The Graham's pebbling conjecture for

$$K_{r,s}^{-k_1} \times K_{m,n}^{-k_2*}$$

Gang Chen[†]

Department of Math, Ningxia University, Yinchuan, Ningxia 750021, China.

Jian-Hua Yin, Ze-Tu Gao

Department of Applied Math, College of Information Science and Technology, Hainan University, Haikou, Hainan 570228, China.

Abstract: The pebbling number f(G) of a graph G is the smallest number n such that, however n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Graham conjectured that for any connected graphs G and H, $f(G \times H) \leq f(G)f(H)$, where $G \times H$ represents the Cartesian product of G and H. In this paper, we prove that $f(G \times H) \leq f(G)f(H)$ when G has the two-pebbling property and $H = K_{r,s}^{-k}$, a graph obtained from the $r \times s$ complete bipartite graph $K_{r,s}$ by deleting k edges which form a matching. We also show that Graham's conjecture holds for $K_{r,s}^{-k_1} \times K_{m,n}^{-k_2}$.

Keywords: pebbling; Graham conjecture; Cartesian product; $K_{r,s}^{-k_1} \times K_{m,n}^{-k_2}$

Mathematics Subject Classification (2000): 05C35

1. Introduction

Pebbling in graph was first considered by Chung [1]. Consider a graph G with a fixed number of pebbles placed on its vertices (i.e., a pebbling of the graph G). A pebbling move consists of the removal of two pebbles from a vertex, and the placement of one of those pebbles on an adjacent vertex. The pebbling number of a vertex v in a graph G is the smallest number f(G, v) such that it is possible to move a pebble to v by a sequence of pebbling moves for every placement of f(G, v) pebbles on G. The pebbling

^{*}This work is supported by National Natural Science Foundation of China (10861006;10401010).

[†]Corresponding author, E-mail: chen_g@nxu.edu.cn

number of a graph G, denoted by f(G), is the maximum of f(G, v) over all vertices v. It is clear that $f(G) \geq |V(G)|$ and $f(G') \geq f(G)$, where G' is a spanning subgraph of G.

We say a graph G satisfies the two-pebbling property (respectively, the odd-two-pebbling property) if two pebbles can be moved to any specified target vertex when the total starting number of pebbles is 2f(G) - q + 1 (respectively, 2f(G) - r + 1), where q is the number of vertices with at least one pebble (respectively, r is the number of vertices with an odd number of pebbles). Evidently, graphs which are two-pebbling are also odd-two-pebbling. Given a pebbling of G, a transmitting subgraph of G is a path $x_0x_1\cdots x_k$ such that there are at least two pebbles on x_0 and at least one pebble on each of the other vertices in this path, except possibly x_k . In this case, we can transmit a pebble from x_0 to x_k .

Graham's Conjecture: [1] For any connected graphs G and H,

$$f(G \times H) \le f(G)f(H)$$
.

There are a few results supporting Graham's conjecture. Chung [1] proved this conjecture when G is a complete graph K_m on m vertices and H has the two-pebbling property. Moews [6] confirmed this conjecture for trees. Snevily and Foster [7] further proved it when G is a tree or an even cycle of at least 10 vertices and H has the two-pebbling property. Herscovici and Higgins [5] proved it when $G = H = C_5$. Herscovici [4] also proved it when G is a cycle for a variety of graphs H, including all cycles. Wang [8] verified the case where G is a complete multi-partite graph and H has the two-pebbling property. Recently, Feng and Ju [2,3] proved Graham's conjecture when G and H are fan graphs or wheel graphs, and also showed it when G is a complete bipartite graph and H has the twopebbling property. In this paper, we prove that $f(G \times H) \leq f(G)f(H)$ when G has the two-pebbling property and $H = K_{r,s}^{-k}$, where $s \geq r \geq 4$ and $k \leq r$. We also show that Graham's conjecture holds for $K_{r,s}^{-k_1} \times K_{m,n}^{-k_2}$, where $s \geq r \geq 4$, $n \geq m \geq 4$, $k_1 \leq r$ and $k_2 \leq m$. Our proof technique closely follows that of [3].

Throughout this paper G will denote a simple connected graph with vertex set V(G) and edge set E(G). For any vertex v of G, p(v) will refer to the number of pebbles on v.

2. The pebbling number and the two-pebbling property for $K_{r,s}^{-k}$

In this paper, without loss of generality, we always assume that $\{u_1, \ldots, u_r\}$ and $\{v_1, \ldots, v_s\}$ is the bipartite partition of the vertex set of $K_{r,s}$, and $K_{r,s}^{-k}$

is the graph obtained from $K_{r,s}$ by deleting edges $u_1v_1, u_2v_2, \ldots, u_kv_k$.

Theorem 2.1. Let $s \geq r \geq 4$. Then $f(K_{r,s}^{-r}) = r + s$.

Proof. Let r+s pebbles be placed on $K_{r,s}^{-r}$ and p(x) denote the number of pebbles on the vertex x. We first consider the target vertex u_i , where $1 \leq i \leq r$. Without loss of generality, we assume that the target vertex is u_1 and $p(u_1) = 0$. If there is a vertex in $\{v_2, v_3, \ldots, v_s\}$ with at least two pebbles or $p(v_1) \geq 2^3$, then we can put one pebble on u_1 . If there is a vertex in $\{u_2, u_3, \ldots, u_r\}$ with at least four pebbles or there are at least two vertices in $\{u_2, u_3, \ldots, u_r\}$ with at least two pebbles each, then we can put one pebble on u_1 . Assume that $p(v_i) \leq 1$ for $i = 2, 3, \ldots, s$ and $p(v_1) \leq 2^3 - 1$. We consider the following cases.

Case 1. $6 \le p(v_1) \le 7$. There exists a vertex $x \in \{u_2, \ldots, u_r, v_2, \ldots, v_s\}$ such that $p(x) \ge 1$. If $p(u_i) \ge 1$ $(i \ne 1)$, then we can move three pebbles from v_1 to u_i , and hence a pebble can be moved to u_1 from u_i . If $p(v_j) \ge 1$ $(j \ne 1)$, then we can move two pebbles from v_1 to u_k , where $2 \le k \le r$ and $k \ne j$, and hence $\{u_k, v_j, u_1\}$ forms a transmitting subgraph.

Case 2. $4 \le p(v_1) \le 5$. If $p(v_{j_0}) = 1$ for some j_0 , then two pebbles can be moved to u_{i_0} from v_1 , where $i_0 \ne j_0$. Therefore, $\{u_{i_0}, v_{j_0}, u_1\}$ forms a transmitting subgraph. Suppose $p(v_i) = 0$ for $i = 2, 3, \ldots, s$. There must be at least (r+s-5) pebbles on $\{u_2, u_3, \ldots, u_r\}$. If $p(u_{i_0}) \ge 2$ for some i_0 , then we can move two pebbles from v_1 to u_{i_0} . By using four pebbles on u_{i_0} , we can put a pebble on u_1 from u_{i_0} . Assume $p(u_i) \le 1$ for $i = 2, 3, \ldots, r$. Then there are at least two vertices in $\{u_2, u_3, \ldots, u_r\}$ with one pebble each. Let $p(u_{i_0}) = 1$ and $p(u_{j_0}) = 1$. We can move a pebble from v_1 to v_{i_0} and a pebble from v_1 to v_{i_0} . Therefore, one pebble can be moved to v_1 .

Case 3. $2 \leq p(v_1) \leq 3$. If $p(u_{i_0}) \geq 3$ for some i_0 , then we can move a pebble from v_1 to u_{i_0} . The total number of pebbles on u_{i_0} is at least four, and hence one pebble can be moved to u_1 from u_{i_0} . Suppose $p(u_i) \leq 2$ for $2 \leq i \leq r$. If there are two vertices u_{i_0} and u_{j_0} with $p(u_{i_0}) = p(u_{j_0}) = 2$, then one pebble can be moved to u_1 . If there are two vertices u_{i_0} and u_{j_0} with $p(u_{i_0}) = 2$ and $p(u_{j_0}) = 1$. We can move one pebble from v_1 to u_{j_0} . Hence we can put one pebble on u_1 . Assume that $p(u_i) \leq 1$ for $i = 2, 3, \ldots, r$. Since $p(v_i) \leq 1$ for $i = 2, \ldots, s$, we can choice two vertices u_i, v_j such that $p(u_i) = p(v_j) = 1$ and $i \neq j$. Therefore, $\{v_1, u_i, v_j, u_1\}$ forms a transmitting subgraph.

Case 4. $p(v_1) \leq 1$. It is impossible that $p(u_i) \leq 1$ for $i = 2, 3, \ldots, r$. We may assume that there is only one vertex $u_{i_0} \in \{u_2, u_3, \ldots, u_r\}$ with $2 \leq p(u_{i_0}) \leq 3$. We can choice one vertex v_j such that $j \neq 1, i_0$ and $p(v_j) = 1$. Therefore, $\{u_{i_0}, v_j, u_1\}$ forms a transmitting subgraph.

Similarly, we can prove that one pebble can be moved to v_i for every placement of r+s pebbles on $K_{r,s}^{-r}$ for the case of the target vertex v_i , where $1 \le i \le s$. So $f(K_{r,s}^{-r}) = r+s$. \square

Since $K_{r,s}^{-r}$ is a spanning subgraph of $K_{r,s}^{-k}$, $K_{r,s}^{-k}$ is a spanning subgraph of $K_{r,s}$ and $f(K_{r,s}) = r + s$ (see [3]), we have the following

Corollary 2.1. Let $s \ge r \ge 4$ and $k \le r$. Then $f(K_{r,s}^{-k}) = r + s$.

Theorem 2.2. Let $s \geq r \geq 4$. Then $K_{r,s}^{-r}$ satisfies the two-pebbling property.

- **Proof.** Let p be the number of pebbles on $K_{r,s}^{-r}$, q be the number of vertices with at least one pebble and p+q=2(r+s)+1. Firstly, we consider the target vertex u_i , where $1 \le i \le r$. Without loss of generality, we assume that the target vertex is u_1 . If $p(u_1)=1$, then the number of pebbles on all the vertices except u_1 is $2(r+s)+1-q-1 \ge r+s$. Since $f(K_{r,s}^{-r})=r+s$, we can put one additional pebble on u_1 by using 2(r+s)+1-q-1 pebbles. If $p(u_1)=0$, then we consider the following two cases.
- (1) Suppose that $p(v_i) = 0$ for some v_i , where $2 \le i \le s$. It is obvious that $q \le r + s 2$. If there is a vertex in $\{v_2, v_3, \ldots, v_s\}$ with at least two pebbles or there exists a transmitting subgraph $\{u_j, v_k, u_1\}$, then by using no more than three pebbles, we can put one pebble on u_1 . Clearly, the remaining 2(r+s)+1-q-3 pebbles will be sufficient to put one more pebble on u_1 . Otherwise, we consider the following subcases.
- (1.1) Suppose that there are at least two vertices in $\{v_2,v_3,\ldots,v_s\}$ with one pebble each. Let $p(v_{i_0})=p(v_{j_0})=1$, where $i_0,j_0\geq 2$. We may assume that $p(u_k)\leq 1$ for $k\in\{2,3,\ldots,r\}$. If there is no more than one vertex in $\{u_2,u_3,\ldots,u_r\}$ with one pebble, then $q\leq s+1$, $2(r+s)+1-q\geq 2r+s$ pebbles on $K_{r,s}^{-r}$ and $p(v_1)\geq 2r\geq 8$. Then it is possible to move 4 pebbles total from v_1 to any two vertices u' and u'' adjacent to v_1 and form transmitting graphs $\{u',v_{i_0},u_1\}$ and $\{u'',v_{j_0},u_1\}$. If there are at least two vertices in $\{u_2,u_3,\ldots,u_r\}$ with one pebble each. Let $p(u_{k_0})=p(u_{\ell_0})=1$. Since $q\leq r+s-2$, $2(r+s)+1-q\geq r+s+3$ pebbles on $K_{r,s}^{-r}$ and $p(v_1)\geq 4$, we can move a pebble to u_{ℓ_0} and a pebble to u_{ℓ_0} . Therefore, $\{u_{k_0},v_{i_0},u_1\}$ and $\{u_{\ell_0},v_{j_0},u_1\}$ (or $\{u_{\ell_0},v_{i_0},u_1\}$ and $\{u_{k_0},v_{j_0},u_1\}$) form two transmitting subgraphs.
- (1.2) Suppose that there is only one vertex in $\{v_2, v_3, \ldots, v_s\}$ with one pebble. Clearly, $q \leq r+1$. Let $p(v_{i_0})=1$, where $i_0 \geq 2$. We may assume that $p(u_k) \leq 1$ for $u_k \in N(v_{i_0})$. If there is an integer $j_0 \in \{2,3,\ldots,r\}$ such that $p(u_{j_0})=1$ and $j_0 \neq i_0$, then $\{v_1,u_{j_0},v_{i_0},u_1\}$ forms a transmitting subgraph. By using no more than four pebbles, we can move one pebble from the transmitting subgraph to u_1 . Clearly, the remaining $2(r+s)+1-q-4\geq 2(r+s)+1-(r+1)-4$ pebbles will be sufficient to put one more pebble on u_1 . Let $p(u_i)=0$ for each $i\neq i_0$. Then $q\leq 3$. So $2(r+s)+1-q\geq 2(r+s)-2$ pebbles on $K_{r,s}^{-r}$. There are at least 13 pebbles on $\{v_1,u_{i_0}\}$. If $p(u_{i_0})\geq 3$, then $\left\lfloor \frac{p(v_1)}{2}\right\rfloor$ pebbles can be moved to

 u_{i_0} from v_1 . The total number of pebbles on u_{i_0} is $p(u_{i_0}) + \left[\frac{13-p(u_{i_0})}{2}\right] \geq 8$. So we can move 2 pebbles to u_1 . If $1 \leq p(u_{i_0}) \leq 2$, then $p(v_1) \geq 11$. So we can move 3 pebbles to u_{i_0} and move 2 pebbles to u_{j_0} , where $j_0 \neq i_0$. Thus $\{u_{j_0}, v_{i_0}, u_1\}$ forms a transmitting subgraph and there are at least four pebbles on u_{i_0} . Therefore, two pebbles can be moved to u_1 . If $p(u_{i_0}) = 0$, then $p(v_1) \geq 13$. We can move 6 pebbles to u_{j_0} , where $j_0 \neq i_0$. Thus, 3 pebbles can be put on v_{i_0} . The total number of pebbles on v_{i_0} is four. Therefore, two pebbles can be moved to u_1 from v_{i_0} .

(1.3) Suppose that $p(v_i)=0$ for $2\leq i\leq s$. It is clear that $q\leq r$ and $p\geq 2s+r+1$. If there is one vertex in $\{u_2,u_3,\ldots,u_r\}$ with at least four pebbles or there are at least two vertices in $\{u_2,u_3,\ldots,u_r\}$ with at least two pebbles each, then we can always move one pebble to u_1 by using four pebbles. So there are still $2s+r+1-4\geq (r+s)+(s-4)+1$ pebbles on $\{u_2,u_3,\ldots,u_r,v_1\}$. Hence we can put one more pebble on u_1 . If there is only one vertex in $\{u_2,u_3,\ldots,u_r\}$ with three pebbles (and the other vertices with at most one pebble), then we can move one pebble from v_1 to this vertex. So by using four pebbles on this vertex, one pebble can be moved to u_1 . There are still $2s+r+1-5\geq (r+s)+(s-4)$ pebbles on $\{u_2,u_3,\ldots,u_r,v_1\}$, and we can put one more pebble on u_1 . We now assume that $p(u_2)+p(u_3)+\ldots+p(u_r)\leq 2+(r-2)=r$ and $p(u_i)\leq 2$ for $2\leq i\leq r$. Then $p(v_1)\geq 2s+r+1-r=2s+1$.

If $q \geq 5$, then there exist four vertices $u_{i_0}, u_{i_1}, u_{i_2}$ and u_{i_3} with $p(u_{i_k}) \geq 1$ for $0 \leq k \leq 3$. So we can put a pebble on each of the four vertices from v_1 . Thus each has two pebbles. Therefore two pebbles can be moved to u_1 from these vertices.

If q=4, then there exist three vertices u_{j_1} , u_{j_2} and u_{j_3} with $p(u_{j_1})$, $p(u_{j_2})$, $p(u_{j_3}) \geq 1$. Obviously, p=2(r+s)+1-4. If $p(u_{j_1})=p(u_{j_2})=p(u_{j_3})=1$, then $p(v_1)\geq 10$. So we can move one pebble to each of u_{j_1} and u_{j_2} , and move three pebbles to u_{j_3} . We can move two pebbles from those vertices to u_1 . If $p(u_{j_1})+p(u_{j_2})+p(u_{j_3})=4$, then $p(v_1)\geq 9$. So two pebbles can be moved to the vertex which has two pebbles. In addition, we can move a pebble to each of the other two vertices. Therefore two pebbles can be moved to u_1 from these vertices.

If q=3, then we can move two pebbles to u_1 similar to the case q=4. If q=2, then there exists only one vertex u_j with $2 \geq p(u_j) \geq 1$. Obviously, we can move $\left[\frac{p(v_1)}{2}\right] = \left[\frac{2(r+s)+1-2-p(u_j)}{2}\right]$ pebbles to u_j . Since $p(u_j) + \left[\frac{2(r+s)+1-2-p(u_j)}{2}\right] \geq r+s \geq 8$, two pebbles can be moved to u_1 from u_j .

If q=1, then $p(v_1)\geq 2(r+s)\geq 16$. We can move two pebbles from v_1 to u_1 .

(2) Suppose that $p(v_i) = 1$ for every v_i , where $2 \le i \le s$. If there is a

vertex in $\{u_2,u_3,\ldots,u_r\}$ with at least four pebbles or there are at least two vertices in $\{u_2,u_3,\ldots,u_r\}$ with at least two pebbles each, then it is obvious that two pebbles can be moved to u_1 . If there are two vertices u_{i_0} and u_{j_0} with $3 \geq p(u_{i_0}) \geq 2$ and $p(u_{j_0}) = 1$, then $p = 2(r+s)+1-q \geq r+s+2$ and $p(v_1) \geq r+s+2-(s-1)-(3+r-2)=2$. So we can move one pebble from v_1 to u_{j_0} . Thus $\{u_{i_0},v_{j_0},u_1\}$ and $\{u_{j_0},v_{i_0},u_1\}$ form two transmitting graphs. If $p(u_i) \leq 1$ for $2 \leq i \leq r$ and there are two vertices u_{i_0} and u_{j_0} with $p(u_{i_0}) = p(u_{j_0}) = 1$, then $p(v_1) \geq 4$, and we can move one pebble to u_{i_0} by using two pebbles on v_1 . So $\{v_1,u_{j_0},v_{i_0},u_1\}$ and $\{u_{i_0},v_{j_0},u_1\}$ form two transmitting graphs. If there is only one vertex $u_{i_0} \in \{u_2,u_3,\ldots,u_r\}$ with $0 \leq p(u_{i_0}) \leq 3$ (and the other vertices having no pebbles). It is clear that $q \leq s+1$, $p \geq 2(r+s)+1-q=2r+s$ and $p(v_1) \geq 2r+s-(s-1)-p(u_{i_0})$. So $\left[\frac{2r+s-(s-1)-p(u_{i_0})}{2}\right]$ pebbles can be put on u_{i_0} , and the total number of pebbles on u_{i_0} is $p(u_{i_0})+\left[\frac{2r+s-(s-1)-p(u_{i_0})}{2}\right] \geq 4$. Therefore, two pebbles can be moved to u_1 .

This proves that if the target vertex is u_1 , then we can move two pebbles to u_1 for every placement of 2(r+s)+1-q pebbles on $K_{r,s}^{-r}$. If the target vertex is v_i for $1 \le i \le s$, then we can use a similar way to draw the conclusion. \square

Since $K_{r,s}^{-r}$ is a spanning subgraph of $K_{r,s}^{-k}$ and $f(K_{r,s}^{-k}) = f(K_{r,s}^{-r})$, we have the following

Corollary 2.2. Let $s \ge r \ge 4$ and $k \le r$. Then $K_{r,s}^{-k}$ also satisfies the two-pebbling property.

3. Main Results

In order to prove the main results, we need the following preliminaries. Let G and H be two graphs. The Cartesian products of G and H, denote by $G \times H$, is the graph whose vertex set is Cartesian product

$$V(G\times H)=V(G)\times V(H)=\{(x,y)|x\in V(G),y\in V(H)\},$$

and two vertices (x,y) and (x',y') are adjacent if and only if x=x' and $yy' \in E(H)$, or $xx' \in E(G)$ and y=y'. We can depict $G \times H$ by drawing a copy of H at every vertex of G and connecting each vertex in one copy of H to the corresponding vertex in an adjacent copy of H. We write $\{x\} \times H$ (respectively, $G \times \{y\}$) for the subgraph of vertices whose projection onto V(G) is the vertex x (respectively, whose projection onto V(H) is y). If the vertices of G are labelled x_i , then for any distribution of pebbles on $G \times H$, we write p_i for the number of pebbles on $\{x_i\} \times H$, q_i for the number of occupied vertices of $\{x_i\} \times H$, r_i for the number of vertices of $\{x_i\} \times H$ with an odd number of pebbles.

Theorem 3.1. [1,3] Let G satisfy the two-pebbling property. Then

$$f(K_m \times G) \le f(K_m)f(G) = mf(G),$$

$$f(K_{m,n} \times G) \le f(K_{m,n})f(G) = (m+n)f(G).$$

The following Lemma 3.1 describes how many pebbles we can transfer from one copy of H to an adjacent copy of H in $G \times H$. The proof is straightforward.

Lemma 3.1. [5] Let $x_ix_j \in E(G)$. Suppose that in $G \times H$, we have p_i pebbles occupying q_i vertices of $\{x_i\} \times H$. If $q_i - 1 \le k \le p_i$, and if k and p_i have the same parity, then k pebbles can be retained on $\{x_i\} \times H$, while moving $(p_i - k)/2$ pebbles onto $\{x_j\} \times H$. If k and p_i have opposite parity, we must leave k + 1 pebbles on $\{x_i\} \times H$, so we can only move $(p_i - k - 1)/2$ pebbles onto $\{x_j\} \times H$. In particular, we can always move at least $(p_i - q_i)/2$ pebbles onto $\{x_j\} \times H$.

Lemma 3.2. [3] Suppose that G satisfies the odd-two-pebbling property and p pebbles are placed on $K_{1,n} \times G$ in such a way that there are r vertices with odd number of pebbles. Let v_0 be the vertex of $K_{1,n}$ with degree n. If p+r > 2(n+1)f(G), then two pebbles can be moved to (v_0, y) by a sequence of pebbling moves.

Lemma 3.3. [3] Suppose that G satisfies the odd-two-pebbling property, p pebbles are assigned to vertices of $K_2 \times G$ and r is the number of vertices with an odd number of pebbles. If p+r > 4f(G), then two pebbles can be moved to any specified vertex of $K_2 \times G$ by a sequence of pebbling moves.

Lemma 3.4. Suppose that G satisfies the odd-two-pebbling property, and p pebbles are assigned to vertices of $K_{2,2} \times G$ and r is the number of vertices with an odd number of pebbles. If p+r > 8f(G), then two pebbles can be moved to any specified vertex of $K_{2,2} \times G$ by a sequence of pebbling moves.

Proof. Without loss of generality, we assume that the target vertex is (u_1,y) for some $y \in G$. $K_{2,2} \times G$ can be partitioned into two subgraphs, say, M_1 and M_2 , as follows. M_1 is $A \times G$ and M_2 is $B \times G$, where A is the induced subgraph of $\{u_1,v_2\}$ in $K_{2,2}$ and B is the induced subgraph of $\{u_2,v_1\}$ in $K_{2,2}$. Clearly, $A=B=K_2$. For i=1 and 2, suppose that M_i contains p_i pebbles with r_i vertices having an odd number of pebbles. It is evident that $p=p_1+p_2$, $r=r_1+r_2$ and p_i+r_i is even for i=1 and 2. If $p_1+r_1>4f(G)$, then two pebbles can be moved to (u_1,y) by Lemma 3.3. Now we assume that $p_1+r_1\leq 4f(G)$ and $p_2+r_2>4f(G)$. Let q_2 be the number of occupied vertices of M_2 . Clearly, $r_2\leq q_2\leq |V(K_2\times G)|\leq f(K_2\times G)\leq 2f(G)$ (see Theorem 3.1). Hence, $p_2\geq 4f(G)-r_2+2\geq q_2+2$, and p_2 and $4f(G)-r_2+2$ have the same parity. Similar to Lemma 3.1, we can move $\frac{(p_2+r_2)-(4f(G)+2)}{2}$ pebbles to M_1 while

keeping $4f(G)-r_2+2$ pebbles on M_2 . Since $p_2+r_2>8f(G)-p_1-r_1$, we have $p_1+\frac{(p_2+r_2)-(4f(G)+2)}{2}>p_1+\frac{8f(G)-p_1-r_1-4f(G)-2}{2}=2f(G)+\frac{p_1-r_1}{2}-1$, in other words, we have $p_1+\frac{(p_2+r_2)-(4f(G)+2)}{2}\geq 2f(G)$. By Theorem 3.1, we can move one pebble from 2f(G) pebbles on M_1 to (u_1,y) . Additionally, there are still $4f(G)-r_2+2$ pebbles on M_2 . By Lemma 3.3, two pebbles can be moved to (v_1,y) on M_2 . Since (u_1,y) and (v_1,y) are adjacent, one pebble can be moved to (u_1,y) from two pebbles on (v_1,y) . \square

Lemma 3.5. Let u be a vertex of $K_{3,3}^{-1}$ with degree $3, y \in G$ and G satisfy the two-pebbling property. Then $f(K_{3,3}^{-1} \times G, (u,y)) \leq 6f(G)$.

Proof. Without loss of generality, we assume that the target vertex is (u_3,y) for some $y \in G$ and 6f(G) pebbles are placed on $K_{3,3}^{-1} \times G$. $K_{3,3}^{-1} \times G$ can be partitioned into two subgraphs, say, M_1 and M_2 , as follows. M_1 is $A \times G$ and M_2 is $B \times G$, where A is the induced subgraph of $\{u_2, u_3, v_1, v_3\}$ in $K_{3,3}^{-1}$ and B is the induced subgraph of $\{u_1, v_2\}$ in $K_{3,3}^{-1}$. Clearly, $A = K_{2,2}$ and $B = K_2$. For i = 1 and 2, suppose that M_i contains p_i pebbles with r_i vertices having an odd number of pebbles. If $p_1 \geq 4f(G)$, then one pebble can be moved to (u_3, y) by Theorem 3.1. Now we assume that $p_1 < 4f(G)$. Let $p_1 = 4f(G) - t$ and $p_2 = 2f(G) + t$ for some positive integer t. If $t \leq 2f(G) - r_2$, then we can place at least $(p_2 - r_2)/2$ pebbles on vertices of M_1 from M_2 by a sequence of pebbling moves, and hence, in M_1 , we have altogether

$$p_1 + \frac{p_2 - r_2}{2} = 4f(G) - t + \frac{6f(G) - (4f(G) - t) - r_2}{2}$$
$$= \frac{6f(G) + (4f(G) - t) - r_2}{2}$$
$$\ge 4f(G)$$

pebbles. By Theorem 3.1, we can move one pebble to (u_3, y) . If $t > 2f(G) - r_2$, then $p_2 + r_2 = 2f(G) + t + r_2 > 4f(G)$. Two pebbles can be moved to (v_2, y) by Lemma 3.3, and hence we can move one pebble to (u_3, y) . \square

Theorem 3.2. Let $s \geq 4$ and G satisfy the two-pebbling property. Then

$$f(K_{4,s}^{-4} \times G) \le f(K_{4,s}^{-4})f(G) = (4+s)f(G).$$

Proof. Let (4+s)f(G) pebbles be placed on $K_{4,s}^{-4} \times G$. Firstly, let the target vertex be (u_i, y) for some $y \in G$, where $1 \leq i \leq 4$. Without loss of generality, we assume that the target vertex is (u_1, y) for some $y \in G$. $K_{4,s}^{-4} \times G$ can be partitioned into two subgraphs, say, M_1 and M_2 , as follows. M_1 is $A \times G$ and M_2 is $B \times G$, where A is the induced subgraph of $\{u_1, u_2, v_3, v_4, \ldots, v_s\}$ in $K_{4,s}^{-4}$ and B is the induced subgraph of $\{u_3, u_4, v_1, v_2\}$ in $K_{4,s}^{-4}$. Clearly, $A = K_{2,s-2}$ and $B = K_{2,2}$. For i = 1

and 2, suppose that M_i contains p_i pebbles with r_i vertices having an odd number of pebbles. If $p_1 \geq sf(G)$, then one pebble can be moved to (u_1, y) by Theorem 3.1. Now we assume that $p_1 < sf(G)$. Let $p_1 = sf(G) - t$ and $p_2 = 4f(G) + t$ for some positive integer t. If $t \leq 4f(G) - r_2$, then we can place at least $(p_2 - r_2)/2$ pebbles on vertices of M_1 from M_2 by a sequence of pebbling moves, and hence, in M_1 , we have altogether

$$p_1 + \frac{p_2 - r_2}{2} = sf(G) - t + \frac{(4+s)f(G) - (sf(G) - t) - r_2}{2} \ge sf(G)$$

pebbles. By Theorem 3.1, we can move one pebble to (u_1, y) . If $t > 4f(G) - r_2$, then $p_2 + r_2 = 4f(G) + t + r_2 > 8f(G)$. Two pebbles can be moved to (v_2, y) by Lemma 3.4, and hence one pebble can be moved to (u_1, y) .

Next, let the target vertex be (v_i, y) for some $y \in G$, where $1 \le i \le 4$. Without loss of generally, we assume that the target vertex is (v_1, y) . $K_{4,s}^{-4} \times G$ can be partitioned into two subgraphs, say, M_1 and M_2 , as follows. M_1 is $A \times G$ and M_2 is $B \times G$, where A is the induced subgraph of $\{u_3, u_4, v_1, v_2, v_5, \ldots, v_s\}$ in $K_{4,s}^{-4}$ and B is the induced subgraph of $\{u_1, u_2, v_3, v_4\}$ in $K_{4,s}^{-4}$. Clearly, $A = K_{2,s-2}$ and $B = K_{2,2}$. Using the same way as the above, we can prove that one pebble can be moved to (v_1, y) .

Finally, if s>4, then let the target vertex be (v_j,y) for some $y\in G$, where $5\leq j\leq s$. $K_{4,s}^{-4}\times G$ can be partitioned into two subgraphs, say, M_1 and M_2 , as follows. M_1 is $A\times G$ and M_2 is $B\times G$, where A is the induced subgraph of $\{u_1,u_2,u_3,v_2,v_4,v_j\}$ in $K_{4,s}^{-4}$ and B is the induced subgraph of $\{u_4,v_1,v_3,v_5,\ldots,v_{j-1},v_{j+1},\ldots,v_s\}$ in $K_{4,s}^{-4}$. Clearly, $A=K_{3,3}^{-1}$ and $B=K_{1,s-3}$. For i=1 and 2, suppose that M_i contains p_i pebbles with r_i vertices having an odd number of pebbles. If $p_1\geq 6f(G)$, then one pebble can be moved to (v_j,y) by Lemma 3.5. Now we assume that $p_1<6f(G)$. Let $p_1=6f(G)-t$ and $p_2=(s-2)f(G)+t$ for some positive integer t. If $t\leq (s-2)f(G)-r_2$, then we can place at least $(p_2-r_2)/2$ pebbles on vertices of M_1 from M_2 by a sequence of pebbling moves, and hence, in M_1 , we have altogether

$$p_1 + \frac{p_2 - r_2}{2} = 6f(G) - t + \frac{(4+s)f(G) - (6f(G) - t) - r_2}{2} \ge 6f(G)$$

pebbles. By Lemma 3.5, we can move one pebble to (v_j, y) . If $t > (s - 2)f(G) - r_2$, then $p_2 + r_2 > (s - 2)f(G) + (s - 2)f(G) = 2(s - 2)f(G)$. Two pebbles can be moved to (u_4, y) by Lemma 3.2, and hence one pebble can be moved to (v_j, y) . \square

Theorem 3.3. Let $s \ge r \ge 4$ and G satisfy the two-pebbling property. Then

$$f(K_{r,s}^{-r} \times G) \le f(K_{r,s}^{-r})f(G) = (r+s)f(G).$$

Proof. Use induction on r. It is known from Theorem 3.2 that the result holds for r=4. Now suppose that Theorem 3.3 holds for $r-1 (r \geq 5)$. We will prove that Theorem 3.3 holds for r. Let (r+s)f(G) pebbles be placed on $K_{r,s}^{-r} \times G$. Firstly, let the target vertex be (u_i, y) for some $y \in G$, where $1 \leq i \leq r$. Without loss of generality, we assume that the target vertex is (u_1, y) for some $y \in G$. $K_{r,s}^{-r} \times G$ can be partitioned into two subgraphs, say, M_1 and M_2 , as follows. M_1 is $A \times G$ and M_2 is $B \times G$, where A is the induced subgraph of $\{u_1, u_2, \ldots, u_{r-1}, v_1, v_2, \ldots, v_{r-2}, v_r, v_{r+1}, \ldots, v_s\}$ in $K_{r,s}^{-r}$ and B is the induced subgraph of $\{u_r, v_{r-1}\}$ in $K_{r,s}^{-r}$. Clearly, $A = K_{r-1,s-1}^{-(r-2)}$ and $B = K_2$. For i = 1 and 2, suppose that M_i contains p_i pebbles with r_i vertices having an odd number of pebbles. If $p_1 \geq (r+s-2)f(G)$, then by $K_{r-1,s-1}^{-(r-1)}$ being a spanning subgraph of $K_{r-1,s-1}^{-(r-2)}$ and the induction hypothesis, we have

$$f(K_{r-1,s-1}^{-(r-2)} \times G) \le f(K_{r-1,s-1}^{-(r-1)} \times G) \le f(K_{r-1,s-1}^{-(r-1)})f(G) = (r+s-2)f(G),$$

and hence we can move one pebble to (u_1, y) . Let $p_1 = (r + s - 2)f(G) - t$ and $p_2 = 2f(G) + t$ for some positive integer t. If $t \le 2f(G) - r_2$, then we can place at least $(p_2 - r_2)/2$ pebbles on vertices of M_1 from M_2 by a sequence of pebbling moves, and hence, in M_1 , we have altogether

$$p_1 + \frac{p_2 - r_2}{2} = (r + s - 2)f(G) - t + \frac{(r + s)f(G) - ((r + s - 2)f(G) - t) - r_2}{2}$$

$$\geq (r+s-2)f(G)$$

pebbles. So we can move one pebble to (u_1, y) . If $t > 2f(G) - r_2$, then $p_2 + r_2 > 2f(G) + 2f(G) - r_2 + r_2 = 4f(G)$. So two pebbles can be moved to (v_{r-1}, y) by Lemma 3.3, and hence one pebble can be moved to (u_1, y) .

Secondly, let the target vertex is (v_i, y) for some $y \in G$, where $1 \le i \le r$. We assume that the target vertex is (v_1, y) . $K_{r,s}^{-r} \times G$ can be partitioned into two subgraphs, say, M_1 and M_2 , as follows. M_1 is $A \times G$ and M_2 is $B \times G$, where A is the induced subgraph of $\{u_1, u_2, \ldots, u_{r-1}, v_1, v_2, \ldots, v_{r-2}, v_r, v_{r+1}, \ldots, v_s\}$ in $K_{r,s}^{-r}$ and B is the induced subgraph of $\{u_r, v_{r-1}\}$ in $K_{r,s}^{-r}$. Clearly, $A = K_{r-1,s-1}^{-(r-2)}$ and $B = K_2$. Using the same way as the above, we can move one pebble to (v_1, y) .

Finally, if s > r, then let the target vertex be (v_j, y) for some $y \in G$, where $r+1 \le j \le s$. $K_{r,s}^{-r} \times G$ can be partitioned into two subgraphs, say, M_1 and M_2 , as follows. M_1 is $A \times G$ and M_2 is $B \times G$, where A is the induced subgraph of $\{u_1, u_2, \ldots, u_{r-1}, v_1, v_2, \ldots, v_{r-3}, v_r, v_j\}$ in $K_{r,s}^{-r}$ and B is the induced subgraph of $\{u_r, v_{r-2}, v_{r-1}, v_{r+1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_s\}$ in $K_{r,s}^{-r}$. Clearly, $A = K_{r-1,r-1}^{-(r-3)}$ and $B = K_{1,s-r+1}$. For i = 1 and 2, suppose that M_i contains p_i pebbles with r_i vertices having an odd number of pebbles.

If $p_1 \geq (2r-2)f(G)$, then by $K_{r-1,r-1}^{-(r-1)}$ being a spanning subgraph of $K_{r-1,r-1}^{-(r-3)}$ and the induction hypothesis, we have

$$f(K_{r-1,r-1}^{-(r-3)} \times G) \le f(K_{r-1,r-1}^{-(r-1)} \times G) \le f(K_{r-1,r-1}^{-(r-1)})f(G) = (2r-2)f(G),$$

and hence we can move one pebble to (v_j, y) . Now we assume that $p_1 < (2r-2)f(G)$. Let $p_1 = (2r-2)f(G) - t$ and $p_2 = (s-r+2)f(G) + t$ for some positive integer t. If $t \le (s-r+2)f(G) - r_2$, then we can place at least $(p_2 - r_2)/2$ pebbles on vertices of M_1 from M_2 by a sequence of pebbling moves, and hence, in M_1 , we have altogether

$$p_1 + \frac{p_2 - r_2}{2} = (2r - 2)f(G) - t + \frac{(r+s)f(G) - ((2r-2)f(G) - t) - r_2}{2}$$

$$\geq (2r-2)f(G)$$

pebbles. So we can move one pebble to (v_j, y) . If $t > (s-r+2)f(G) - r_2$, then $p_2 + r_2 > (s-r+2)f(G) + (s-r+2)f(G) = 2(s-r+2)f(G)$. Two pebbles can be moved to (u_r, y) by Lemma 3.2, and hence one pebble can be moved to (v_j, y) . \square

Since $K_{r,s}^{-r} \times G$ is a spanning subgraph of $K_{r,s}^{-k} \times G$, the following corollaries are obvious by Theorem 3.3.

Corollary 3.1. Let $s \ge r \ge 4$, $k \le r$ and G satisfy the two-pebbling property. Then

$$f(K_{r,s}^{-k} \times G) \le f(K_{r,s}^{-k})f(G).$$

Corollary 3.2. Let $s \ge r \ge 4$, $n \ge m \ge 4$, $k_1 \le r$ and $k_2 \le m$. Then

$$f(K_{r,s}^{-k_1} \times K_{m,n}^{-k_2}) \leq f(K_{r,s}^{-k_1})f(K_{m,n}^{-k_2}).$$

References

- [1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math., 2(1989), 461-472.
- [2] R.Q. Feng and Y.K. Ju, Pebbling numbers of some graphs, Science in China Ser.A, 45(4)(2002), 470-478.
- [3] R.Q. Feng and Y.K. Ju, Graham's pebbling conjecture on product of complete bipartite graphs, Science in China Ser.A, 44(7)(2001), 817-822.
- [4] D.S. Herscovici, Graham's pebbling conjecture on products of cycles, J. Graph Theory, 42(2003), 141-145.
- [5] D.S. Herscovici and A.W. Higgins, The pebbling number of $C_5 \times C_5$, Discrete Math., 187(1998), 123-135.
- [6] D. Moews, Pebbling graphs, J. Combin. Theory Ser.B, 55(1992), 244-252.
- [7] H.S. Snevily and J.A. Foster, The 2-pebbling property and a conjecture of Graham's, *Graphs and Combinatorics*, **16**(2000), 231-244.

[8] S.S. Wang, Pebbling and Graham's conjecture, *Discrete Math.*, **226**(2001), 431–438.