Paths in the Square Unit Lattice

Jack Abad, Paul Abad, Victor Abad, William Moser

Abstract
An n—bit binary string (z1,Z2,...,2%n),2; = %1 and its par-
tial sums s; = z; + x2 + ... + z; determine paths in the unit lat-
tice {(z,y) | =,y integers} with “steps” /N . We enumer-

ate classes of these paths satisfying restrictions. These include well-
known counts (e.g., Catalan numbers and Chung-Feller numbers) and
new counts, some presented as problems with solutions.

1 Introduction

A lower case Greek letter denotes a binary string (bits +1). Let z; = z;(6)
denote the i*® entry of the string &, and £(8) the length of the string. If
(o) =n2>21,

5=($1,...,:Bn), $i=zi(5)€{1;—1}, i=1,...,n,n2>1. (1)

Let s; = 5;(J) denote the j*" partial sum, the sum of the first j entries of

sj=x1+x2+...+ 75, i=12,...,n (2)

Corresponding to a string § there is a path in the square unit lattice
{(z,v) | =,y integers} which starts at the point (0,0), proceeds by steps
" (straight line segments from (z,y) to (x + 1,y + 1) or to (z + 1,y — 1))
to (1,s1(d)), then in turn to (2,s2(6)),...,(n, sn(6)). The congruent-by-
translation path a which starts at (a,u), ends at (a + n,u + s,(8))(Fig.
1).

For example, a path § which starts at (0,0) and ends at (2n,0) and
satisfies s;(0) > 0,0 <4 < 2n (no point of the path lies below the z-axis) is
called a Catalan path of length 2n (Figure 2). C(n) denotes the cardinality
of the set of Catalan paths of length 2n; it is well-known that

Cn) = a%(":‘) n>1. 3)
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(1.3)
(11,1)

(0,0)

(10,-2)
6=(-1,1,1,1,-1,1,-1,-1,-1,-1) , s(6) = (-1,0,1,2,1,2,1,0 - 1,-2)
Figure 1

60=(1,1,-1,1,1,-1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1)
A Catalan Path
Figure 2

Our objective is to enumerate, in a simple way, several classes of paths.
Some of what we write appears in some form in the literature ([1],(2], [4],
), [6], (7], (8], [9], (10}, [11], [12), [13], [1d], [15], (6], [17], [18]), published
over many decades and in different locations. It seemed to us desirable to
simplify presentations, add some new proofs and new counts, and make it
all accessible in one location. In Section 2 we state more definitions and
prove basic properties of strings and paths. In Section 3 we prove theorems,
including (3), the remarkable Raney’s theorem, and enumerations of subsets
of paths in the context of voting patterns in a two-person contest. In Section
4 we find new enumerations (of classes of paths satisfying restrictions),
posing them as problems with solutions.

2 Preliminaries

For convenience we take

(n) _ {n!/k!(n-—k)! if0<k<n, @

k 0 otherwise,
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(so that (}) =0 when k < 0orn <0or0 <n < k), and occasionally
implicitly use the equality

n\ _(n—-1\n

k)] \k-1)k"

Lemma 1 ([11] p. 70) For given p > 0,q > 0, the number of strings which
have p bits 1 and q bits —1 is

+q P+q
(39)-C7) ®
p q
Proof. Place p+g symbols —1 in a row; choose p of them ( (”+°) choices), and

delete from them the minus signs (making them 1’s). The (”'“’) strings we
have constructed are precisely those we want. o

The string § = (z1,32,...,%n) has length n. If it has p bits 1 and g bits
—1, then
n=p+q P=(n+s.)/2
and 6
Sh=p—gq g=(n-s,)/2. (6)

Consequently n and s,(J) are both even or both odd.
Let f(n, k) denote the number of paths which start at (0,0) and end at
(nk),n>21, —-n<k<nk=n(mod?2). Lemma 1 has the equivalent

version +
n p+g pt+g=n
nk)=|{, = where .
f(n. k) (-—"‘—zk) ( P ) p—q=k

Another useful equivalent version is
Lemma 2 Given two lattice points (a,u), (b,v) with a < b, —(b-a) <
v—u<b—a, v—u=b-—a (mod 2), the number of paths from (a,u) to
(b,v) is
b—a b—a
f(b—a,v— U) = (b—aiv—u) = (5—4"!"-“2) . o
2 2

Note that the condition —(b—a) £ v —u < b — a on v — u is unnecessary

because of the definition (4) of (}).

Lemma 3 The number of strings with length n (paths starting at arbitrary
point (a,u) and length n) is

> fk= > (;_,E)=Pzz;)(:)=2". o

k=n(mod 2) k=n(mod 2) - 2
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Lemma 4 (A useful reflection, first seen by Aebly [1] and Mirimanoff {13];
used by D. André [2], and in [10] and many others.) For given 0 < k <
n,n > 1,n = k (mod 2), the number of paths from (0,1) to (n,k + 1) (the
paths have length n and non-negative rise k) which meet (cross or touch)

the x-azis is
n
(aspea)
)

(15.2)
wJ)//\/\\\vﬁ\ //’
o \/\/
€0

§=(1,1,- 1,-1,-1,1,-1,-1,-1,1,1,1,1),n =15,k = 1,t =7

Figure 3

Proof. Consider a path § = (zy,...,2z») which joins (0,1) to (n,k +1)
and which meets the z-axis (see Figure 3). Let ¢ be the abscissa of the first
point on the path with ordinate 0. Corresponding to J there is the unique
path X from (0, —1) to (n,k + 1) obtained by reflecting across the z-axis
the part of the path § from (0,1) to (¢,0) (See Figure 3). The number of
the paths we seek is the number of paths A, which (by Lemma 2) is

n—0 n
(n—0)+((k2+1)—(—1)) =\ ntkt2 | o
(20,4)
AN
(0,0)
n = 20,k = 4,(0,0) to (n, k), no point below z—axis
Figure 4

3 Theorems

Theorem 1 Forn > 1,k > 0,k = n (mod 2), let g(n, k) denote the number
of paths from (0,0) to (n,k) with no point below the z-azis (see Figure 4
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for example );

n 2k +2 p+a\p—g+1 ptg=n=1

- k2 _ pPmav_ (7
9(n. %) (-"#)n+k+2 (p P+l VP —kz0 (7
In terms of strings this is the number of binary strings 8 = (z1,%2,...,Zn)
satisfying

S =1,8220,3320,“-,57:—120,3n=k20-

Proof. Apply the translation (z,y) — (z,y+1) to the paths; the translated
copies are paths from (0, 1) to (n, k+1) (these paths have length n and rise
k > 0) with no point below the line y =1 (see Figure 5 for example). The
number of these paths is the number of paths from (0,1) to (n,k + 1) less
the number of paths from (0,1) to (n, &k + 1) which meet the z-axis which
by Lemma 2 and Lemma 4, is

n n \_(n) 2k+2
ntk J 7 \ntki2 ) T \ndk S k2
(17,4)

(0,1)

(1,1,-1,1,-1,-1,1,1,-1,1,1,-1-1,-1,1,1,1)
n=17,k =3,(0,1) to (n,k + 1) no point below y =1

Figure 5

For another proof see [5]. For a generalization to n dimensions see [18].
This theorem may be considered a generalization of

Theorem 2

2m 1

Proof. The Catalan number C(m), m > 1, is the number of paths from
(0,0) to (2m, 0) with no point below the z-axis. Take n = 2m,k =0 in (7),
Theorem 1. o

The translation (z,y) — (z + 1,y + 1) takes a path, from (0,0) to
(n,k), n > 1,k > 0, no point below the z-axis (a path counted in Theorem

133



1) to a path from (1,1) to (n+ 1,k +1), n > 1,k > 0, no point below line
y = 1, so there are g(n, k) of these paths. Replacing n by n — 1 and k by
k —1 we have

Theorem 3 For givenn > 1,k > 1,k = n (mod 2), the number of paths
from (0,0) to (n, k) with string § = (x1,Z2,...Tn—1,Tn) satisfying

s1i=1,8521,8321,...,801 2Ls,=k2>1

(see example in Figure 6) is

n—-l) 2k (p+q)p—qwherep+q=n_>_1

—1,k-1)= 2E :
g(n ) ) (ni§—2 'n.+k P p+q p—q=k20

(19,5)

(0,0) |
(1,1,-1,1,1,,1,-1,1,1,-1,1,-1,:1,1,1,1,-1,1,1)

n =19,k =5,(0,0) to (n,k),s; 21for1 <i<n
Figure 6

Let G(n) denote the number of paths from (0, 0) with length n > 1 and
no point below the z-axis:

G(n) = Z g(n, k) = Z (ﬂ;)ni{c;—f2

kZn(mod 2) k=n(mod 2)
k20 k>0

Calculating G(n) for small values of n we find that

n 12345 6 7 8
Gn) 1 2 3 6 10 20 35 70

We recognize that for 0 < n < 8, the numbers G(n) are the “central”
elements (Ln72 J) in Pascal’s triangle of binomial coefficients! Hence we are

led to

Theorem 4 ([5},[11])

6w = (i) 21
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Proof. Case: n is even, say n = 2m.

n\ 2k+2 = 4i+2 2m
Gm= 2 (ﬁ-—k)n+k+2 Z2m+2z+2(2""2‘)

k—n(mcd 2)
20

_i 2i+1 (2m = 2i+1 (2m+1
T mtit] i) S2m+1\m—i

(and letting j = m — 1)

m . m m .
_ 2m2—2jii-1(2m.+1)=Z<2m'+1)_222 J 1<2m.+1)
i=0 m+ J 7=0 J j=1 m+ J
e om 2m =/ 29m
=1+ 2| (7)+ ()] 25 ()
,-;1 j-1 J vl
= [/2m 2m om
-1+ 2 |(7) - ()] - C7)
; 7 j—1 m
The case n is odd is similar. 0O

Theorem 5 For given n > 1, the number of strings

s;=%1+z2+ ...+ 7, i=12,...,n. 8)
of length n satisfying

si=1,821s321,...,8,121,8,2>1

is

6r=1) = (10" 17721 .

Strings (1) and their corresponding paths from (0,0) to (n, k) describe
a voting pattern in an election with two competing candidates A and B.
The votes are recorded, as they come in, with a 1 if A is chosen and —1 if
B is chosen. The record of an electorate of n voters is a string (1); there

are 2™ such sequences.
In terms of voting preferences in such a contest the number of sequences

(binary strings of length n) in which:

(i) (Theorem 1, [7]) A always has at least as many votes as B and at
the last vote (n'® voter) has k > 0 votes more than B is g(n, k), with
probability

k n\_(n) 2k+2 n\_p—g+1
9mk) [ ngr ) = \ngk ) o302 ok )= p4l
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(ii) (Theorem 4) A always has at least as many votes as B is G(n), with

probability
o /2= ()

(iii) (Theorem 3, [2], {4], [8], [10], [14], {15]) A always has more votes
than B and at the last vote (n*? voter) A has k > 0 votes more than B is
g(n — 1,k — 1), with probability

wo-sn (30 ()2 (3) -3 4

(iv) (Theorem 5) A always has more votes than B is G(n — 1), with

probability
o1 /7= (1" ) /7 °

The circular shift operator R maps & onto 6% whose jt" entry is
z;(6%) = 2;41(8) (Zm(8) = Tm-n(8) when m > n), ie,,

= (.’Bg(&), 11:3(6), ey xn(‘s)i x1(6)).

Note that {E, R, R?,..., R*"1} form a cyclic group of order n, where R® =
E is the identity element and R = R"™ if i > n. Iterating z;(§F) =
z;+1(8), we can state succinctly

z;(6%) = z;14(6), 0<i<n-1, 1<j<n (9)
We will need the following two numbers determined by a string 4:
m(6) = min{s;(6), 82(8),...,5n(d)} (10)

and
t(6) = max{r | s,(6) = m(8),1 <r < n}. (11)

Note that m(d) < s1(8) = z1(8) < 1 and that

> m(s) for1<j <),
,-(5){>T":(6) for £(3) < js'r)z.

Theorem 6 (Raney’s Lemma, [12] pp. 345-346) If § is any n-bit binary

(bits £1) string (1) with s,(8) = 1, then ezactly one of §’s n circular shifts
has all partial sums positive, i.e.,
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(i) (existence) there exists k (0 £ k < n — 1) such that s,-(&Rk) > 1 for all
lsj<n

(ii) (uniqueness) for every d # k (0 < d < n—1), 6% has at least one
partial sum which is not positive, i.e., Sj((st) < 0 for at least one j €
{1,2,...,n}.

Proof. We claim that k = t(8) satisfies (i) and (ii). For

Sj(JR") = s,-(&R:(a)) =1z, (5;1:(6)) + mg(JR‘(”) - xj(éR‘(s))
T144(5)(0) + T244(5)(0) + . . . + Zj44(5)(6)

8j+(5)(6) — s¢(5)(9) if 1 <j<n—t(d), (12)
8n(8) — 54(6)(6) + 8j44(5)-n(0) fn—t(d)+1<j<n.

S {(1+m(6))—m(6) if1 <j<n—t(d),
=11-m(@)+m((6) ifn-t(d)<j<n

Thus R
s;(6F)>1forall1<j<n,

so k = t(0) satisfies (i). (An example in Figure 7)

/ /\/\/\

Eavave NN A
) 6 §7 oF°
' N\ /\/\ YAV
,\/ 4 5 6
6R LT oR
Figure 7

We prove (ii) in two cases.
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First case: 0 < d < k < n,k = t(8). In this case we have

skd(6%) = z1(07") + 226%) + ... + z_a(677)
T14d(8) + T244(8) + ... + Tk—-d+4(6)
= sk(8) — 54(8) = m(8) —s4(6) <O
(the last inequality holds because s;(d) > m(d) for every 1 < j < n).
Second case: 0 < k < d < n. In this case we have
sn-ask(8%) = 1(6%) +25(8%) + ... + 2n-a(6™)
+ Zn-as1(8%) + Tncar2() .. + Tn_asr(67)
=14a(6) + To4d(0) + ...+ za(8) + z1(8) + z2(8) + ... + zk(5)
= 8$p(6) — 54(6) + sk(6) =1 —s4(8) + m(d) <0
(the last inequality holds because s4(d) > m(8) +1 when 0< k <d <n).
A pleasing generalization of Raney’s Lemma is

Theorem 7 Generalization of Raney’s Lemma If n and k are (fized) in-
tegers, 1 < k < n, n =k (mod 2), and & is any binary string (bits £1)
of length n with s,,(6) = k then exactly k of 6’s n circular shifts have all
partial sums positive.

It turns out that the k circular shifts are 68°,i =1,2,...,k, where
ty = t(6),t2 = t(677),... , tp = t(6®*7).

(See [9] for a proof.) )
The reflection of the string a = (z1(a), z2(c), ..., Zn(a)) across the z-
axis is the string —a = (—z1(@), —z2(@),..., —Ta(e)); the concatenation

of o and B = (z1(8),z2(B), . - - , Tm(B)) is the string
a- B = (z1(a), z2(a), ..., zn(a), £1(8), 22(B), - - - , Tm(B))-

Let H(2n,2k),0 <k <n,n > 1, denote the set of paths from (0,0) to
(2n,0) with 2k steps above the z-axis (and 2n — 2k steps below the z-axis).

Theorem 8 (The Chung-Feller Numbers, (11] p. 72, [5], [6], (7))
Forne{1,2,3,...}, and k=0,1,2,...,n,

1 /[2n
i I
] ( ) (independent of k!!) .
(#.A denotes the cardinality of the set A .)
Solution (following the proof in [6], cf. [10] p. 341). We describe a
bijection between H(2n,2k) and H(2n,2k + 2) for 0 < k < n —1. From
this it will follow that

#H(2n,0) = #H(2n,2) = #H(2n,4) = ... = #H(2n,2n) = Jlr 1 (2n)

#H(2n,2k) = C(n) = ——
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Figure 8

The bijection is determined as follows. Let H~ denote the set of paths
obtained by extending a Catalan string (path) by the bit —1 (the empty
string is Catalan of length 0), and H* = {6] — 6 € H~}. See Figure 8 for
examples of such paths. Consider a string § € H(2n,2k),0<k<n—-1. It
is not difficult to see that

d=a- ﬁ *Ys

where «, 3,7 are unique strings: « € H~, B € Ht, and v is the re-
mainder of the string (possibly empty), respectively. Then the mapping

T@)=p-a- v
is the bijection we seek, i.e., if § = o+ 8- has 2k (0 < 2k < 2n) positive

steps (steps above the z-axis) then T'(§) = 8-a -+ has 2k +2 positive steps.
(See Figure 9 for several examples.)
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Figure 9

To see that this is so, let /\'(’;i denote the number of positive steps in
the path with string A and initial point (a,b). Then

8io0) = (@B o0y = ¥o0)Blete)-1,-1)Yo0 = (¢(@) —1) + 0+ 75, »

while

(T = BaNiony = Biooy e .n 700
= 1+4£(a)+ 7{’0‘:?,) = 65;:%) +2. o

4 Problems and solutions

We will have occasion to use the following more or less obvious

Lemma 5 The number of distributions of n > 1 indistinguishable objects
into k > 1 distinguishable bozes is

n+k—1\ _ [#objects + fboxes — 1 (13
k-1 ) #boxes — 1 ) )
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To see this, observe that each distribution can be seen as a linear display
of n symbols e and k — 1 symbols /:

box 1 box 2 box k
All such displays are created by lining up n+ k — 1 ’s, choosing k — 1 of
them in ("}*7') ways, and changing the chosen #’s into strokes. o
Problem 1  (The view of the side of a mountain range ). Givenn >

1, 0<k <n, k=n (mod 2), find the number of paths § = (z1,%2,...,Zn)
from (0,0) to (n,k), with z; =1 and every bit —1 followed by at least one
bit 1.

(Note. We make the condition z; = 1 so that the path will look like the
side of a mountain range: the first step should be an up step.)

Solution. We want to count all the strings § with p = "%" symbols 1
and g = -"—‘2'—"- symbols —1, with z;=1 and every bit —1 followed by at least
1 bit 1. Construct these &’s as follows. Place ¢ bits —1 in a row, creating
q + 1 boxes: the two at the ends and the ¢ — 1 “in-between” boxes. Place
a single 1 into each of these q+1 boxes. Distribute the remaining p-(q+1)
1’s into the q+1 boxes without restriction in

((p—q—1)+(q+1)—-1) _ (p—l) _ (n—q—l)
(¢+1)-1 q q
ways, and we have the strings we want. m}

Corollary The number of paths § of length n from (0,0) with z;=1
and every bit —1 followed by at least one bit 1 is

a,,=2(""3_1), (14)
q

which are known ([16] p. 14) and easily seen to satisfy the recurrence
Gn =Qp-1 +Qp-2, 123, a1=1, ay=1,

so they are the Fibonacci numbers: a, = F,. The inequality 0<¢g<
(n—1)/2 on the running index g is unnecessary because of our agreement to
take (*) =0ifn<O0orm<Oorm>n>0. ]

(Note. If the condition z; = 1 is deleted the number of paths is

2("79)

Problem 2 (Generalization of Problem 1) For given n > 1,—n < k <
n, n = k (mod 2),w > 0, find the number of paths § = (z1,%2,...,%n)
from (0,0) to (n,k), with z; = 1 and every bit —1 followed (immediately)
by at least w bits 1.
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Solution We want to count all the strings § with p = %&£ symbols 1
and g = 25% symbols —1, with z; = 1 and every bit —1 followed (immedi-
ately) by a.t least w bits 1. Construct these &’s as follows. Place g bits —1 in
a row, creating g+ 1 boxes: the two at the ends and the ¢ —1 “in-between”
boxes, labeled By, Ba, ..., Bg+1 from left to right. Place a single 1 into B,
and w 1’s into the other g boxes. Distribute the remaining p — 1 —qw 1’s
into the ¢ + 1 boxes without restriction in

()7

ways, and we have the strings we want. m]
Corollary The number of paths ¢ of length n from (0,0) with z; =1
and every bit —1 followed immediately by w 1’s

-2 (7

q

These numbers are easily seen to satisfy the recurrence

a(w)—a(w) +a$,"_’_)w_ , n>w+2,
a§‘”’=a§‘”’=...=a(‘") =1.

Of course o) = 2"‘1 while o) = a, = F, (Problem 1). The Table
shows the values of o ) for small values of n,w

nl234 5 6 7 8 9 10 11 12
d® 1 2 4 8 16 32 64 128 256 512 1024 2048
F,,=a$.” 1123 5 8 138 21 34 55 89 144
@ 1112 3 4 6 9 13 19 28 41
® 1111 2 3 4 5 7 10 14 19
d® 1111 1 2 3 4 5 6 8 11

F, = a( a&z),a and as,s) are respectively the sequences A000045,
A000930, A003269 and A003520 in Sloane’s The On-Line Encyclopedia of
Integer Sequences [17].

A substring of like bits not contained in a longer substring of like bits
is called a block, e.g.,
(..1-1,-1,-1,-1,-1,-1,1...)  (...,-1,1,1,1,1,1,1,-1...)
~ ~ - N, e’
block of —1’s block of 1's
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Note the intimate relation between binary n-strings and compositions
of n. If an n-bit binary string é has d blocks , then the lengths a1, as,...,aq4
of the blocks sum to n:

a1 +ag+...+ag=mn; (16)

this is a composition of n into d positive parts. Furthermore, a com-
position (16) of n determines two n-strings, both with blocks of lengths
a1,as,...,aq, whose first block consists of 1’s or —1’s and succeeding blocks
alternate between —1’s and 1's or 1’s and —1’s. Of course the n-strings
(-1, -1,...,—1) and (1, 1,...,1) have only one block.

A bit is said to be isolated if it is a block of length one. Thus, in
(---1, 1, =1, 1,...) the —1 is isolated, and in (1, —1, -1, —1,..<) the 1
is isolated.

In n-strings which contain both —1 bits and 1 bits, the blocks of —1’s
alternate with blocks of 1’s.

Problem 3 For fized n 2 2, 0 < r < n, find the number (n|lI(r)) of
n—strings with ezactly r isolated bits

Solution First, in the case where r = n every bit is isolated, the only
n-strings are the alternating strings (1,-1,1,~-1,...) and (-1,1,-1,1,...),
so (n]I(n)) = 2. Note that if the n-string consists entirely of —1’s or entirely
of 1’s then it has no isolated bits. We move on to the case n > 2, r < n,
and construct these n-strings in subsets according to the number of blocks,
say b > 2. Place b — 1 strokes in a row, creating b distinguishable boxes.
Choose r of the boxes, in (:) ways, and place a single symbol z into each of
the chosen boxes. (z’s will shortly become —1’s and 1’s.) There are b —r
empty boxes. Into these, first put two z’s and then distribute into them
n —r — 2(b — r) symbols x without restriction, in ((""")""Eg’_‘r’))_‘*'l(b")‘l)
ways. We have (Z:,',’_'_:) linear displays of b — 1 strokes (b boxes); r of these
boxes each contain a single z and b — r boxes each contain > 2 z’s. Choose
—1 or 1 (2 ways), replace all the z’s in the first box by the chosen symbol;

all the 2’s are now determined. The answer is
BN/n-b-1
(nJI(r)) =2§(T) (b_r_l). O

Taking r = 0 we have the

Corollary The number of n-strings with no isolated bits is

miroy =23 (", 071 an)

b>1
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whose values for n = 2,3,4,...,13 are
n 123 45 6 7 8 9 10 11 12 13
(nlI(0)) 0 2 2 4 6 10 16 26 42 68 110 178 288

Problem 4 For given n > 1 end m > 1, find the number of n—strings
each with all its blocks of length > m.
Solution. Create b boxes, and place m z’s into each box. Distribute the

remaining n — bm z’s into the b boxes (without restriction), in "'b""“" )
ways. Finally, convert the z’s into +1’s; the answer to the problem 1s

2z<n (m—l)b 1) .

b2>1

O

Corollary. Strings with no isolated bits are precisely those with m = 2:

2Z(n—(2—1)b 1) 22(7» b—l). o

521 b>1

Problem 5 (no block has length > 3) Find the number of strings of length
n and having no occurrence of 1,1,1 nor —1,-1,-1, i.e., all blocks have
length 1 or 2.

Solution We construct the n-strings, n > 3, in subsets according to
the number of blocks, say b,b > 1, each having length 1 or 2. If « of the
blocks have length 1 and 8 have length 2, then o+ 8 = b, + 28 = n, so
a=2b—n and 8 = n —b. Now we construct the strings as follows. Place
b—1 strokes in a line, creating b distinguishable boxes. Put a smgle symbol
z into each of the b boxes, choose n — b of the b boxes, in (n ») ways, and
put another symbol z into each of these chosen boxes, so that they contain
two z's each. Now choose either —1 or 1 (2 choices). If your choice is —1
(resp. 1), replace all the z's in the first box by -1’s (resp. 1’s), replace all
the z’s in the next box of z’s by 1’s (resp. —1’s), continue replacing z’s in
succeeding boxes alternately by —1’s and 1’s. Delete the strokes, they are
no longer needed. At this point we have: the number of n-strings with b
blocks (b > 1) all of length at most 2 is

b
>
2(n—b)’ n>2 b21, (18)
and the number of n-strings is
b
= >1.
2§ (n-e) 2y, n2>1
(cf. [17, A006355)]) ]

Some of the solutions to these problems have appeared as solutions to
combinatorial problems in other contexts. (See for example [3]).
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