## Hamiltonicity of transformation graph $G^{+--*}$

Lingyan Zhen and Baoyindureng Wu <sup>†</sup>
College of Mathematics and System Science, Xinjiang University
Urumqi, Xinjiang, 830046, P.R.China

#### Abstract

The transformation graph  $G^{+--}$  of a graph G is the graph with vertex set  $V(G) \cup E(G)$ , in which two vertices u and v are joined by an edge if one of the following conditions holds: (i)  $u, v \in V(G)$  and they are adjacent in G, (ii)  $u, v \in E(G)$  and they are not adjacent in G, (iii) one of u and v is in V(G) while the other is in E(G), and they are not incident in G. In this paper, for any graph G, we determine the independence number and the connectivity of  $G^{+--}$ . Furthermore, we show that for a graph G with no isolated vertices,  $G^{+--}$  is hamiltonian if and only if G is not a star and  $G \notin \{2K_2, K_3\}$ .

Key words: Transformation graph; Hamilton cycle

### 1 Introduction

All graphs considered here are finite, undirected and simple. We refer to [1] for unexplained terminology and notations. Let G = (V(G), E(G)) be a graph. |V(G)| and |E(G)| are called the *order* and the *size* of G, respectively. For two vertices u and v of G, if there is an edge e joining them, we say u and v are adjacent. In this case, both u and v are end vertices of e, and u (or v) and e are said to be *incident*. Two edges e and f are also called to be adjacent if they have an end vertex in common.

For a graph G, the symbols  $\Delta(G)$ ,  $\delta(G)$ ,  $\kappa(G)$  and  $\alpha(G)$  denote the maximum degree, the minimum degree, the connectivity and the independence number of G, respectively.

As usual,  $K_n$  and  $P_n$  denote the complete graph and path of order n, respectively. For two positive integers r and s,  $K_{r,s}$  is the complete bipartite graph with two partite sets containing r and s vertices. In particular,  $K_{1,s}$  is called a star. For  $s \ge 2$ ,  $K_{1,s} + e$  is the graph obtained from  $K_{1,s}$  by adding a new edge which joins two vertices of degrees one.  $K_{r,s} - e$  is the graph obtained from  $K_{r,s}$  by deleting an edge. We say two graphs G and H

<sup>\*</sup>Research supported by NSFC (No.10601044) and XJEDU2006S05.

<sup>†</sup>Corresponding author. Email: baoyin@xju.edu.cn (B. Wu)

are disjoint if they have no vertex in common, and denotes their union by G+H; such a graph is called the disjoint union of G and G. The disjoint union of G copies of G is written as G. The join  $G \vee H$  of G and G is the graph obtained from G+H by joining each vertex of G to each vertex of G.

The *complement* of G, denoted by  $\overline{G}$ , is the graph with the same vertex set as G, but where two vertices are adjacent if and only if they are not adjacent in G. The total graph T(G) of G is the graph whose vertex set is  $V(G) \cup E(G)$ , and in which two vertices are adjacent if and only if they are adjacent or incident in G.

Wu and Meng [9] introduced some new graphical transformations which generalize the concept of total graph. Let G = (V(G), E(G)) be a graph, and  $\alpha, \beta$  be two elements of  $V(G) \cup E(G)$ . We define the associativity of  $\alpha$  and  $\beta$  is + if they are adjacent or incident, and -, otherwise. Let xyz be a 3-permutation of the set  $\{+, -\}$ . We say that  $\alpha$  and  $\beta$  correspond to the first term x (resp. the second term y or the third term z) if both  $\alpha$  and  $\beta$  are in V(G) (resp. both  $\alpha$  and  $\beta$  are in E(G), or one of  $\alpha$  and  $\beta$  is in V(G) and the other is in E(G)). The transformation graph  $G^{xyz}$  of G is defined on the vertex set  $V(G) \cup E(G)$ . Two vertices  $\alpha$  and  $\beta$  of  $G^{xyz}$  are joined by an edge if and only if their associativity in G is consistent with the corresponding term of xyz.

Therefore, one can obtain eight graphical transformations of graphs, since there are eight distinct 3-permutation of  $\{+,-\}$ . Note that  $G^{+++}$ is just the total graph T(G) of G, and  $G^{---}$  is the complement of T(G). Fleischner and Hobbs [6] showed that  $G^{+++}$  is hamiltonian if and only if Gcontains an EPS-subgraph, that is, a connected spanning subgraph S which is the edge-disjoint union of a (not necessarily connected) graph E, all of whose vertices have even degree, with a (possibly empty) forest P each of whose component is a path. Ma and Wu [8] showed that for a graph G of order n > 3,  $G^{---}$  is hamiltonian if and only if G is not isomorphic to any graph in  $\{K_{1,n-1}, K_{1,n-1} + e, K_{1,n-2} + K_1\} \cup \{K_2 + 2K_1, K_3 + K_1, K_3 + K_2, K_3 + K_4, K_4 + K_4, K_5 + K_5$  $2K_1, K_4$ . Wu, Zhang and Zhang [10] proved that for any graph G of order  $n, G^{-++}$  is hamiltonian if and only if  $n \geq 3$ . Recently, Xu and Wu [11] showed, for a graph G of order  $n \geq 4$ ,  $G^{-+-}$  is hamiltonian if and only if G is not isomorphic to any graph in  $\{K_{1,n-1},K_{1,n-1}+e,K_{1,n-2}+K_1\}\cup$  $\{2K_1 + K_2\}$ . Yi and Wu [12] showed that for a graph of order p and size q, if  $q \ge p-1$ ,  $G^{++-}$  is hamiltonian. We refer to [2, 3, 4, 7, 13] for more results on  $G^{xyz}$ .

In this paper, we shall investigate the transformation graph  $G^{+--}$  of a graph G.  $G^{+--}$  is the graph with  $V(G^{+--}) = V(G) \cup E(G)$ , in which two vertices u and v are joined by an edge if one of the following conditions holds: (i)  $u, v \in V(G)$  and they are adjacent in G, (ii)  $u, v \in E(G)$  and they are not adjacent in G, (iii) one of u and v is in V(G) while the other

is in E(G), and they are not incident in G.

For any graph G, we determine the independence number and the connectivity of  $G^{+--}$ . Furthermore, for a graph G with no isolated vertices, we obtain a necessary and sufficient condition for  $G^{+--}$  to be hamiltonian.

**Theorem 1.1.** For a graph G with no isolated vertices,  $G^{+--}$  is hamiltonian if and only if G is not a star and  $G \notin \{2K_2, K_3\}$ .

# 2 Independence number and connectivity of $G^{+--}$

We start with some simple observations. Let G be a graph of order p and size q. Then the order of  $G^{+--}$  is p+q,  $d_{G^{+--}}(x)=d_G(x)+q-d_G(x)=q$  for  $x\in V(G)$  and  $d_{G^{+--}}(e)=p+q-d_G(u)-d_G(v)-1$  for any  $e=uv\in E(G)$ . Let  $\Delta'(G)$  be the maximum value of  $d_G(u)+d_G(v)$ , where u and v are taken over all adjacent vertices in G. So

$$\delta(G^{+--}) = min\{q, p+q-\Delta'(G)-1\}.$$

Wu and Meng [9] proved that  $G^{+--}$  is connected if and only if G has at least two edges, and  $diam(G^{+--}) \leq 4$  if G has at least two edges, and the equality holds if and only if  $G \cong P_3$ .

In proof of main theorem, we use the following classical theorem, due to Chvátal and Erdös [5].

**Theorem 2.1.** Let G be a graph of order at least three. If  $\alpha(G) \leq \kappa(G)$ , then G is hamiltonian.

In the subsequent two theorems, we shall determine the independence number and connectivity of  $G^{+--}$  for a graph G.

Theorem 2.2. For any graph G,  $\alpha(G^{+--}) = max\{\alpha(G), \Delta(G) + 1\}$ .

**Proof.** Since both an independent set and a vertex together with its incident edges of G are an independent set of  $G^{+--}$ ,  $\alpha(G^{+--}) \geq \max\{\alpha(G), \Delta(G) + 1\}$ . So, to complete the proof, it suffices to show that  $\alpha(G^{+--}) \leq \max\{\alpha(G), \Delta(G) + 1\}$ . Let S be a maximum independent set of  $G^{+--}$  and  $S = S_1 \cup S_2$ , where  $S_1 \subseteq V(G)$  and  $S_2 \subseteq E(G)$ . Let us consider three cases.

Case 1.  $|S_1| = 0$ .

Then  $S=S_2$ . Since all elements of  $S_2$  are edges which are pairwise adjacent in G,  $G[S]=G[S_2]$  is a star or a triangle. Therefore,  $\alpha(G^{+--})=|S|=|S_2|\leq \Delta(G)+1$ .

Case 2.  $|S_1| = 1$ .

Let  $S_1 = \{u\}$ . Then all elements of  $S_2$  are incident with u in G, thus  $|S_2| \le d_G(u) \le \Delta(G)$ , and  $|S| = |S_1| + |S_2| \le \Delta(G) + 1$ .

Case 3.  $|S_1| \ge 2$ .

We shall show that  $S_2 = \emptyset$ . Otherwise, we take  $e \in S_2$ . By the definition of  $G^{+--}$ , all elements of  $S_1$  are end vertices of e in G. Since  $S_1$  is also an independent set of G, it is impossible. So  $|S_2| = 0$ , thus  $|S| = |S_1| \le \alpha(G)$ . By cases 1, 2 and 3,  $\alpha(G^{+--}) \le \max\{\alpha(G), \Delta(G) + 1\}$ .

Theorem 2.3. For a graph G of order p and size q, we have

$$\kappa(G^{+--}) = \begin{cases} \delta(G^{+--}) - 1 & \text{if } p > \Delta'(G) \text{ and } G \text{ has an isolated edge} \\ \delta(G^{+--}) & \text{otherwise} \end{cases}$$

**Proof.** Suppose  $\kappa(G^{+--}) < \delta(G^{+--})$ . One can easily check that  $\kappa(G^{+--}) = \delta(G^{+--})$  if p < 3, so assume  $p \geq 3$  in sequel. We shall prove that  $\kappa(G^{+--}) = \delta(G^{+--}) - 1$ , and furthermore  $p > \Delta'(G)$  and G has an isolated edge. Let S be a minimum cut of  $G^{+--}$  with  $|S| < \delta(G^{+--})$ , and  $H_1, H_2, \cdots, H_k$  be all components of  $G^{+--} - S$ . Without loss of generality, suppose  $H_1$  is a component of  $G^{+--} - S$  with the maximum  $|V(H_1) \cap E(G)|$ , namely,  $|V(H_1) \cap E(G)| \geq |V(H_i) \cap E(G)|$  for each  $i = 2, \cdots, k$ . By the choice of S, every component of  $G^{+--} - S$  is nontrivial (or has at least two vertices).

Claim 1.  $|V(H_1) \cap E(G)| = 1$ .

**Proof of Claim 1.** Suppose  $|V(H_1) \cap E(G)| \neq 1$ . If  $|V(H_1) \cap E(G)| = 0$  then  $E(G) \subseteq S$  and thus  $|S| \geq q$ , which contradicts the assumption that  $|S| < \delta(G^{+--}) \leq q$ . Hence  $|V(H_1) \cap E(G)| \geq 2$ . Suppose that  $\{e_1, e_2\} \subseteq V(H_1) \cap E(G)$ . We consider two cases.

Case 1.  $e_1$  and  $e_2$  are adjacent in G.

Assume  $e_i = uu_i$  for i = 1, 2 in G, and  $e_3, \dots, e_d$  be all the remaining edges which are incident with u in G. We claim that  $u_1$  and  $u_2$  must be adjacent in G. Otherwise,  $V(H_2) \cup \dots \cup V(H_k) \subseteq \{u, e_3, \dots, e_d\}$ . But, since  $\{u, e_3, \dots, e_d\}$  is an independent set of  $G^{+--}$ ,  $|V(H_i)| = 1$  for each  $i = 2, \dots, k$ , which contradicts the fact that all components of  $G^{+--} - S$  are nontrivial. Hence  $u_1$  and  $u_2$  are adjacent in G, and if let  $e = u_1u_2$ , then  $e \in V(H_2) \cup \dots \cup V(H_k)$ . Furthermore k = 2 since  $V(H_2) \cup \dots \cup V(H_k) \subseteq \{u, e_3, \dots, e_d, e\}$ . Next by showing  $V(H_1) = \{e_1, e_2\}$  we obtain a contradiction.

First of all,  $e = u_1u_2 \in V(H_2)$  implies that  $V(H_1) \cap V(G) \subseteq \{u_1, u_2\}$ . On the other hand, since  $H_2$  is nontrivial,  $V(H_2)$  contains u or some  $e_i$  for

some  $i \geq 3$ . But each of conditions  $u \in V(H_2)$  and  $e_i \in V(H_2)$  for some  $i \geq 3$  implies that  $V(H_1) \cap V(G) = \emptyset$  because both  $u_1$  and  $u_2$  are adjacent to u and  $e_j$  for any  $j \geq 3$  in  $G^{+--}$ . By the same reasoning, we can obtain  $V(H_1) \cap E(G) \subseteq \{e_1, e_2\}$ . Since  $H_1$  is nontrivial,  $V(H_1) = \{e_1, e_2\}$ . But,  $e_1$  and  $e_2$  are not adjacent in  $G^{+--}$ , which destroys that  $H_1$  is a nontrivial component of  $G^{+--} - S$ .

Case 2.  $e_1$  and  $e_2$  are not adjacent in G.

Assume  $e_i=u_iv_i$  for i=1,2 in G. Then  $V(H_2)\cup\cdots\cup V(H_k)\subseteq E(G)$ , and for  $e\in V(H_2)\cup\cdots\cup V(H_k)$ , its end vertices belong to  $\{u_1,u_2,v_1,v_2\}$  in G by the definition of  $G^{+--}$ . Moreover, since all  $H_i$  are nontrivial, two situations might occur. Namely, k=2 or k=3. If k=2,  $V(H_2)\in \{\{u_1u_2,v_1v_2\},\{u_1v_2,u_2v_1\}\}$ ; if k=3,  $\{V(H_2),V(H_3)\}=\{\{u_1u_2,v_1v_2\},\{u_1v_2,u_2v_1\}\}$ . Interchanging the role of two elements of  $H_2$  with those of  $H_1$ , we obtain  $V(H_1)=\{e_1,e_2\}$  in any cases of k=2 and k=3. Therefore, if k=2 then  $\Delta'(G)\geq 4$  and  $|S|=|V(G)|+|E(G)|-4>p+q-\Delta'(G)-1\geq \delta(G^{+--})$ , a contradiction; if k=3 then  $\Delta'(G)\geq 6$ , and  $|S|=|V(G)|+|E(G)|-6>p+q-\Delta'(G)-1\geq \delta(G^{+--})$ . Again a contradiction.

This proves Claim 1.

Suppose  $V(H_1) \cap E(G) = \{e\}$  and let u and v be the end vertices of e in G. Then  $(V(H_2) \cup \cdots \cup V(H_k)) \cap V(G) \subseteq \{u,v\}$ . Since  $|V(H_i) \cap E(G)| \le 1$  by Claim 1, each component  $H_i$  with  $i \ge 2$  must contain u or v. Moreover, since u and v are also adjacent in  $G^{+--}$ , k=2.

Claim 2.  $V(H_2) \cap E(G) = \emptyset$ .

Proof of Claim 2. Otherwise, let  $V(H_2) \cap E(G) = \{e'\}$ . Then e and e' are adjacent in G, and without loss of generality, let u be their common end vertex in G. Let w be a neighbor of e in  $V(H_1)$ . Then  $w \in V(G)$  by Claim 1, and  $w \notin \{u, v\}$ . By the definition of  $G^{+--}$ , w must be the other end vertex of e' in G. It follows that u and w are adjacent in  $G^{+--}$  and thus  $u \notin V(H_2)$ . Since  $V(H_2) \cap V(G) \subseteq \{u, v\}$ ,  $V(H_2) \cap V(G) = \{v\}$  and  $u \in S$  since u and v are adjacent in  $G^{+--}$ . Hence  $V(H_2) = \{e', v\}$ . Interchanging the role of  $V(H_1)$  and  $V(H_2)$ , one can obtain that  $V(H_1) = \{e, w\}$ . So |S| = p + q - 4. Combining this with  $|S| < \delta(G^{+--}) \le q$ , p = 3. Since  $e, e' \in E(G)$ ,  $q \ge 2$ , and thus  $G \cong P_3$  or  $G \cong K_3$ . But, it is easy to check that  $\kappa(G^{+--}) = 1 = \delta(G^{+--})$  for  $G \cong P_3$  or  $G \cong K_3$ , a contradiction.  $\square$ 

By Claim 2,  $V(H_2) \subseteq \{u, v\}$ , and  $V(H_2) = \{u, v\}$  since  $|V(H_2)| \ge 2$ . It follows that  $(N_G(u) \cup N_G(v)) \setminus \{u, v\} \subseteq S$ . Therefore

$$|S| \ge q - 1 + \max\{d_G(u), d_G(v)\} - 1. \tag{1}$$

Together with  $|S| < \delta(G^{+--}) = min\{q, p+q-\Delta'(G)-1\}$ , we have

$$q - 1 + \max\{d_G(u), d_G(v)\} - 1 \le q - 1 \tag{2}$$

and

$$q-1+max\{d_G(u),d_G(v)\}-1 \le p+q-\Delta'(G)-2.$$
 (3)

It is easy to see that  $d_G(u) = d_G(v) = 1$  from (2) and thus  $|S| \ge q - 1$  by (1) and  $p > \Delta'(G)$  from (3). Recall that  $|S| < \delta(G^{+--}) \le q$ , we have  $|S| = q - 1 = \delta(G^{+--}) - 1$ . This proves what we desired, i.e.,  $\kappa(G^{+--}) = \delta(G^{+--}) - 1$ , and  $p > \Delta'(G)$  and G has an isolated edge.

One the other hand, if  $p > \Delta'(G)$  and G has an isolated edge then  $\delta(G^{+--}) = min\{q, p+q-\Delta'(G)-1\} = q$ , but  $\kappa(G^{+--}) \leq q-1$  since  $E(G) \setminus \{e\}$  is a vertex cut of  $G^{+--}$  such that  $G[\{u,v\}]$  is a component of  $G^{+--} - S$ , where e is an isolated edge of G with e = uv.

The proof is complete.

### 3 The Proof of Main Theorem

The following result is obvious, so its proof is omitted.

**Lemma 3.1.** Let G be a graph of size q with no isolated vertices. Then  $\alpha(G) < q$  and the equality holds if and only if G is disjoint union of stars.







Figure 1. Several graphs with order p

**Lemma 3.2.** For a graph G of order p, if  $G \in \{K_{1,p-1} + e, G_1, G_2\}$  and  $p \geq 4$ , or  $G \cong G_3$  and  $p \geq 5$ , where  $G_1, G_2$  and  $G_3$  are shown in Figure 1, then  $G^{+--}$  is hamiltonian.

**Proof.** For  $G \cong K_{1,p-1} + e$ , let  $V(K_{1,p-1} + e) = \{v_0, v_1, \dots, v_{p-1}\}$  and  $E(K_{1,p-1} + e) = \{e_1, e_2, \dots, e_{p-1}, e_{12}\}$ , where  $e_i = v_0 v_i$  for  $i = 1, 2, \dots, p-1$ , and  $e_{12} = v_1 v_2$ . Then we can find a Hamilton cycle of  $(K_{1,p-1} + e)^{+--}$ :

$$v_0v_2e_1v_3e_2\cdots v_ie_{i-1}\cdots v_{p-1}e_{p-2}v_1e_{p-1}e_{12}v_0.$$

Note that  $G_1 \cong K_2 \vee \overline{K_{p-2}}$  and suppose  $G \cong G_1$ . Let  $V(G) = \{u, v, v_1, v_2, \dots, v_{p-2}\}$  and  $E(G) = \{e, e_1^u, e_2^u, \dots, e_{p-2}^u, e_1^v, e_2^v, \dots, e_{p-2}^v\}$ , where e = uv,  $e_i^u = v_i u$ ,  $e_i^v = v_i v$  for  $i = 1, 2, \dots, p-2$ . Then the following is a Hamilton cycle of  $G^{+--}$ :

$$ue_1^ve_{p-2}^uvv_1ev_2e_1^ue_2^vv_3e_2^u\cdots e_i^vv_{i+1}e_i^u\cdots e_{p-3}^vv_{p-2}e_{p-3}^ue_{p-2}^vu.$$

Observe that  $G_2$  is obtained from  $G_1$  by adding an edge which joins two vertices of degree two. If  $G \cong G_2$ , let  $V(G) = \{u, v, v_1, v_2, \cdots, v_{p-2}\}$  and  $E(G) = \{e, e', e_1^u, e_2^u, \cdots, e_{p-2}^u, e_2^v, \cdots, e_{p-2}^v\}$ , where  $e = uv, e' = v_1v_2$ ,  $e_i^u = v_iu$ ,  $e_i^v = v_iv$  for  $i = 1, 2, \cdots, p-2$ . Then we can find a Hamilton cycle of  $G^{+--}$  for p > 4:

$$ue_1^ve_{p-2}^uvv_1ev_2e_1^ue_2^vv_3e_2^u\cdots e_i^vv_{i+1}e_i^u\cdots e_{p-3}^vv_{p-2}e_{p-3}^ue_{p-2}^ve'u.$$

If p = 4,  $G \cong K_4$  and  $ue_1^v e_2^u v e' e v_2 e_1^u e_2^v v_1 u$  is a Hamilton cycle of  $G^{+--}$ .

Notice that  $G_3$  is obtained from  $G_2$  by deleting an edge as shown in Figure 1. If  $G \cong G_3$ , let  $V(G) = \{u, v, v_1, v_2, \cdots, v_{p-2}\}$  and  $E(G) = \{e, e', e_1^u, e_2^u, \cdots, e_{p-2}^u, e_2^v, e_3^v, \cdots, e_{p-2}^v\}$ , where  $e = uv, e' = v_1v_2, e_i^u = v_iu$  for  $i = 1, 2, \cdots, p-2$ , and  $e_i^v = v_iv$  for  $i = 2, 3, \cdots, p-2$ . Then we can find a Hamilton cycle of  $G^{+--}$ :

$$ue_2^v e_{p-2}^u ve_1^u v_2 v_1 e v_3 e_2^u e_3^v v_4 e_3^u \cdots e_i^v v_{i+1} e_i^u \cdots e_{p-3}^v v_{p-2} e_{p-3}^u e_{p-2}^v e' u.$$

**Lemma 3.3.** Let G be a graph of order  $p \geq 4$  and size q with no isolated vertices. If G is not a star and  $\max\{p,q\} \leq \Delta'(G)$  then  $G^{+--}$  is hamiltonian.

**Proof.** By contradiction, suppose G is a counterexample with minimum order p. First note that p > 4. Otherwise,  $G \in \{P_4, C_4, K_{1,3} + e, K_4 - e, K_4\}$  by  $max\{p,q\} \leq \Delta'(G)$ . It is easy to check that  $G^{+--}$  is hamiltonian if  $G \in \{P_4, C_4\}$  and we have seen that from Lemma 3.2, it is hamiltonian if  $G \in \{K_{1,3} + e, K_4 - e, K_4\}$ .

Let e = uv be an edge of G such that  $d_G(u) + d_G(v) = \Delta'(G)$ . Without loss of generality,  $d_G(u) \geq d_G(v)$ . Observe that for any graph  $G, q \geq \Delta'(G) - 1$ . So, we consider two cases.

Case 1. 
$$q = \Delta'(G) - 1$$
.

We claim that  $\delta(G) = 1$ . If  $\delta(G) \geq 2$ , by  $q = \Delta'(G) - 1$ , we have  $N(u) \setminus \{v\} = N(v) \setminus \{u\}$  and thus  $G \cong K_2 \vee \overline{K_{p-2}}$ . By Lemma 3.2  $G^{+--}$  is hamiltonian, a contradiction. The claim is true.

Since  $d_G(u) \geq d_G(v)$ , u has a neighbor, say w, with degree one in G. Let e' = uw and H = G - w. Then H has the order p-1 and size q-1, and  $\Delta'(H) = \Delta'(G) - 1$ . By the choice of G and w,  $H^{+--}$  is hamiltonian. Let C be a Hamilton cycle of  $H^{+--}$ . Note that the order of C is p+q-2. Recall that  $d_{G^{+--}}(w) = q$  and  $d_{G^{+--}}(e') = p+q-d_G(u)-d_G(w)-1 = p+q-d_G(u)-2$ . So,  $d_{G^{+--}}(e') \geq max\{p-1,q-1\}$  since  $d_G(u) \leq p-1$  and  $q \geq \Delta(G)+1 \geq d_G(u)+1$ . By inserting e' and w into C we shall obtain a Hamilton cycle of  $G^{+--}$ , which contradicts the choice of G.

First we insert e' into C. If  $p \neq q$ , since  $d_{G^{+--}}(e') \geq \max\{p-1, q-1\}$  and the length of C is p+q-2, we can insert e' into C, and obtain a cycle of length p+q-1. For the case p=q,  $G \ncong K_{1,p-1}+e$  since  $(K_{1,p-1}+e)^{+--}$  is hamiltonian by Lemma 3.2. It follows that  $d_G(u) \leq p-2$ , and  $d_{G^{+--}}(e')=p+q-d_G(u)-2\geq q$ . We can also insert e' into C. We denote the resulting cycle by C'.

Now it remains to insert w into C'. Since  $d_{G^{+--}}(w) = q$ , if  $q \ge p$ , we can insert w into C' and obtain a Hamilton cycle of  $G^{+--}$ . If q = p - 1, then G is a double star.

If there are two consecutive vertices on C', which are adjacent to w in  $G^{+--}$ , then C' can be extended to a Hamilton cycle of  $G^{+--}$  by inserting w in a obvious way. If there are not, w are adjacent to q vertices which are pairwise independent in C'. However, since e' and v are adjacent in  $G^{+--}$ , we still find a Hamilton cycle (with bold lines) of  $G^{+--}$  as illustrated in Figure 2.



Figure 2. A Hamilton cycle of G

Case 2.  $q = \Delta'(G)$ .

Since  $q = \Delta'(G)$  and  $d_G(u) + d_G(v) = \Delta'(G)$ , there is only edge which is not adjacent to uv in G. We claim that  $\delta(G) = 1$ . If  $\delta(G) \geq 2$  then  $G \cong G_2$  or  $G \cong G_3$ , where  $G_2$  and  $G_3$  are as shown in Figure 1, by Lemma 3.2,  $G^{+--}$  is hamiltonian.

First assume G has an isolated edge, say e'=xy, and let  $H=G-\{x,y\}$ . By the choice of G, either  $H\in\{K_3,P_3,K_{1,p-3}\}$  or  $H^{+--}$  is hamiltonian. It is easy to check that  $(K_3+K_2)^{+--}$ ,  $(P_3+K_2)^{+--}$  are hamiltonian. We shall see that  $(K_{1,p-3}+K_2)^{+--}$  is also hamiltonian in the proof of Theorem 1.1 (Subcase 1.2). For the later case, let C be a Hamilton cycle of  $H^{+--}$ . Combining  $d_{G^{+--}}(x)=d_{G^{+--}}(y)=q$  and  $d_{G^{+--}}(e')=p+q-3$  with  $q=\Delta'(G)\geq p$ , we can insert x,y and e' one by one into C, and obtain a Hamilton cycle of  $G^{+--}$ .

Now assume G has no isolated edge, and let x be a vertex of G with  $d_G(x)=1$ . Let w be the neighbor of x in G and e'=wx. As we have seen before,  $d_{G^{+--}}(e')=p+q-d_G(w)-2\geq q-1$ . If  $d_G(w)< p-1$  then  $d_{G^{+--}}(e')\geq q$ ; if  $d_G(w)=p-1$ , then w=u and  $d_G(v)\geq 2$ , this implies that q>p and thus  $d_{G^{+--}}(e')=q-1$ . By the choice of G,  $(G-x)^{+--}$  is hamiltonian, and let G be a Hamilton cycle. Since the length of G is g+q-2, g' can be inserted into G. Let G' be the resulting new cycle of length g+q-1 obtained from G by inserting g' in each of above cases. Since g' and g' and g' p, we can insert g' in obtain a Hamilton cycle of g'. This contradicts the choice of g'.

**Proof of Theorem 1.1.** If  $G \in \{2K_2, K_3, K_{1,1}\}$ , it is easy to check that  $G^{+--}$  is not hamiltonian. If  $G \cong K_{1,p-1}$  for  $p \geq 3$ , then the number of component of  $G^{+--} - S$  is p, and is greater than p-1, the cardinality of S, where S is the set of vertices with degree one in G. Hence  $G^{+--}$  is not hamiltonian.

To show its sufficiency, assume G is a graph with no isolated vertices and is not a star and  $G \notin \{2K_2, K_3\}$ . Let us consider two cases.

Case 1.  $p \geq \Delta'(G) + 1$ .

Then  $\delta(G^{+--}) = min\{q, p+q-\Delta'(G)-1\} = q$ . Since G is not a star and has no isolated vertices,  $q \ge max\{\alpha(G), \Delta(G)+1\} = \alpha(G^{+--})$ .

Subcase 1.1. G has no isolated edges.

By Theorem 2.3,  $\kappa(G^{+--}) = \delta(G^{+--}) = q \ge \max\{\alpha(G), \Delta(G) + 1\} = \alpha(G^{+--})$ . By theorem 2.1  $G^{+--}$  is hamiltonian.

Subcase 1.2. G has an isolated edge.

By Theorem 2.3,  $\kappa(G^{+--}) = \delta(G^{+--}) - 1 = q - 1$ . If  $\alpha(G^{+--}) < q$  then  $\alpha(G^{+--}) \le \kappa(G^{+--})$ , and by Theorem 2.1,  $G^{+--}$  is hamiltonian. Now suppose  $\alpha(G^{+--}) = q$ . By  $\alpha(G^{+--}) = \max\{\alpha(G), \Delta(G) + 1\}$ , if  $q = \Delta(G) + 1$ ,  $G \cong K_{1,\Delta(G)} + K_2$  since G has an isolated edge; if  $q = \alpha(G)$ ,

then by Lemma 3.1, G is the union of some stars, one of which is  $K_2$ . Therefore,  $G \cong mK_2, m \geq 3$  or  $G \cong m_1K_2 + K_{1,r_1} + K_{1,r_2} + \cdots + K_{1,r_t}$ , where  $m_1 \geq 1$  and  $r_i \geq 2$  for each  $i = 1, 2, 3, \dots, t$ .

Let us first consider the case  $G \cong mK_2$ , where m > 2. Let  $V(G) = \{u_1, v_1, u_2, v_2, \cdots, u_m, v_m\}$ , and  $E(G) = \{e_1, e_2, \cdots, e_m\}$ , where  $e_i = u_i v_i$  for  $i = 1, 2, \cdots, m$ . Then we can find a Hamilton cycle of  $G^{+--}$ :

 $e_2u_1v_1e_3u_2v_2e_4u_3v_3\cdots e_{i+1}u_iv_i\cdots e_mu_{m-1}v_{m-1}e_1u_mv_me_2.$ 

If  $G \cong m_1K_2 + K_{1,r_1} + K_{1,r_2} + \cdots + K_{1,r_t}$ , let  $G' = K_{1,r_1} + K_{1,r_2} + \cdots + K_{1,r_t}$  and  $V(K_{1,r_i}) = \{v_0^i, v_1^i, \cdots, v_{r_i}^i\}$ ,  $E(K_{1,r_i}) = \{e_1^i, e_2^i, \cdots, e_{r_i}^i\}$ , where  $e_j^i = v_0^i v_j^i$  for  $i = 1, 2, \cdots, t, j = 1, 2, \cdots, r_i$ .

Let  $P_k$  be  $e_{r_k}^k v_1^k v_0^k v_2^k e_1^k v_3^k e_2^k \cdots v_{i+1}^k e_i^k \cdots v_{r_k}^k e_{r_k-1}^k$ . Then  $P_k$  is a Hamilton path of  $K_{1,r_k}^{+-}$  for  $k=1,\cdots,t$ . Then  $e_{r_1}^1 P_1 e_{r_1-1}^1 e_{r_2}^2 P_2 e_{r_2-1}^2 \cdots e_{r_t}^t P_t e_{r_t-1}^t$  is a Hamilton path of  $G'^{+--}$ . We denote it simply by P.

If  $m \geq 3$ ,  $(m_1K_2)^{+--}$  has a Hamilton path P'. By simply connecting one end vertex of P' to  $e^1_{r_1}$ , and the other end vertex of P' to  $e^t_{r_t-1}$ , one can obtain a Hamilton cycle of  $G^{+--}$ .

If m=2, we label the vertices of  $2K_2$  as  $\{u_1, v_1, u_2, v_2\}$  and  $E(2K_2) = \{e_1, e_2\}$ ,  $e_i = u_i v_i$  for i=1,2. Then  $u_1 v_1 e_2 e_1 v_2 u_2$  is a Hamilton path of  $(2K_2)^{+--}$ . By the similar way as in the previous argument, one can obtain a Hamilton cycle of  $G^{+--}$ .

If m=1, we denote the isolated edge by e, and let u,v be two end vertices of G. Then  $P+u+v+e+uv+ue^1_{r_1}+ve^t_{r_t-1}-v^1_1v^1_0+v^1_1e+ev^1_0$  is a Hamilton cycle of  $G^{+--}$ .

Case 2.  $p \leq \Delta'(G)$ 

By Theorem 2.3,  $\kappa(G^{+--}) = \delta(G^{+--})$ . Recall that  $\delta(G^{+--}) = \min\{q, p+q-\Delta'(G)-1\}$ .

Subcase 2.1.  $q \ge \Delta'(G) + 1$ 

Then  $p+q-\Delta'(G)-1\geq p$ , and thus  $\delta(G^{+--})\geq p$ . Since  $p\geq\alpha(G)$  and  $p\geq\Delta(G)+1$  always hold, we have  $\kappa(G^{+--})=\delta(G^{+--})\geq p\geq\max\{\alpha(G),\Delta(G)+1\}=\alpha(G^{+--}),$  and  $G^{+--}$  is hamiltonian by Theorem 2.1.

Subcase 2.2.  $q \leq \Delta'(G)$ .

Then  $\max\{p,q\} \leq \Delta'(G)$ , by Lemma 3.3,  $G^{+--}$  is hamiltonian. The proof is complete.

### References

 J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, Macmillan, London, 1976.

- [2] J. Chen and J. Meng, Maximally edge-connectivity of a transformation graph G<sup>+--</sup>, J. East China Norm. Univ. Natur. Sci. Ed. 2006(2006) 83-86.
- [3] J. Chen and J. Meng, Super edge-connectivity of transformation graphs  $G^{++-}$ , J. Xinjiang Univ. Natur. Sci. 23(2006) 1-4.
- [4] J. Chen and J. Meng, Super edge-connectivity of the transformation graph  $G^{--+}$ , J. Shaanxi Normal Univ. Nat. Sci. Ed. 34(2006) 123-124.
- [5] V. Chvátal, P. Erdös, A note on Hamiltonian circuits, Discrete Math. 2(1972) 111-113.
- [6] H. Fleischner, A.M. Hobbs, Hamiltonian total graphs, Math. Notes 68(1975) 59-82.
- [7] Q. Lin and J. Shu, Regularity and spectral radius of transformation graphs, OR Transactions 11(2007) 102-110.
- [8] G. Ma and B. Wu, Hamiltonicity of complements of total graphs, LNCS 4381, Springer-Verlag pp. 109-119, 2007.
- [9] B. Wu and J. Meng, Basic properties of total transformation graphs,
   J. Math. Study 34(2)(2001) 109-116.
- [10] B. Wu, L. Zhang and Z. Zhang, The transformation graph  $G^{xyz}$  when xyz = -++, Discrete Math. 296(2005) 263-270.
- [11] L. Xu and B. Wu, Transformation graph  $G^{-+-}$ , Accepted for publication on Discrete Mathematics.
- [12] L. Yi and B. Wu, The transformation graph  $G^{++-}$ , Submitted for publication.
- [13] Z. Zhang and X. Huang, Connectivity of transformation graphs  $G^{+-+}$ , Graph Theory Notes N. Y. 43(2002) 35-38.