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ABSTRACT. In this work, infinite similarities of permutation groups
are investigated by means of new methods. For this purpose, we
handle distinct groups on the set of natural numbers and we give the
separation of the subgroups of them. Afterwards, we give the matrix

representation of this groups.
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1. INTRODUCTION

Infinite-degree permutations and their representations are some of the
subjects that have mostly studied recently. Naturally, this subject has
arisen as a result of the improvement in permutation concept which has
been generated at the classical period of group theory ([1], [2], [3], [4]). We
can indicate [8] and [9] as examples of the subject. In studies of V.A.
Kasimov, new methods for constructing infinite analogs of infinite degree
permutations have been discussed and their separation into subgroups has
been given ([5), [6], [7]). Matrix representations of some infinite degree per-
mutation groups are researched in this study.

Let N denote the set of natural numbers and let m be an arbitrary
natural number. Each natural number m cuts off N into two parts. Denote
by Ny, the set of natural numbers from 1 to m, i.e., let N, = {1,2,...,m}.
N will denote the complement of Np,, i.e., N¥ = N\ N,,. Let S(m)

ARS COMBINATORIA 107(2012), pp. 129-140



stand for the group of all permutations with m degree. Each element of
S(m) is a bijective mapping of N,,,. Let us mark by (™ the elements of
S(m), that is ™ : Ny, = Ny, is a bijective mapping. Let ; denote the
value of the bijection ¢ at the point ¢ € N. The group operation on S(m)
is the composition of bijections, in other words, if (M) and (™) are two
m degree permutations, then their product (™ .(™)) can be determined
by ™. My = Mgy o M, (Mg will denote the unique m degree per-
mutation. Clearly, in the above equation the product of distinct degree
permutations ™ ¢ and (M¢ is not determined. We give a method which

will dissipate this indefiniteness.

2. ON INFINITE DEGREE PERMUTATIONS

Let S(N) denote the group of all bijections on N. We name the elements
of S(N) infinite degree permutations and denote them (°)p.We construct
some subgroups of S(N). For this purpose we determine some kinds of

infinite degree permutations.

2.1. Stabilized Permutations. An infinite degree permutation (¢ for

a certain number m € N satisfies the following condition:

(2.1) Ifj < mthen,(®p(j) € INpand ifj > m, then®p(5) = j.

Permutations which satisfy the condition (2.1) are said to be stabilized
permutations after m. If an infinite degree permutation (®)¢ is stabilized

after m then we denote it by (®™)y:
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®p(j) €Ny ifj<m

J ifj >m.

(0m)p(5) = {

We can exhibit this permutation as follows:

(oo_m)‘P= 1 2 ... m m+41 m+2 ... .
Y1 Y2 ... Pm m+l m+2 ...

It is clear that the product of stabilized permutations is also stabilized.
Suppose that infinite degree permutations a and 8 are stabilized after suit-
able m and n. Then their product becomes stabilized after maz{m,n}.
Let us show by S™(N) the set of all infinite degree permutations stabilized
after m. The set S™(N) is a group. Define the mapping w : S(m) — S™(N)
by

(2.2) w((™p) = (my,

Propositon 1 The mapping w : S(m) = S™(N) defined by equation (2.2)
8 a group isomorphism.

Proof It is easy to see that w preserves an algebraic operation. On the
other hand, it is also clear that we have (™M), = (92:m)y, if the condition
(m)p o (M4 satisfies. Then w is a monomorphism. At the same time, the
mapping ¢ is an epimorphism since there exist a number m € N such that
(@) = (M), holds for all stabilized infinite degree permutations (M),

In that case ¢ is a group isomorphism.0]

It is natural now to deal with stabilized infinite degree groups S™(N) <

S™+1(N). Thus we consider successive groups
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(23)  SYN) < S2(N) < S3(N) <...< S™(N) < S™*(N) <...

As mentioned before, the groups S(m) and S™(N) are isomorphic for

each natural number m. Therefore, we can identify them. Let
(2.4) ©5 =|J$™(N) and § = J S(m).
N N
Then the following holds.

Proposition 2 The set ®S is a subgroup of the group S(N) of all in infi-
nite degree permutations.

Proof It suffices to show that ©S = U S™(N) is a group. Assume that two
stabilized permutations (™ € S'E(N) and (®™)y € S*(N) are given.
As we already said, their product becomes stabilized after maz{m,n}.
That is to say that the product (2™ (:m)4) belongs to ©S = U S™(N).
The identity element of this group is the identity mapping € ?‘N - N
which is stabilized after 1. The inverse of the stabilized permutation
(0m)§ ¢ S™(N) is also stabilized after m, so it is belongs to S™(N),

hence it is in ®S. Therefore, the set S forms a group.[}

The group € = S = S*(N) of the intersection of the subgroups
S™(N) is also a subset of ©S. Thus, we can define successive groups in
(2.3) as follows:

(2.5)
e=S'N) < S%N) <... < S™(N) < S"™*}(N) < ... < ®S < S(N).
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For each (m,n) of positive integers, the product operation

((oovm)w, (w»n)w) [ (wlm)w.(w’n)»‘p

in the group °°S gives rise to mapping

(2.6) S™(N) x §™(N) — Smaz{mnh(N),

Now turn back to the bijections (permutations) of N = N\ N, and
denote them by 2. Let S(NZ) represent the set of all bijections of the

set N7?. We can display each permutation ¢ as

m+1 m+2
Pm =
Pm+l  Pmi2

The identity mapping of N3 is written £5°. The set S(NZ) is also a group,

1 2 ... m
and we call its elements permutations. Let (™ =
Y1 P2 ... Pm
be an arbitrary m degree permutation and let £é%° be the identity permuta-
) . m+1l m+2 ...
tion of the group S(NZ°), that is, e = . Then
m+1 m+2
from these two permutations we can obtain the following one:
(com)y — 1 2 ... m m+1 m+2 ... .
Y1 Y2 ... Pm m+1 m+2

Conditionally, we will call those permutations the right composition of (™)
with €2, and will write (™) | €). Thus, the infinite value permutation

(00m)¢, stabilized after m consists of the right composition of (™) with

£R, i.e., (M = ((My | £2),
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2.2. Activated Permutations. We have determined above the series of
the subgroups S and S™(N) of the group S(N). Now we will meet other
subgroups series of S(N). The elements of the subgroup S,,(N) are the

permutations displayed as follows:

12 ... m m+1 m+2 ...
(m,0)¥ = .
1 2 ... m Omyr Pms2

We call them activated permutations after m. We can write the left hand

side of this permutation as (™¢, and its right hand side hand side is of the

m+1 m+2 ... . .

form and we denote it by ¢, Accordingly, we
Pm+1 Pm+2

can Write (m,cc)¢ conditionally as (m,c0)@ = (™e | 9%). Let (m o0y and

(m.c0)¥ be activated permutations in Sy,(N). Then their product belongs
to Spm(N). It can be easily shown that the identity permutation ¢ for every
m and the inverse of a permutation activating after m are also activated
permutation after m. Thus, the set S,,(N) of permutations activated after
m is a subgroup of S(N) of permutations.

We can determine the mapping § : S;,(N) — S(NS°) as follows:

2.7) 3((m,00)P) = P

Then the following holds.

Proposition 3 The mapping § : Sp(N) — S(NF) in (2.7) is a group

isomorphism.g

By the definition of the group of activated permutations, we have S,,(N) >

Sm+1(N) for each m € N. Thus we obtain the successive groups

(2.8) S1(N) > 53(N) > ... > Su(N) > Smpr(N) > ...

134



That S(N) > S5;(N) is obvious. Hence, we can define (2.8) under the

following form:
(2.9 S(N)> 851 (N) > S(N)>...> 5,(N) > SNy > ...

Given activated permutations (m,co)® &nd (n,00)¥, their product becomes

after min{m, n}. For each (m,n) of positive integers, the product operation
((m,00)95 (n,00)¥) 7 (m,00)P-(n,00)¥

in the group S(N) generates the mapping

(2.10) Sm(N) x 8,(N) —» s™nr{mnh(N)

Thus, we have determined two classes of infinite degree permutations:

(4) Sm(N) : stabilized after m; (™) = (M | £2).

(i) S™(N) : activated after m; (m o0)€ = ((Me | p).
2.3. Detached Permutations. Let’s define class of infinite degree. If the
condition

“There exists m € N such that for all j < m implies ®p(5) <m”  (*)

is satisfied, then we say that the permutation (°)y is detached and the
number m detaches the permutation ()¢, We will denote the set of per-

mutations detached by the number m by B™(N).
The following holds.

Proposition 4 The set B™ of all permutations detached by the num-
ber m is a subgroup of the group S(N) of permutations of infinite degree.®

It is clear that the permutation groups S,,(N) activated after m and
groups S™(N) stabilized after m are subgroups of the group B™:
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S™(N) < B™ and Sy (N) < B™.
Suppose that the permutations (®™y = ((Py | €2) € S™(N) and
(miooy¥ = (e | ¥R) € Sm(N) are given.

Proposition 5 For each natural number m, the elements of the groups

S™(N) and S,,(N) are translocation.

Theorem 1 The group B™ is equal to the simple product of the sub-
groups S™(N) and S, (N):

B™ = S™(N).S,(N). K
Each detached permutation 8 € B™ is shown as

(1 2 ... m m+1 m+2

T = (™8| 8).
ﬁl B2 ﬂm Bm+1 ﬁm+2 .

2.4. Matrix Representation of Permutations. We shall give a product
group representation. To do this, associate each permutation ¢ with the

matrix A, determined by the following formula:

0 ifp;#J

In each row and column of the matrix specified by formula (), 1 can

fonm
A.,,(z',j)={1 ROET )

occur only once, and the remaining entries are 0. Such matrices are called of
type 0—1 with dimension m by M,,(0—1). Thus, every m degree permuta-
tion can be represented by an m dimension matrix, and hence the product of
permutations corresponds to the product of matrices. The correspondence
determined by formula (x*) will be denoted by A : S(m) - M., (0 —1),
A(p) = A,.On the other hand, we denote by M S(m) the image of the group
of permutations S(m) in the mapping A. The group M S(m) is a subgroup
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of the group of unimodular matrices (i.e., matrices with determinants +1).
We would like to emphasize that in this representation, even permutations
correspond to matrices with positive determinants, while odd permutations
correspond to matrices with negative determinants. Consequently, we have
the isomorphism:
S(m) =~ MS(m).

Foregoing discussion can be expanded to the permutation group of in-

finite degree. If (™) p = ((M)y | ) is a stabilized permutation after m,

then the matrix
A(m)p 0

Aomy = 0" &
o0

is given, where A(m)q, an element of the group MS(m). We will write

MS™(N) for the group of all matrices of the form A(°°'"‘)w'

Proposition 6 For each m the group ™S(N) stabilized after m is iso-
morphic to the group MS(N) of matrices.

mS(N) ~ MS™(N) ~ MS(m).®

If we consider the permutation (m ), = (™e | ¢%) activated after m,

Em 0
A(m.clo)‘lp = 0 A
1254

corresponds to it. Such matrices form a group, which is denoted by M.Sy, (N).

then the matrix

Proposition 7 For every m, the group S,,(N) activated after m is iso-

morphic to the group M S, (N) of matrices.®
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Now let’s move on to the representation for the detached permutations
matrix. As indicated in Theorem 1 above, each detached permutation

B € B™ can be represented as 8 = ((™ 3| °). Then the matrix

A(m)ﬁ 0
Aoy =
0 Apgz

3. EQUIVALENCE RELATION

corresponds to it.

Suppose that o and f are infinite degree permutations, that is, o, 8 €

S(IN). If

(3.11) 3KVj > K = o(j) = B(j)

holds then the infinite degree permutations & and 3 are equivalent and we

denote it by a ~ 8.

Proposition 8 The relation defined by (3.11) is an equivalence relation
on the set of infinite degree permutations SIV).
Proof Since a(3) = a(j) holds for all j € IN, the relation ~ is reflective.

Leta ~ 3. Then we write 3KVj > K = a(j) = B(j). Hence, we get
IKVj > K = B(j) = a(j), that is, @ ~ B. Therefore, the relation ~ is
symmetric.

Let o ~ 8 and 8 ~ 7. Since a ~ B, 3KVj > K = o(j) = B(j) and
since 8 ~ v, 3LVi > L = B(i) = 4(i). Let M be the maximum number
of the numbers K and L. For M = max{K,L}, IMVk > M = ~(k) =
a(k) = B(k) is obtained. In this case we get a ~ < and so the relation is

transitive.0]

138



Let S(IN)/ ~ denote the factor set of the set of infinite degree permu-
tations set S(IV) with respect to equivalence relation ~. Let us show the
elements of factor set S(IV)/ ~, namely the equivalence class of permuta-
tions, denoted by [p].

We define group operation on factor set S(IN)/ ~. The product of [g]
and [¢] is defined by

(3.12) fel. 9] = [yl

Theorem 2 The product of infinite degree permutations satisfies the

equivalence relation.

Proof We show that the condition (3.12) holds. In other words, if the

equations

(3.13) ¢ ~¢' & 3IKVYj> K = ¢(j) = ¢'(j)
and

(3.14) Y~ & 3LV > L= (i) = ¢'(3)

are given, it is clear that the relation ¢.1 ~ ¢'.¢' is true.

There are two cases for each i € M: Case I: ¥(i) > L and Case II:
¥(f) < L. K and L are the natural numbers that satisfy the conditions
(3.13) and (3.14).

Case I: Since Vi > L = (i) = ¢'(¢), then ¢'(z) > K. Then @.9(i) =
o (i) for all i > L.

Case II: i > L, only ¥(i) < K.The set of numbers which takes values
than the infinite degree permutations 4 is given by {x € N : (x) < K} and
this set is finite. Then there exists 3k € N such that Vt > k = () > K.
From (3.13) we get Vt > k = ¢.9(t) = ¢’.¢'(t). Thus we get p.9 ~ ¢’.4'.0
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