then there exists only one vertex u; with 2 > p(u;) > 1.
Obviously, we can move [P—(-;—‘Z] = [w] pebbles to u;. Since

p(u;) + [M%ﬂﬂl] > r+ s > 8, two pebbles can be moved to u;

from u;.

If ¢ =1, then p(v1) > 2(r + s) > 16. We can move two pebbles from v;
towuy .

(2) Suppose that p(v;) = 1 for every v;, where 2 < i < s. If there is a
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vertex in {uz,us,...,ur} With at least four pebbles or there are at least two
vertices in {u2, u3, - . ., ur } with at least two pebbles each, then it is obvious
that two pebbles can be moved to u;. If there are two vertices u;, and uj,
with 3 > p(u;,) 2> 2 and p(ujo) = 1, then p = 2(r+8)+1—¢ > r+s+2and
p(v1) > 7+8+2—(s—1)—(3+r~—2) = 2. So we can move one pebble from v,
to uj,. Thus {ui,, vjo, 1} and {uj,, viy,u1} form two transmitting graphs.
If p(u;) < 1 for 2 < i < r and there are two vertices u;, and u;, with
p(uiy) = p(uj,) = 1, then p(v1) > 4, and we can move one pebble to u;,
by using two pebbles on v;. So {1, ujo, Vig, u1} and {us,, vj,, u1} form two
transmitting graphs. If there is only one vertex u;, € {u2,us,...,u,} with
0 < p(ui,) < 3 (and the other vertices having no pebbles). It is clear that
g<s+1,p>2(r+s)+1—g=2r+sandp(v1) > 2r+s—(s—1)—p(ui)-
So [2"“_(3—;)_? (i) pebbles can be put on u;,, and the total number of

pebbles on u;, is p(us,) + [2r+’_(8;1)—"("‘°)] > 4. Therefore, two pebbles
can be moved to u;.

This proves that if the target vertex is u;, then we can move two pebbles
to u; for every placement of 2(r + s) + 1 — g pebbles on K. If the target
vertex is v; for 1 < i < s, then we can use a similar way to draw the
conclusion. O

Since K7 is a spanning subgraph of Kk and f(K7F) = f(K[T), we
have the following

Corollary 2.2. Let s > 7 >4 and k < r. Then K ¥ also satisfies the
two-pebbling property.

3. Main Results

In order to prove the main results, we need the following preliminaries.
Let G and H be two graphs. The Cartesian products of G and H, denote
by G x H, is the graph whose vertex set is Cartesian product

V(G x H)=V(G) x V(H) = {(z,y)|lz € V(G),y € V(H)},

and two vertices (z,y) and (z’,y’) are adjacent if and only if z = z’ and
yy' € E(H), or zz' € E(G) and y = y'. We can depict G x H by drawing
a copy of H at every vertex of G and connecting each vertex in one copy of
H to the corresponding vertex in an adjacent copy of H. We write {z} x H
(respectively, G x {y}) for the subgraph of vertices whose projection onto
V(G) is the vertex z (respectively, whose projection onto V(H) is y). If the
vertices of G are labelled z;, then for any distribution of pebbles on G x H,
we write p; for the number of pebbles on {z;} x H, ¢; for the number of
occupied vertices of {z;} x H, r; for the number of vertices of {z;} x H
with an odd number of pebbles.
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Theorem 3.1. [1,3] Let G satisfy the two-pebbling property. Then

f(Km x G) < f(Km)f(G) =mf(G),
f(Kmn x G) £ f(Kmn)f(G) = (m +n) f(G).

The following Lemma 3.1 describes how many pebbles we can transfer
from one copy of H to an adjacent copy of H in G x H. The proof is
straightforward.

Lemma 3.1. [5] Let z;z; € E(G). Suppose that in G x H, we have
Pi pebbles occupying g; vertices of {z;} x H. If ¢; —1 < k < p;, and if k
and p; have the same parity, then k pebbles can be retained on {z;} x H,
while moving (p; — k)/2 pebbles onto {z;} x H. If k and p; have opposite
parity, we must leave k + 1 pebbles on {z;} x H, so we can only move
(pi — k — 1)/2 pebbles onto {z;} x H. In particular, we can always move
at least (p; — ¢;)/2 pebbles onto {z;} x H.

Lemma 3.2. [3] Suppose that G satisfies the odd-two-pebbling prop-
erty and p pebbles are placed on K; 5 X G in such a way that there are
7 vertices with odd number of pebbles. Let vy be the vertex of K , with
degree n. If p+7 > 2(n+ 1) f(G), then two pebbles can be moved to (v, y)
by a sequence of pebbling moves.

Lemma 3.3. [3] Suppose that G satisfies the odd-two-pebbling prop-
erty, p pebbles are assigned to vertices of K, x G and r is the number of
vertices with an odd number of pebbles. If p+r > 4f(G), then two pebbles
can be moved to any specified vertex of K3 x G by a sequence of pebbling
moves.

Lemma 3.4. Suppose that G satisfies the odd-two-pebbling property,
and p pebbles are assigned to vertices of K22 X G and r is the number of
vertices with an odd number of pebbles. If p+r > 8f(G), then two pebbles
can be moved to any specified vertex of K22 x G by a sequence of pebbling
moves.

Proof. Without loss of generality, we assume that the target vertex is
(u1,y) for some y € G. K22 x G can be partitioned into two subgraphs,
say, My and Mj, as follows. M; is A x G and M, is B x G, where A is
the induced subgraph of {u;,v2} in K22 and B is the induced subgraph
of {ug,v} in Ka3. Clearly, A = B = K. For i = 1 and 2, suppose
that M; contains p; pebbles with r; vertices having an odd number of
pebbles. It is evident that p = py + pe, r = r1 + rp and p; + r; is even
for i = 1and 2. If p; + r1 > 4f(G), then two pebbles can be moved
to (u1,y) by Lemma 3.3. Now we assume that p; + 7 < 4f(G) and
p2+712 > 4f(G). Let g2 be the number of occupied vertices of M. Clearly,
T2 £ g2 < |V(K2 x G)| £ f(K2 x G) < 2f(G) (see Theorem 3.1). Hence,
p2 2 4f(G)—r2+2 > g2+2, and ps and 4f(G) —rz +2 have the same parity.
Similar to Lemma 3.1, we can move M);(zim pebbles to M, while
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keeping 4(G) — 2 + 2 pebbles on Ma. Since pa + 12 > 8f(G) —p1—11, We
have py+ BEERI=(IC)4D) 4 $@)-pi=n=4/(G)=2 _ f(@)4BZT -1,
in other words, we have p; + Mﬂiﬁ@"’—zz > 2f(G). By Theorem 3.1,
we can move one pebble from 2f(G) pebbles on M, to (u1,y). Additionally,
there are still 4f(G) — r2 + 2 pebbles on M2. By Lemma 3.3, two pebbles
can be moved to (v1,y) on Ma. Since (uy,y) and (v1,¥) are adjacent, one
pebble can be moved to (u1,y) from two pebbles on (v,y). O

Lemma 3.5. Let u be a vertex of K3 3 with degree 3, y € G and G
satisfy the two-pebbling property. Then f (Ka 3 X G, (u,y)) < 6f(G).

Proof. Without loss of generality, we assume that the target vertex is
(u3,y) for some y € G and 6 f(G) pebbles are placed on K3 3 XG. K3 3 XG
can be partitioned into two subgraphs, say, M1 and M, as follows. M, is
AxG and M, is Bx G, where A is the induced subgraph of {ug, ug, v1,v3}in
K33 and B is the induced subgraph of {u1,v2} in K3} 3,3- Clearly, A= Ka
and B = K. For i = 1 and 2, suppose that M; contains p; pebbles with r;
vertices having an odd number of pebbles. If p; > 4f(G), then one pebble
can be moved to (u3,y) by Theorem 3.1. Now we assume that p; < 4f(G).
Let p; = 4f(G) —t and p; = 2f(G) + t for some positive integer ¢. If
t < 2f(G) —r2, then we can place at least (p2 —r2)/2 pebbles on vertices of
M, from M, by a sequence of pebbling moves, and hence, in M;, we have
altogether

pl_'_Pz;Tz ___4f(G)_t+6f(G)—(4f2(G)—t)—T2
_6f(G) +(“f(G)—t) -
2
> 4f(G)

pebbles. By Theorem 3.1, we can move one pebble to (us,y). If ¢t >
2f(G) — ra, then po + r2 = 2f(G) + ¢t + r2 > 4f(G). Two pebbles can
be moved to (v2,y) by Lemma 3.3, and hence we can move one pebble to
('U3, y)' =
Theorem 3.2. Let s > 4 and G satisfy the two-pebbling property.
Then
f(Kid x G) < f(K;)f(G) = (4 +8)f(G).

Proof. Let (4 + s)f(G) pebbles be placed on K 4 x G. Firstly, let
the target vertex be (u;,y) for some y € G, where 1 < i < 4. Without
loss of generahty, we assume that the target vertex is (u;,y) for some
y € G. K4 s X G can be partitioned into two subgraphs, say, M; and
M,, as follows. M, is A x G and M, 1s B x G, where A is the induced
subgraph of {u1,u2,v3,v4,...,0s} in K4 4.5 and B is the induced subgraph

of {us,uq,v1,v2} in K;';‘. Clearly, A=Kj, 2and B = Kjp. Fori=1
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and 2, suppose that M; contains p; pebbles with r; vertices having an odd
number of pebbles. If p; > sf(G), then one pebble can be moved to (u;,y)
by Theorem 3.1. Now we assume that p; < sf(G). Let p; = sf(G) —t and
p2 = 4f(G) + t for some positive integer ¢. If ¢ < 4f(G) — ro, then we can
place at least (p —72)/2 pebbles on vertices of M) from M, by a sequence
of pebbling moves, and hence, in M;, we have altogether

L 4+9f(0) - (;f(G) —9-"2 5 456)

n+227 2 2~ 5f(G) -

pebbles. By Theorem 3.1, we can move one pebble to (uj,y). If t >
4f(G) — 72, then pa + 1o = 4f(G) + t + r2 > 8f(G). Two pebbles can be
moved to (vs,y) by Lemma 3.4, and hence one pebble can be moved to
(ul ) y)

Next, let the target vertex be (v;,y) for some y € G, where 1 <i < 4.
Without loss of generally, we assume that the target vertex is (vj,y).
K“ x G can be partitioned into two subgraphs, say, M; and M,, as
follows. M; is A x G and M; is B x G, where A is the induced sub-
graph of {us, u4,v1,v2,vs,...,%} in K 4 and B is the induced subgraph
of {u1,u2,vs,v4} in K;,;‘. Clearly, A = K342 and B = K33. Using the
same way as the above, we can prove that one pebble can be moved to
(‘Ul, )

Finally, if s > 4, then let the target vertex be (v;,y) for some y € G,
where 5 < j <s. K;4 4,5 X G can be partitioned into two subgraphs, say, M,
and M, as follows. M1 is Ax G and M; is B x G, where A is the induced
subgraph of {u1, u,us,v2,v4,v;} in K, 4 and B is the induced subgraph
of {u4,v1,v3,vs,...,0j-1,%j41,...,Vs} in K;::. Clearly, A = Ks"é and
B = K, ,-3. For i =1 and 2, suppose that M; contains p; pebbles with r;
vertices having an odd number of pebbles. If p; > 6f(G), then one pebble
can be moved to (vj,y) by Lemma 3.5. Now we assume that p; < 6f(G).
Let py = 6f(G) — t and p2 = (s — 2)f(G) + t for some positive integer t.
If t < (s — 2)f(G) — r2, then we can place at least (p; — r2)/2 pebbles on
vertices of M; from M, by a sequence of pebbling moves, and hence, in
M,, we have altogether

L UENO) = 65Q) =) =rs o o

P2
1+ — 2 =6f(G) - 2

pebbles. By Lemma 3.5, we can move one pebble to (vj,y). Ift > (s —
2)f(G) =7z, then pa+72 > (s —2) f(G) +(s—2) f(G) = 2(s - 2) f(G). Two
pebbles can be moved to (u4,y) by Lemma 3.2, and hence one pebble can

be moved to (v;,y). O
Theorem 3.3. Let s > r > 4 and G satisfy the two-pebbling property.

Then

FKZS x G) < f(KZ)f(G) = (r + 8)£(G).
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Proof. Use induction on r. It is known from Theorem 3.2 that the re-
sult holds for » = 4. Now suppose that Theorem 3.3 holds for » — 1(r > 5).
We will prove that Theorem 3.3 holds for 7. Let (r + s)f(G) pebbles be
placed on K7 x G. Firstly, let the target vertex be (u:,y) for some y € G,
where 1 < 7 < r. Without loss of generality, we assume that the target
vertex is (u1,y) for some y € G. K[ x G can be partitioned into two sub-
graphs, say, M; and M;, as follows. M; is AXG and M is BxG, where A is
the induced subgraph of {u;,u2,...,%r—1,%1,2,. ., Vr—=2,Vr, Ur41,.--,Vs}
in K-7 and B is the induced subgraph of {u,,v,—1} in K;;. Clearly,

:_S;:i)l and B = K,. For i = 1 and 2, suppose that M; con-
tains p; pebbles with r; vertices having an odd number of pebbles. If
7 2 (r+ s —2)f(G), then by K:_(g"sl_)l being a spanning subgraph of
—(r-2)
r-1,5—

, and the induction hypothesis, we have

FES2 % 6) < FKTSTD % @) < KD A(©) = (r+5-2)£(6),
and hence we can move one pebble to (u1,y). Let py = (r+3-2)f(G) —t
and p; = 2f(G) + t for some positive integer t. If t < 2f(G) — ro, then
we can place at least (p; — 72)/2 pebbles on vertices of M; from M; by a
sequence of pebbling moves, and hence, in M;, we have altogether

(r+9)f(G) - ((r+s-2)f(G)—t)—r2

i+ 2212 = (r+5-2)F(C)—t+ >

2

2 (r+s-2)f(G)

pebbles. So we can move one pebble to (u1,y). If t > 2f(G) — 72, then
p2 +72 > 2f(G)+ 2f(G) — r2 + 2 = 4f(G). So two pebbles can be moved
to (vr—1,y) by Lemma 3.3, and hence one pebble can be moved to (u,y).

Secondly, let the target vertex is (v;,y) forsomey € G, where1 < i < r.
We assume that the target vertex is (v1,y). K, ; X G can be partitioned into
two subgraphs, say, M; and M, as follows. M; is Ax G and Mz is B x G,
where A is the induced subgraph of {ui,u,...,%r-1,v1,v2,...,Vr—2,Vr,
Vr41y.-.,Vs} in K77 and B is the induced subgraph of {ur,vr-1} in K.

Clearly, A = K,__S'l':i)l and B = K,. Using the same way as the above, we
can move one pebble to (v1,y).

Finally, if s > r, then let the target vertex be (vj,y) for some y € G,
where r+1 < j <'s. K7 X G can be partitioned into two subgraphs, say,

M, and M, as follows. M) is AXG and M, is Bx G, where A is the induced

subgraph of {uy,u2,...,ur_1,v1,%2,...,9r-3,%,v;} in K7 and B is the
induced subgra,ph of {u,, Vr—2,Ur—1yUr41yc+ 3 Uj=1, V54150 o oy 1),} in K;,';
Clearly, A = K:_(;;i)l and B = Kj s-r41. For i =1 and 2, suppose that

M; contains p; pebbles with r; vertices having an odd number of pebbles.
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If py > (2r — 2)f(G), then by :_('{;1_)1 being a spanning subgraph of

;_(Q‘,i’l and the induction hypothesis, we have

FES22 % G) < FUESEM % 6) < FURE20£(6) = 2r - 2)5(G),

r=1l,r—

and hence we can move one pebble to (v;,y). Now we assume that p; <
(2r —2)f(G). Let py = (2r —2)f(G)—tand ps = (s—7+2)f(G) + ¢
for some positive integer t. If ¢t < (s — 7 + 2) f(G) — r2, then we can place
at least (pa — r2)/2 pebbles on vertices of M) from M, by a sequence of
pebbling moves, and hence, in M, we have altogether

T )f(G) = ((2r - Df(G) —t) — 72
2

p+ B2 = 2r - 2)f(6) - ¢

> (2r - 2)f(G)
pebbles. So we can move one pebble to (v;,y). If t > (s —r+2)f(G) — ra,
thenpa+7r2 > (s—r+2)f(G)+(s—r+2)f(G) =2(s -7+ 2)f(G). Two
pebbles can be moved to (u,,y) by Lemma 3.2, and hence one pebble can
be moved to (v;,y). O

Since K7 x G is a spanning subgraph of K;:f X G, the following corol-

laries are obvious by Theorem 3.3.
Corollary 3.1. Let s > r >4, k < r and G satisfy the two-pebbling
property. Then
f(Kr ¢ x G) £ f(K ) f(G).

Corollary 3.2. Let s>r>4,n>m >4, k; <r and ky <m. Then
KB x KRk < f(RZR) FRGR).
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