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Abstract

The transformation graph G*~~ of a graph G is the graph with vertex set
V(G) U E(G), in which two vertices u and v are joined by an edge if one of
the following conditions holds: (i) u,v € V(G) and they are adjacent in G, (iz)
u,v € E(G) and they are not adjacent in G, (iii) one of u and v is in V(G)
while the other is in E(G), and they are not incident in G. In this paper, for any
graph G, we determine the independence number and the connectivity of G*~~.
Furthermore, we show that for a graph G with no isolated vertices, Gt~ is
hamiltonian if and only if G is not a star and G ¢ {2K>, K3}.
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1 Introduction

All graphs considered here are finite, undirected and simple. We refer
to [1] for unexplained terminology and notations. Let G = (V(G), E(G))
be a graph. |[V(G)| and |E(G)| are called the order and the size of G,
respectively. For two vertices u and v of G, if there is an edge e joining
them, we say u and v are adjacent. In this case, both u and v are end
vertices of e, and u (or v) and e are said to be incident. Two edges e and
f are also called to be adjacent if they have an end vertex in common.

For a graph G, the symbols A(G), §(G), #(G) and a(G) denote the max-
imum degree, the minimum degree, the connectivity and the independence
number of G, respectively.

As usual, K, and P, denote the complete graph and path of order n,
respectively. For two positive integers r and s, K , is the complete bipartite
graph with two partite sets containing r and s vertices. In particular, K 4
is called a star. For s > 2, K ; + e is the graph obtained from K 1,s by
adding a new edge which joins two vertices of degrees one. K, ; — e is the
graph obtained from K , by deleting an edge. We say two graphs G and H
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are disjoint if they have no vertex in common, and denotes their union by
G + H; such a graph is called the disjoint union of G and H. The disjoint
union of k copies of G is written as kG. The join GV H of G and H is the
graph obtained from G + H by joining each vertex of G to each vertex of
H.

The complement of G, denoted by G, is the graph with the same vertex
set as G, but where two vertices are adjacent if and only if they are not
adjacent in G. The total graph T'(G) of G is the graph whose vertex set
is V(G) U E(G), and in which two vertices are adjacent if and only if they
are adjacent or incident in G.

Wu and Meng [9] introduced some new graphical transformations which
generalize the concept of total graph. Let G = (V(G), E(G)) be a graph,
and a, B be two elements of V(G)U E(G). We define the associativity of a
and B is + if they are adjacent or incident, and —, otherwise. Let zyz be
a 3-permutation of the set {+,—}. We say that o and 3 correspond to the
first term z (resp. the second term y or the third term 2) if both « and
B are in V(G) (resp. both a and # are in E(G), or one of a and f is in
V(G) and the other is in E(G)). The transformation graph G*¥* of G is
defined on the vertex set V(G) U E(G). Two vertices o and B of G*¥* are
joined by an edge if and only if their associativity in G is consistent with
the corresponding term of xyz.

Therefore, one can obtain eight graphical transformations of graphs,
since there are eight distinct 3-permutation of {+,—}. Note that G*+++
is just the total graph T'(G) of G, and G~~~ is the complement of T(G).
Fleischner and Hobbs [6] showed that G** is hamiltonian if and only if G
contains an EPS-subgraph, that is, a connected spanning subgraph S which
is the edge-disjoint union of a (not necessarily connected) graph E, all of
whose vertices have even degree, with a (possibly empty) forest P each of
whose component is a path. Ma and Wu [8] showed that for a graph G of
order n > 3, G~~~ is hamiltonian if and only if G is not isomorphic to any
graph in {K1n-1,Ki1,n-1 + &, K1n—2+ K1} U{K2 + 2K, K3 + K1, K3 +
2K1, K4}. Wu, Zhang and Zhang [10] proved that for any graph G of order
n, G~** is hamiltonian if and only if n > 3. Recently, Xu and Wu [11]
showed, for a graph G of order n > 4, G~ is hamiltonian if and only if
G is not isomorphic to any graph in {Kyn—1,Kin-1+ € Kin2+ K1} U
{2K; + K3}. Yi and Wu [12] showed that for a graph of order p and size
g, if ¢ > p— 1, G**~ is hamiltonian. We refer to [2, 3, 4, 7, 13] for more
results on G=¥%,

In this paper, we shall investigate the transformation graph G*~~ of
a graph G. G*~~ is the graph with V(G*~~) = V(G) U E(G), in which
two vertices u and v are joined by an edge if one of the following conditions
holds: (i) u,v € V(G) and they are adjacent in G, (it) u,v € E(G) and
they are not adjacent in G, (¢4¢) one of v and v is in V(G) while the other
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is in E(G), and they are not incident in G.

For any graph G, we determine the independence number and the con-
nectivity of Gt——. Furthermore, for a graph G with no isolated vertices,
we obtain a necessary and sufficient condition for G*~~ to be hamiltonian.

Theorem 1.1. For a graph G with no isolated vertices, Gt~ is hamilto-
nian if and only if G is not a star and G ¢ {2K,, K3}.

2 Independence number and connectivity of
Gt~

We start with some simple observations. Let G be a graph of order p and
size . Then the order of G*~~ is p+ ¢, dg+--(z) = dg(z) +9—dc(z) = ¢
for z € V(G) and dg+--(e) =p+ g —dg(u) —dg(v) —1 forany e =uv €
E(G). Let A’(G) be the maximum value of dg(u) + dg(v), where u and v
are taken over all adjacent vertices in G. So

8(G* ") =min{q,p+q - A'(G) - 1}.

Wu and Meng [9] proved that G*~~ is connected if and only if G has at
least two edges, and diam(G*~~) < 4 if G has at least two edges, and the
equality holds if and only if G = Ps.

In proof of main theorem, we use the following classical theorem, due
to Chvétal and Erdds [5).

Theorem 2.1. Let G be a graph of order at least three. If a(G) < &(G),
then G is hamiltonian.

In the subsequent two theorems, we shall determine the independence
number and connectivity of G¥—~ for a graph G.

Theorem 2.2. For any graph G, o(G*~~) = maz{a(G), A(G) + 1}.

Proof. Since both an independent set and a vertex together with its inci-
dent edges of G are an independent set of G*~~, a(G*~~) > maz{a(G),
A(G) + 1}. So, to complete the proof, it suffices to show that a(G+~~) <
maz{a(G), A(G) + 1}. Let S be a maximum independent set of G*~~
and S = 5; U S, where S; C V(G) and S; C E(G). Let us consider three
cases.
Case 1. |5 =0.

Then S = S;. Since all elements of S, are edges which are pairwise
adjacent in G, G[S] = G[S;] is a star or a triangle. Therefore, o(G+~~) =
S| = |S2| < A(G) + 1.
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Case 2. |Si| = 1.
Let S; = {u}. Then all elements of S; are incident with u in G, thus
1S2| < dg(u) < A(G), and |S| = |S1| +[S2| < A(G) + 1.

Case 3. |Sll > 2.

‘We shall show that S = §. Otherwise, we take e € Sy. By the definition
of G+——, all elements of S; are end vertices of e in G. Since 5 is also an
independent set of G, it is impossible. So |Sz| = 0, thus |S]| = |S1| £ «(G).

By cases 1, 2 and 3, a(G*~~) < maz{a(G), A(G) + 1}. m]

Theorem 2.3. For a graph G of order p and size q, we have

K(GH") = §(G*~)—1 ifp> A'(G) and G has an isolated edge
T 8GT) otherwise

Proof. Suppose £(Gt~~) < §(G+~~). One can easily check that x(G*~~)
= §(G*Y~7) if p < 3, so assume p > 3 in sequel. We shall prove that
k(G*~~) = §(G*~~) — 1, and furthermore p > A'(G) and G has an
isolated edge. Let S be a minimum cut of G*~= with |S| < §(G*~~), and
Hy,H,,- -, H be all components of G*~~ —S. Without loss of generality,
suppose Hj is a component of G+~~~ S with the maximum |V (H;)NE(G)|,
namely, |[V(H:) N E(G)| > |V(H;) N E(G)| for each ¢ = 2,--- ,k. By the
choice of S, every component of G*~~ — S is nontrivial (or has at least two
vertices).

Claim 1. [V(H;) N E(G)| = 1.

Proof of Claim 1. Suppose |V(Hi)N E(G)| # 1. If [V(H1)N E(G)| =0
then E(G) C S and thus |S| > g, which contradicts the assumption that
|S| < 8(G*t~~) < q. Hence |V(H;) N E(G)| > 2. Suppose that {e;, ez} C
V(H;) N E(G). We consider two cases.

Case 1. e; and ey are adjacent in G.

Assume e; = uu; for i = 1,2 in G, and e3,- - ,eq4 be all the remaining
edges which are incident with v in G. We claim that u; and uz must be
adjacent in G. Otherwise, V(H2) U --- U V(Hi) C {u,es, - ,eq}. But,
since {u, €3, ,eq} is an independent set of G*~~, |V(H;)| = 1 for each
i=2,---,k, which contradicts the fact that all components of G*~~ — §
are nontrivial. Hence u; and ug are adjacent in G, and if let e = uju,,
then e € V(H2) U--- U V(Hy). Furthermore k = 2 since V(H2) U ---U
V(Hi) C {u,e3, - ,eq,e}. Next by showing V(H,) = {e1,e2} we obtain
a contradiction.

First of all, e = ujup € V(Ha) implies that V(H1) N V(G) C {u1,uz}.
On the other hand, since H; is nontrivial, V(H2) contains u or some e; for
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some ¢ > 3. But each of conditions « € V(H,) and e; € V(Hz) for some
i > 3 implies that V(H;) N V(G) = @ because both u; and uy are adjacent
to u and e; for any j > 3 in G*~~. By the same reasoning, we can obtain
V(H,) N E(G) C {e1,e2}. Since H; is nontrivial, V(H;) = {e;, e2}. But,
e; and ez are not adjacent in Gt~ ~, which destroys that H; is a nontrivial
component of Gt—— — §.

Case 2. e; and ej are not adjacent in G.

Assume e; = w;v; for i =1,2in G. Then V(H)U---UV(Hy) C E(G),
and for e € V(Ha) U--- UV (Hy), its end vertices belong to {uy, ug,vy,v2}
in G by the definition of G*~~. Moreover, since all H; are nontrivial, two
situations might occur. Namely, k = 2 or k = 3. If k = 2, V(H,) €
{{u1uz, vive}, {w1vg, ugn1}}; if k = 3, {V(Hz), V(Hs)} = {{uiuz, v1v2},
{uyve, ugv1}}. Interchanging the role of two elements of H, with those
of Hy, we obtain V(H;) = {e;,e2} in any cases of k = 2 and k = 3.
Therefore, if k = 2 then A/(G) > 4 and |S| = |V(G)| + |E(G)| - 4 >
p+q—A'(G) — 12> §G*+ ), a contradiction; if k = 3 then A'(G) > 6,
and |S| = [V(G)| + |E(G)| -6 >p+g—A'(G)—12>§G+~). Again a
contradiction.

This proves Claim 1. m]

Suppose V(H,)NE(G) = {e} and let u and v be the end vertices of e in
G. Then (V(H2)U---UV (H))NV(G) C {u,v}. Since |V(H;)NE(G)| <1
by Claim 1, each component H; with ¢ > 2 must contain u or v. Moreover,
since u and v are also adjacent in G*~~, k = 2.

Claim 2. V(H2) N E(G) = 0.

Proof of Claim 2. Otherwise, let V(H2) N E(G) = {e¢’}. Then e and ¢’
are adjacent in G, and without loss of generality, let « be their common end
vertex in G. Let w be a neighbor of e in V(H;). Then w € V(G) by Claim
1, and w ¢ {u,v}. By the definition of G*~~, w must be the other end
vertex of e’ in G. It follows that « and w are adjacent in G~ and thus
u ¢ V(Hy). Since V(H2)NV(G) C {u,v}, V(H)NV(G) = {v}andu e S
since u and v are adjacent in G*~~. Hence V(H) = {¢/,v}. Interchanging
the role of V(H;) and V(Ha), one can obtain that V(H;) = {e,w}. So
|S| = p + q — 4. Combining this with |S] < 6(G*~~) < ¢, p = 3. Since
e,e € E(G), ¢ > 2, and thus G = P; or G & K3. But, it is easy to check
that 5(G*~~) =1 =§(G*+~ ") for G = P; or G = K, a contradiction. O

By Claim 2, V(H2) C {u,v}, and V(H3) = {u,v} since |V(H2)| > 2. It
follows that (Ng(u) U Ng(v)) \ {u,v} C S. Therefore

|S| > g — 1 + maz{de(u),dc(v)} - 1. (1)
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Together with |S] < §(G*~~) = min{q,p+ g — A'(G) — 1}, we have
g—1+maz{de(u),de(v)} -1<¢-1 (2)
and
g —1+maz{dg(u),de(v)} -1<p+q-A"(G)-2. (3)

It is easy to see that dg(u) = dg(v) = 1 from (2) and thus |S| > ¢ -1
by (1) and p > A’(G) from (3). Recall that [S| < §(GT~7) < g, we
have |S| = ¢ — 1 = 6(G*~~) — 1. This proves what we desired, i.e.,
k(Gt~~)=6(G*~~) -1, and p > A'(G) and G has an isolated edge.

One the other hand, if p > A/(G) and G has an isolated edge then
5(G*t~~) = min{q,p+ g — A'(G) — 1} = q, but k(G*~~) < g — 1 since
E(G) \ {e} is a vertex cut of G*~~ such that G[{u,v}] is a component of
G+~~~ 8, where e is an isolated edge of G with e = uv.

The proof is complete. o

3 The Proof of Main Theorem

The following result is obvious, so its proof is omitted.

Lemma 3.1. Let G be a graph of size q with no isolated vertices. Then
a(G) < q and the equality holds if and only if G is disjoint union of stars.

Figure 1. Several graphs with order p
Lemma 3.2. For a graph G of order p, if G € {K) -1+ €,G1,G2} and

p >4, or G=Gs and p > 5, where G1,G2 and G3 are shown in Figure 1,
then Gt—— is hamiltonian.
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Proof. For G = Kj,_1 +e, let V(K1p-1+e) = {vo,v1,++ ,vp-1} and
E(Kyp-1+€) = {e1, €2, ,ep—1,€12}, Where e; = vov; fori =1,2,.-- ,p—
1, and ej2 = v1v2. Then we can find a Hamilton cycle of (K3 51 +€)*~:

VoU2€1V3€2 * * * Vi€i—1 * * * Up—1€p—2V1€p—1€127p.

Note that Gy & K, vV K,—; and suppose G & G,. Let V(G) =
{u7’U7 v1,V2, *- 7vp—2} and E(G) = {e’ 61", 612‘, e ,e;_z, 31]),1 eg, e ie;—2},
where e = uv, e = v;u, e} =wvvfori=1,2,-.. ,p—2. Then the following
is a Hamilton cycle of Gt~ :

u
o—

Observe that G, is obtained from G; by adding an edge which joins two
vertices of degree two. If G & Gy, let V(G) = {v,v,v1,v2, -+ ,vp—2} and
E(G) = {e, e, e}, €%, -+ ,€¥_o,€},€5, -+ ,e5_o}, where e = uv, e’ = vyvy,
e = vu, ef = v fori=1,2,.---,p— 2. Then we can find a Hamilton
cycleof G*~~ forp > 4:

u v u v
uey ey _pUV1€V2€1 €3VU3€7 < - €] Vit 1€} * - €p_3Up_2€,_g€p_olU.

ueley_,uvievaelesvaes - - € Vit1€] - €p_svp_2€y_zep_se’u.

If p=4, G = K, and ueleyve’evoefeyviu is a Hamilton cycle of GT——.

Notice that G3 is obtained from G2 by deleting an edge as shown in
Figure 1. If G = G, let V(G) = {u,v,v1,v2, - ,vp_2} and E(G) =
{e, €, et e}, - 1€p—2,€3,€3, -+ ,€p_o}, Where e = uv, ' = v1v3, €} = vju
fori=1,2,--- ,p—2, and e} = v;v for i =2,3,-.. ,p— 2. Then we can
find a Hamilton cycle of Gt~ :

v u u u v u v u v u v /
ueer_2vel U2V EV3€5E3V4€3 * - - €, Vi41€; - -+ ep_a'vp_gep_:,ep_ze u.

Lemma 3.3. Let G be a graph of order p > 4 and size q with no iso-
lated vertices. If G is not a star and max{p,q} < A'(G) then Gt~ is
hamiltonian.

Proof. By contradiction, suppose G is a counterexample with minimum
order p. First note that p > 4. Otherwise, G € { Py, Cy, K1 3+e, Ky—e, K4}
by maz{p,q} < A’(G). It is easy to check that Gt~ is hamiltonian if
G € {P;,C4} and we have seen that from Lemma 3.2, it is hamiltonian if
Ge {K1,3 +e,Kq4—e, K4}

Let e = uv be an edge of G such that dg(u) + dg(v) = A/(G). Without
loss of generality, dg(u) > dg(v). Observe that for any graph G, ¢ >
A'(G) - 1. So, we consider two cases.

Case 1. g = A'(G) - 1.
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We claim that 6(G) = 1. If 6(G) > 2, by ¢ = A'(G) — 1, we have
N(u)\ {v} = N(v) \ {u} and thus G = K, V K,_3. By Lemma 3.2 G*~~
is hamiltonian, a contradiction. The claim is true.

Since dg(u) > dg(v), u has a neighbor, say w, with degree one in G.
Let ¢ = uw and H = G — w. Then H has the order p — 1 and size ¢ — 1,
and A/(H) = A’(G) — 1. By the choice of G and w, H*~~ is hamiltonian.
Let C be a Hamilton cycle of H*~~. Note that the order of C is p+q—2.
Recall that dg+--(w) = ¢ and dg+--(¢') =p+q—de(u) —dg(w) — 1=
p+q—dg(u) — 2. So, dg+--(e') = maz{p—1,¢g — 1} since dg(u) < p-1
and ¢ > A(G) +1 > dg(u) + 1. By inserting ¢’ and w into C' we shall
obtain a Hamilton cycle of G*~~, which contradicts the choice of G.

First we insert e’ into C. If p # g, since dg+--(¢’) 2 maz{p—1,9-1}
and the length of C is p + ¢ — 2, we can insert ¢’ into C, and obtain a
cycle of length p + ¢ — 1. For the case p = ¢, G 2 Kjy,p-1 + e since
(K1,p—1+€)* ™ is hamiltonian by Lemma 3.2. It follows that dg(u) < p-2,
and dg+--(€') = p+ g — de(u) — 2 > g. We can also insert €’ into C. We
denote the resulting cycle by C’.

Now it remains to insert w into C’. Since dg+--(w) = g, if ¢ > p, we
can insert w into C’ and obtain a Hamilton cycle of G*—~. If g =p -1,
then G is a double star.

If there are two consecutive vertices on C’, which are adjacent to w in
G*~—, then C’ can be extended to a Hamilton cycle of G~ by inserting
w in a obvious way. If there are not, w are adjacent to g vertices which are
pairwise independent in C’. However, since ¢’ and v are adjacent in G+~
we still find a Hamilton cycle (with bold lines) of Gt~ as illustrated in
Figure 2.

Figure 2. A Hamilton cycleof G' ™~

Case 2. ¢ = A'(G).
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Since ¢ = A’(G) and dg(u) + dg(v) = A’(G), there is only edge which
is not adjacent to uv in G. We claim that §(G) = 1. If §(G) > 2 then
G =2 G, or G = G3, where G2 and G3 are as shown in Figure 1, by Lemma
3.2, G*~~ is hamiltonian.

First assume G has an isolated edge, say ¢’ = zy, and let H = G—{z,y}.
By the choice of G, either H € {Ka3, P3, K1 p—3} or H*~~ is hamiltonian.
It is easy to check that (K3 + K2)*~~, (P + K)*~~ are hamiltonian.
We shall see that (K;,,-3 + K2)*~~ is also hamiltonian in the proof of
Theorem 1.1 (Subcase 1.2). For the later case, let C be a Hamilton cycle of
H*=~. Combining dg+--(z) = dg+--(y) = ¢ and dg+--(¢/) =p+¢q—-3
with ¢ = A’'(G) > p, we can insert z, y and ¢’ one by one into C, and
obtain a Hamilton cycle of G*~~.

Now assume G has no isolated edge, and let z be a vertex of G with
dg(z) = 1. Let w be the neighbor of z in G and €' = wz. As we have seen
before, dg+--(€') = p+qg—dg(w) —2 > g— 1. If dg(w) < p—1 then
dg+--(€') 2 q; if dg(w) = p— 1, then w = v and dg(v) > 2, this implies
that ¢ > p and thus dg+--(€’) = ¢ — 1. By the choice of G, (G — z)*—~
is hamiltonian, and let C be a Hamilton cycle. Since the length of C is
P+ q—2, ¢ can be inserted into C. Let C’ be the resulting new cycle of
length p + ¢ — 1 obtained from C by inserting ¢’ in each of above cases.
Since dg(w) = ¢ and ¢ > p, we can insert w into C’ and obtain a Hamilton
cycle of G*=~. This contradicts the choice of G. 0

Proof of Theorem 1.1. If G € {2K>, K3, K1}, it is easy to check that
G*~~ is not hamiltonian. If G & K, for p > 3, then the number of
component of Gt~ — S is p, and is greater than p — 1, the cardinality of
S, where § is the set of vertices with degree one in G. Hence Gt~ is not
hamiltonian.

To show its sufficiency, assume G is a graph with no isolated vertices
and is not a star and G ¢ {2K>, K3}. Let us consider two cases.

Case 1. p > A'(G) + 1.
Then §(G*~~) = min{q,p+ ¢— A’(G) — 1} = q. Since G is not a star
and has no isolated vertices, ¢ > maz{a(G), A(G) + 1} = a(G+~ 7).

Subcase 1.1. G has no isolated edges.
By Theorem 2.3, k(G*~~) = §(G*~~) = ¢ 2 maz{a(G),A(G) + 1} =
a(G*~~). By theorem 2.1 G*t~~ is hamiltonian.

Subcase 1.2. G has an isolated edge.

By Theorem 2.3, k(G*~ ") =6§(Gt~ ") -1=¢q-1. fa(Gt™ ") < q
then a(G*~~) < k(G*~~), and by Theorem 2.1, G*~~ is hamiltonian.
Now suppose a(G*~~) = ¢g. By a(G*~") = maz{a(G),A(G) + 1}, if
g = A(G)+1, G= K a(g) + K2 since G has an isolated edge; if ¢ = o(G),
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then by Lemma 3.1, G is the union of some stars, one of which is K.
Therefore, G = mKo,m >3 0or G 2 m Ko+ Kir, + K1y + - + K17,
where m; > 1 and r; > 2 for each i =1,2,3,-.- ,t.

Let us first consider the case G = mK,, where m > 2. Let V(G) =
{UI,UI,UQ,'UZ, ceryUm,y 'Um}’ and E(G) = {81182) e sem}a where €i = Ui
fori =1,2,--- ,m. Then we can find a Hamilton cycle of Gt~ :

€U V183U2VU2e4U3V3 * * * €i41UVi * * ' EmUm—1Um—1€1UmVUmER.

I G = miKp + Kury + Kiry + 0 + Ki,, 1ot G = Ky, + Koy +
+o++ Ky, and V(Kyr,) = {v5, 91, b B(Kir) = {el e, velri}’

where e} = vfv} for i =1,2,---,¢,j=1,2,--+ 7.
Let Py be ef vivkvkekviek - vk e¥ - vk ek ;. Then P is a Hamil-
ton pathof K{ .~ fork=1,-- ,t. Theney, Pre;, _ €7, Pael,_;-- e} Pre},_,

is a Hamilton path of G'*~~. We denote it simply by P.

If m > 3, (myK2)*~~ has a Hamilton path P’. By simply connecting
one end vertex of P’ to e}, and the other end vertex of P’ to €l,_,, one
can obtain a Hamilton cycle of G+~

If m = 2, we label the vertices of 2K, as {u;,v1,u2,v2} and E(2K3) =
{e1,e2}, €; = u;v; for i = 1,2. Then ujvieze;1v2u2 is & Hamilton path of
(2K3)*~~. By the similar way as in the previous argument, one can obtain
a Hamilton cycle of Gt~ ~.

If m = 1, we denote the isolated edge by e, and let u,v be two end
vertices of G. Then P+ u+v+e+uv + uel, +vel _; — viv) +vie+ev)
is a Hamilton cycle of G*~~.

Case 2. p < A'(G)
By Theorem 2.3, k(G+~~) = §(G*~~). Recall that §(G*~~) = min{q,p+
g—-A'(G) -1}

Subcase 2.1. ¢ 2 A'(G) +1

Then p+ ¢ — A'(G) — 1 > p, and thus §(G*~~) > p. Since p > a(G)
and p > A(G) + 1 always hold, we have x(G*~~) = §(G*~~) > p >
maz{c(G), A(G) + 1} = a(G*~~), and G*~~ is hamiltonian by Theorem
2.1.

Subcase 2.2. ¢ < A'(G).
Then maz{p,q} < A’(G), by Lemma 3.3, G*~~ is hamiltonian.
The proof is complete. D

References

(1) J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,
American Elsevier, New York, Macmillan, London, 1976.

126



[2] J. Chen and J. Meng, Maximally edge-connectivity of a transfor-
mation graph G*+~—, J. East China Norm. Univ. Natur. Sci. Ed.

2006(2006) 83-86.

[3] J. Chen and J. Meng, Super edge-connectivity of transformation
graphs G**~, J. Xinjiang Univ. Natur. Sci. 23(2006) 1-4.

[4] J. Chen and J. Meng, Super edge-connectivity of the transformation
graph G~—*, J. Shaanxi Normal Univ. Nat. Sci. Ed. 34(2006) 123-
124.

[5] V. Chvétal, P. Erdés, A note on Hamiltonian circuits, Discrete Math.
2(1972) 111-113.

[6] H. Fleischner, A.M. Hobbs, Hamiltonian total graphs, Math. Notes
68(1975) 59-82.

[7] Q. Lin and J. Shu, Regularity and spectral radius of transformation
graphs, OR Transactions 11(2007) 102-110.

(8] G. Ma and B. Wu, Hamiltonicity of complements of total graphs,
LNCS 4381, Springer-Verlag pp. 109-119, 2007.

[9] B. Wu and J. Meng, Basic properties of total transformation graphs,
J. Math. Study 34(2)(2001) 109-116.

[10] B. Wu, L. Zhang and Z. Zhang, The transformation graph G*¥* when
zyz = — + +, Discrete Math. 296(2005) 263-270.

(11] L. Xu and B. Wu, Transformation graph G=*~, Accepted for publi-
cation on Discrete Mathematics.

[12] L. Yi and B. Wu, The transformation graph G++=, Submitted for
publication.

(13] Z. Zhang and X. Huang, Connectivity of transformation graphs
G*=*, Graph Theory Notes N. Y. 43(2002) 35-38.

127



