A Note on a Cube-Packing Problem

Yuqin Zhang¹

Yunhong Song¹

Yonghui Fan^{2*†}

¹Department of Mathematics Tianjin University, 300072, Tianjin, China ² College of Mathematical Sciences Tianjin Normal University, 300387, Tianjin, China Email: yuqinzhang@126.com

Abstract

For positive integer n, let $f_3(n)$ be the least upper bound of the sums of the lengths of the sides of n cubes packed into a unit cube C in three dimensions in such a way that the smaller cubes have sides parallel to those of C. In this paper, we improve the lower bound of $f_3(n)$.

keywords: Packing, cube. (2000) Mathematics Subject Classification. 52C17

1 Introduction and known results

In 1932, Erdős defined a function f(n) which denotes the maximum sum of the side lengths of n squares that can be packed into a unit square S. In [1], P. Erdős and Soifer gave some results concerning f(n). In [3], this kind of packing and covering problem was generalized to the case of equilateral triangle. In [4], we generalized this kind of packing problem to the case in 3 dimensions, and give the definition of the packing function $f_3(n)$:

Definition 1. For positive integer n, let $f_3(n)$ be the least upper bound of the sums of the lengths of the sides of n cubes packed into a unit cube C in three dimensions in such a way that the smaller cubes have sides parallel to those of C.

Definition 2. For a cube C, dissect each of its sides into n equal parts, then through these dissecting points draw parallel surfaces of the surfaces of C, so we get a packing of C by n^3 cubes. Such a configuration is called an n^3 -grid. When C is a unit cube, the packing is a standard n^3 -packing.

^{*}Corresponding author.

[†]Foundation items: This research was supported by National Natural Science Foundation of China (10926071), (11071055).

The following results were obtained in [4].

Theorem 3. (1) $f_3(k^3) = k^2$.

- (2) $f_3(2) = 1$; When $1 < n \le 7$, $f_3(n) = \frac{n}{2}$.
- (3) $f_3(n) \leq n^{\frac{2}{3}}$.
- $(4) f_3(k^3-1) \ge k^2 \frac{1}{k}; f_3(n) \ge (n^{\frac{1}{3}}-1)^2.$

The upper bound for $f_3(n)$ is sharp but the lower bound is not. In this paper, we give an improvement of this result.

2 The improvement of the lower bound of $f_3(n)$

Theorem 4. When n > 8 and $n \neq k^3$,

$$f_3(n) \ge \frac{n+1}{\left\lceil n^{\frac{1}{3}} \right\rceil} - \left\lceil n^{\frac{1}{3}} \right\rceil - 4.$$
 (2.1)

Proof. When n > 8, for any $n \neq k^3$, there exists an integer $m \geq 2$ such that $m^3 + 1 < n < (m+1)^3$. Note that $(m+1)^3 = m^3 + 3m^2 + 3m + 1 = m^3 + 3m(m+1) + 1 = m^3 + 6m + 6(m-1) + \cdots + 6 + 1$. For any n between $m^3 + 1$ and $(m+1)^3$, we have the following equation:

$$n = m^3 + 6l_1 + 6l_2 + \cdots + 6l_k + l',$$

where $0 \le l' \le 5$, $m \ge l_1 > l_2 > \cdots > l_k \ge 1$.

If l' = 0, let l = l', then n can be denoted by:

$$n = m^3 + 6l_1 + 6l_2 + \dots + 6l_k - l.$$

When $1 \leq l' \leq 5$, set $l_0 = m+1, l_{k+1} = 0$. There must exist an integer $i, 0 \leq i \leq k+1$, such that $l_i > l_{i+1} + 1$. Otherwise, k = m, and $l_1 = m, l_2 = m-1, \dots, l_m = 1$. Thus

$$n = m^{3} + 6\sum_{j=1}^{m} j + l' \ge m^{3} + 6\sum_{j=1}^{m} j + 1 = (m+1)^{3}.$$

This contradicts the fact that $n < (m+1)^3$. If i < k, add 1 to the value of l_{i+1} , and let l = 6 - l', then n can be denoted by

$$n = m^3 + 6l_1 + 6l_2 + \dots + 6l_k - l,$$

where $1 \le l \le 5$, $m \ge l_1 > l_2 > \cdots > l_k \ge 1$. If i = k, still denote l = 6 - l', then n can be denoted by

$$n = m^3 + 6l_1 + \dots + 6l_k + 6l_{k+1} - l,$$

where $l_1 > l_2 > \cdots > l_k > l_{k+1} = 1, 1 \le l \le 5$.

Combining the case when l'=0 and the case when $1 \le l' \le 5$, n always can be denoted by

$$n = m^3 + 6l_1 + 6l_2 + \dots + 6l_k - l, \tag{2.2}$$

where $m \ge l_1 > l_2 > \cdots > l_k \ge 1$, $0 \le l \le 5$, $k \le m$. When $l_k = 1$, we can denote n by:

$$n = m^3 + 6l_1 + 6l_2 + \dots + 6l_k + 1 - (l+1), \tag{2.3}$$

Case 1: When $l_k \neq 1$, we can pack the n smaller cubes as follows:

First step: From a standard m^3 -packing of C, remove an l_1^3 -grid in the top left corner of the front and replace it with an $(l_1+1)^3$ -grid packing the same volume. Then in the obtained $(l_1+1)^3$ cubes, remove l_1^3 cubes in the top left corner of the front and replace them with one cube which is denoted by A_1 packing the same volume. At the same time, in the remaining $(l_1+1)^3-l_1^3=3l_1^2+3l_1+1$ cubes remove l cubes. Then according to the following Step 2, pack $n_1=(l_1-1)^3+6l_2+\cdots+6l_k$ cubes in the cube A_1 . Thus we pack

$$(m^{3} - l_{1}^{3}) + (l_{1} + 1)^{3} - l_{1}^{3} - l + (l_{1} - 1)^{3} + 6l_{2} + \dots + 6l_{k}$$

$$= m^{3} - l_{1}^{3} + l_{1}^{3} + 3l_{1}^{2} + 3l_{1} + 1 - l_{1}^{3} + l_{1}^{3} - 3l_{1}^{2} + 3l_{1} - 1$$

$$+ 6l_{2} + \dots + 6l_{k} - l$$

$$= m^{3} + 6l_{1} + 6l_{2} + \dots + 6l_{k} - l = n$$

small cubes into the unit cube.

Step 2: Pack n_1 smaller cubes into the cube A_1 as follows:

Make an $(l_1-3)^3$ -grid of A_1 , then remove an l_2^3 -grid in the top left corner of the front and replace it with an $(l_2+1)^3$ -grid packing the same volume. Then in the obtained $(l_2+1)^3$ cubes, remove l_2^3 cubes in the top left corner of the front and replace them with one cube which is denoted by A_2 packing the same volume. In A_2 , according to the following Step 3, pack $n_2 = (l_2-1)^3 + 6l_3 + \cdots + 6l_k$ small cubes. Thus we pack

$$(l_1-1)^3 - l_2^3 + (l_2+1)^3 - l_2^3 + (l_2-1)^3 + 6l_3 + \dots + 6l_k$$

= $(l_1-1)^3 + 6l_2 + \dots + 6l_k = n_1$.

small cubes into A_1 .

Similar to Step 2, we finish Step 3, Step 4, ..., Step k-1.

Step k: Pack $(l_{k-1}-1)^3+6l_k$ smaller cubes in the cube A_{k-1} as follows: Make an $(l_{k-1}-1)^3$ -grid of A_{k-1} , then remove an l_k^3 -grid in the top left corner of the front and replace it with an $(l_k+1)^3$ -grid packing the same volume. Then in the obtained $(l_k+1)^3$ -grid, remove an l_k^3 -grid in the

top left corner of the front and replace it with an $(l_k-1)^3$ -grid packing the same volume. Thus, we pack $(l_{k-1}-1)^3-l_k^3+(l_k+1)^3-l_k^3+(l_k-1)^3=(l_{k-1}-1)^3+6l_k$ cubes in A_{k-1} .

From the above, it's easy to see:

$$\frac{f_{3}(n)}{m} \ge \frac{1}{m} (m^{3} - l_{1}^{3}) + \frac{1}{m} \frac{l_{1}}{(l_{1} + 1)} \left[3l_{1}^{2} + 3l_{1} + 1 - l \right] \\
+ \frac{1}{m} \frac{l_{1}^{2}}{(l_{1} + 1)} \left[\frac{1}{l_{1} - 1} \left[(l_{1} - 1)^{3} - l_{2}^{3} \right] + \frac{l_{2}}{(l_{1} - 1)(l_{2} + 1)} (3l_{2}^{2} + 3l_{2} + 1) \right] \\
+ \frac{1}{m} \frac{l_{1}^{2}}{(l_{1} + 1)(l_{1} - 1)} \frac{l_{2}^{2}}{(l_{2} + 1)} \left[\frac{1}{l_{2} - 1} \left[(l_{2} - 1)^{3} - l_{3}^{3} \right] + \frac{l_{3}}{(l_{2} - 1)(l_{3} + 1)} (3l_{3}^{2} + 3l_{3} + 1) \right] \\
+ \cdots + \frac{1}{m} \left(\prod_{i=1}^{k-2} \frac{l_{i}^{2}}{(l_{i} + 1)(l_{i} - 1)} \right) \frac{l_{k-1}^{2}}{(l_{k-1} + 1)} \left[\frac{1}{l_{k-1} - 1} \left[(l_{k-1} - 1)^{3} - l_{k}^{3} \right] + \frac{l_{k}}{(l_{k-1} - 1)(l_{k} + 1)} (3l_{k}^{2} + 3l_{k} + 1) + \frac{l_{k}^{2}}{(l_{k-1} - 1)(l_{k} + 1)} \frac{(l_{k} - 1)^{3}}{l_{k} - 1} \right] (2.4)$$

So

$$\geq m^3 + \frac{l_1(4l_1+1)}{l_1+1} - l + \frac{l_1^2}{l_1^2-1} \frac{l_2(4l_2+1)}{l_2+1} + \frac{l_1^2}{l_1^2-1} \frac{l_2^2}{l_2^2-1} \frac{l_3(4l_3+1)}{l_3+1} + \dots + \prod_{i=1}^{k-1} \frac{l_i^2}{l_i^2-1} \frac{l_k(4l_k+1)}{l_k+1}$$

$$\geq m^{3} + \frac{l_{1}(4l_{1}+1)}{l_{1}+1} - l + \frac{l_{2}(4l_{2}+1)}{l_{2}+1} + \dots + \frac{l_{k}(4l_{k}+1)}{l_{k}+1}$$

$$= m^{3} + 4(l_{1}+l_{2}+\dots+l_{k}) + k - l - \frac{4l_{1}+1}{l_{1}+1} - \dots - \frac{4l_{k}+1}{l_{k}+1}$$

$$\geq n - 2(l_{1}+l_{2}+\dots+l_{k}) + k - 4 - 4 - \dots - 4$$

$$= n - 2(l_{1}+l_{2}+\dots+l_{k}) - 3k$$

$$\geq n - 2(2+3+\dots+m) - 3(m-1)$$

$$= n - m(m+1) + 2 - 3(m-1)$$

$$= (n+5) - m(m+1) - 3m, \qquad (2.6)$$

where we use the fact that $k \leq m, m \geq l_1 > l_2 > \cdots > l_k \geq 2$. So

$$f_3(n) \ge \frac{n+5}{m} - m - 4 = \frac{(n+5)}{\left\lceil n^{\frac{1}{3}} \right\rceil} - \left\lceil n^{\frac{1}{3}} \right\rceil - 4.$$
 (2.7)

Case 2: When $l_k = 1$, we can denote n by the formula (2.3). Similar to Case 1, we can pack n small cubes into the unit cube as follows.

First step: From a standard m^3 -packing of the unit cube C, remove an l_1^3 -grid in the top left corner of the front and replace it with an $(l_1+1)^3$ -grid packing the same volume. Then in the obtained $(l_1+1)^3$ cubes, remove l_1^3 cubes in the top left corner of the front and replace them with one cube which is denoted by B_1 packing the same volume. At the same time, in the remaining $(l_1+1)^3-l_1^3=3l_1^2+3l_1+1$ cubes remove l+1 cubes. Then according to the following Step 2, pack

$$(l_1-1)^3 + 6l_2 + \dots + 6l_k + 1$$
 cubes in the cube B_1 . Thus we pack
$$m^3 - l_1^3 + (l_1+1)^3 - l_1^3 - (1+l) + (l_1-1)^3 + 6l_2 + \dots + 6l_k + 1$$
$$= m^3 + 6l_1 + 6l_2 + \dots + 6l_k + 1 - (1+l) = n$$

small cubes in the unit cube.

Step 2: Pack $(l_1-1)^3+6l_2+\cdots+6l_k+1$ smaller cubes into the cube B_1 as follows:

Make an $(l_1-3)^3$ -grid of B_1 , then replace an l_2^3 -grid in the top left corner of the front with a cube denoted by B_2 packing the same volume. Then in B_2 , according to the following Step 3, pack $(l_2-1)^3+6l_3+\cdots+6l_k+1$ small cubes.

Similar to Step 2, we finish Step 3, Step 4, ..., Step k-1.

Step k: Pack $(l_{k-1}-1)^3 + 6l_k + 1 = (l_{k-1}-1)^3 + 7$ smaller cubes into the cube B_{k-1} as follows:

Make an $(l_{k-1}-1)^3$ -grid of B_{k-1} , then remove a cube in the top left corner of the front and replace it with a 2^3 -grid(8 small cubes) packing the same volume. Thus, we pack

$$(l_{k-1}-1)^3-1+8=(l_{k-1}-1)^3+7$$

cubes in B_{k-1} .

Denote l' = l + 1. By the process of packing n small cubes into the unit cube, it's easy to see:

$$f_{3}(n) \geq \frac{1}{m} (m^{3} - l_{1}^{3}) + \frac{1}{m} \frac{l_{1}}{(l_{1} + 1)} \left[3l_{1}^{2} + 3l_{1} + 1 - l' \right] + \frac{1}{m} \frac{l_{1}^{2}}{(l_{1} + 1)} \left[\frac{1}{l_{1} - 1} \left[(l_{1} - 1)^{3} - l_{2}^{3} \right] \right] + \frac{l_{2}}{(l_{1} - 1)(l_{2} + 1)} \left(3l_{2}^{2} + 3l_{2} + 1 \right) \right] + \frac{1}{m} \frac{l_{1}^{2}}{(l_{1} + 1)(l_{1} - 1)} \frac{l_{2}^{2}}{(l_{2} + 1)} \left[\frac{1}{l_{2} - 1} \left[(l_{2} - 1)^{3} - l_{3}^{3} \right] \right] + \frac{l_{3}}{(l_{2} - 1)(l_{3} + 1)} \left(3l_{3}^{2} + 3l_{3} + 1 \right) \right] + \dots + \frac{1}{m} \left(\prod_{i=1}^{k-2} \frac{l_{i}^{2}}{(l_{i} + 1)(l_{i} - 1)} \right) \frac{l_{k-1}^{2}}{(l_{k-1} + 1)} .$$

$$\left[\frac{1}{m} \left(\prod_{i=1}^{k-2} \frac{l_{i}^{2}}{(l_{i} + 1)(l_{i} - 1)} \right) \frac{l_{k-1}^{2}}{(l_{k-1} + 1)} \right] + \frac{8}{2(l_{k-1} - 1)} \right]$$

$$(2.8)$$

$$mf_{3}(n) \geq m^{3} + \left[\frac{l_{1}^{2}}{l_{1}^{2} - 1} (l_{1} - 1)^{3} - l_{1}^{3} + \frac{l_{1}(3l_{1}^{2} + 3l_{1} + 1 - l')}{l_{1} + 1} \right] + \frac{l_{1}^{2}}{l_{1} + 1} \left[\frac{l_{2}^{2}}{l_{2}^{2} - 1} (l_{2} - 1)^{3} - l_{2}^{3} + \frac{l_{2}(3l_{2}^{2} + 3l_{2} + 1)}{l_{2} + 1} \right] + \dots + (2.9)$$

$$\prod_{i=1}^{k-2} \frac{l_{i}^{2}}{l_{i}^{2} - 1} \left[\frac{l_{k-1}^{2}}{l_{k-1}^{2} - 1} (l_{k-1} - 1)^{3} - l_{k-1}^{3} + \frac{l_{1}^{2}}{l_{2}^{2} - 1} + \frac{l_{1}^{2}}{l_{k-1}^{2} - 1} \left[l_{k-1}^{2} - 1 \right] + \frac{l_{1}^{2}}{l_{2}^{2} - 1} \left[l_{k-1}^{2} - 1 \right] + \frac{l_{1}^{2}}{l_{2}^{2} - 1} + \frac{l_{1}^{2}}{l_{2}^{2} - 1} \left[l_{k-1}^{2} + 1 \right] + \dots + \frac{l_{1}^{2}}{l_{1}^{2} - 1} \left[\frac{l_{2}^{2}}{l_{2}^{2} - 1} \frac{l_{1}(4l_{1} + 1)}{l_{2} + 1} + \dots + \frac{l_{1}^{2}}{l_{1}^{2} - 1} \left[l_{k-1}^{2} + l_{1}^{2} + l_{$$

$$= m^{3} + 4(l_{1} + l_{2} + \dots + l_{k-1}) + (k-1)$$

$$-l' - \frac{4l_{1} + 1}{l_{1} + 1} - \dots - \frac{4l_{k-1} + 1}{l_{k-1} + 1} + 3$$

$$= n - 2(l_{1} + l_{2} + \dots + l_{k-1}) - 7 + (k-1)$$

$$- \frac{4l_{1} + 1}{l_{1} + 1} - \dots - \frac{4l_{k-1} + 1}{l_{k-1} + 1} + 3$$

$$\geq n - 2(l_{1} + l_{2} + \dots + l_{k-1}) - 7 + (k-1) - 4(k-1) + 3$$

$$= n - 2(l_{1} + l_{2} + \dots + l_{k-1}) - 4 - 3(k-1)$$

$$\geq n - 2(2 + \dots + m) - 4 - 3(m-1)$$

$$= (n+1) - m(m+1) - 3m. \tag{2.10}$$

$$f_3(n) \ge \frac{n+1}{m} - m - 4 = \frac{n+1}{\left\lceil n^{\frac{1}{3}} \right\rceil} - \left\lceil n^{\frac{1}{3}} \right\rceil - 4.$$
 (2.11)

From (2.7) and (2.11), we have

$$f_3(n) \ge \frac{n+1}{\left[n^{\frac{1}{3}}\right]} - \left[n^{\frac{1}{3}}\right] - 4.$$
 (2.12)

It's easy to see that the lower bound here we get is asymptotically of the same order of magnitude as the known upper bound.

References

- [1] P. Erdős, Some of my favorite problems in number theory, Combinatorics and Geometry, Resenhas 2(1995), 165-186.
- [2] P. Erdős and Soifer, Squares in a square, Geombinatorics IV(1995), 110-114.
- [3] Y. Q. Zhang and Y. H. Fan, Packing and covering a unit equilateral triangle with equilateral triangles, the Electronic Journal of Combinatorics 12, #R55(2005).
- [4] Y. H. Fan and Y. Q. Zhang, Guoyan Ye, A Cube-Packing Problem, Ars Combinatoria, 87(2008), 353-358.