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Abstract
Let G = (V, E) be a digraph with n vertices and m arcs without
loops and multiarcs, V' = {v1,v2,...,vn}. Denote the outdegree and

average 2-outdegree of the vertex v; by d} and m}, respectively. Let
A(G) be the adjacency matrix and D (G) = diag (df,d,...,d})
be the diagonal matrix with outdegree of the vertices of the digraph
G. Then we call Q (G) = D (G) + A (G) signless Laplacian matrix of
G. In this paper, we obtain some upper and lower bounds for the
spectral radius of Q (G) which is called signless Laplacian spectral
radius of G. We also show that some bounds involving outdegrees
and the average 2-outdegrees of the vertices of G can be obtained
from our bounds.

1 Introduction

Let G be a strongly connected digraph with n vertices and m arcs without
loops and multiarcs, V = {v1,v2,...,vn}. If (vs,v;) be an arc of G, then
v; is called the initial vertex and v; the terminal vertex of this arc. The
outdegree d of a vertex v; in the digraph G is defined to be the number
of arcs in G with initial vertex v;. Let ¢t be the sum of the outdegrees
of all vertices in N;* (v;) = {v; : (v,v;) € E} and call it the 2-outdegree.

+
Moreover, call m;" = 5‘; the average 2-outdegree, 1 <i < n.

The signless Laplacian eigenvalues q1, g2, . .., g, of G are the eigenvalues
of its signless Laplacian matrix Q (G). In general @ (G) is not symmetric
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and so its eigenvalues can be complex numbers. We usually assume that
lg1] = |ga] = --- = lgn|- The signless Laplacian spectral radius of G is
denoted and defined as ¢(G) = |¢1] i.e., it is the largest absolute value
of the signless Laplacian eigenvalues of G. Since Q (G) is a nonnegative
matrix, it follows from Perron Frobenius theory that g (G) = q is a real
number.

The signless Laplacian matrix of a simple, undirected graph G; is
Q(G1) = D(G;) + A(G,) where A(G,;) and D(G;) are the adjacency
matrix and the diagonal matrix of the vertex degrees of G, respectively.
Since Q (G;) is a real symmetric matrix, all its eigenvalues are real num-
bers. So the signless Laplacian spectral radius g (G;) of G; is defined to
be the largest eigenvalue of Q (G,;). For applications its is crucial to be
able to compute or at least estimate ¢(G,) for a given simple undirected
graph G,. This a classical problem with numerous results pertaining to it
(see [1,2,5,6,7,9)).

In this paper, we study on the signless Laplacian spectral radius g (G)
of the digraph G. We obtain some upper and lower bounds for it and also
show that some bounds involving outdegrees and the average 2-outdegree
of the vertices of G can be obtained from our bounds as:

min {d} +dJ : (vi,v;) € E} < ¢(G) < max {df +df : (vi,v;) € E} (1)

min {d} +m} :v; € V(G)} £ ¢(G) <max {df + m{ : v, € V(G)} (2)

df +df +/(df - dF)? + amim
<1(G')Sm’5"‘{t : \/( 2 ) ~:(wv)€E} (3)

df +dF +1/(df —d})? +amim}
Q(G)Zmin{ ) \/( 5 /) L (vi,v)€E}  (4)

q(G’)Smax{d}"+ / Z d;-":v.-eV(G)}. (5)
(vjv)EE

The terminology not defined in here can be found in [3,4].
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2 Preliminary Lemmas

Now we give the following lemmas which will be used then.

Lemma 2.1 [8] Let M be an irreducible nonnegative matriz. Then p (M)
i an eigenvelue of M and there is a positive vector X such that MX =

p(M)X.
Lemma 2.2 [8/ Let M = (m,;) be an n X n nonnegative matriz and let

R; (M) be the i-th row sum of M, i.e., R; (M) = Em,-,- (1<i<n). Then

=1
min{R; (M):1<i<n} <p(M)<max{R;(M):1<i<n}.
If M is irreducible then, each equality holds if and only if Ry = Rg =--- =

R,.

Let R be the set of real numbers and R* = {z : z € R,z > 0}. Now we
present the main results of this paper.

3 Some upper and lower bounds for the sign-
less Laplacian spectral radius of digraphs

The similar techniques in this section have been used to derive upper bounds
for the signless Laplacian spectral radius of undirected graphs in [6]. Now
we will give a generation of their results on the signless Laplacian spectral

radius for digraphs.

Theorem 3.1 Let G = (V,E) be a digraph on n vertices and b} € Rt
(1<i<n). Then

min {r} : v; € V(G)} £ ¢(G) < max {r} : v; € V(G)} (6)
where r} = df + 2 Z b} (1<i<n). Moreover, if G is strongly
" (vivy)EE
connected digraph equality holds on both sides of (6) if and only if r{ =
rf=..=r}.
Proof. Let B = diag (bf,bF,...,b%) be an n x n diagonal matrix.

Considering the matrix B~1Q (G) B, it is easy to see that

- 1
R (B7'Q(G)B) =df + = > b
b (vi,9;)€EE
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We note that
7(G)=q(B7'Q(G) B).

Then from Lemma 2.2, (6) follows and we conclude that if G is strongly
connected digraph the equality holds on both sides of (6) if and only if
rf=rf=-..=rt. »

1 2 n
Theorem 3.2 Let G = (V, E) be a strongly connected digraph on n ver-
tices and b} € RY (1 <i < n). Then

¢(G) < max { ik \/(djz_ dj)z e s (vi,v5) € E} . (M
If
q(G) > max { i \/(d,?;— d;)z rade : (vi,v5) € E} )
then
¢(G) 2 min { il \/(d‘z_ d;)z Hadd : (vi,v5) € E} (8)
wherec?':i;: bf (1<i<n).
(vi,0)€E

Proof. Upper bound: From Lemma 2.1, there exist a positive eigenvec-
tor X = (x1,%2,...,2n) of B~'Q(G) B corresponding to the eigenvalue
q(B~'Q(G) B). We assume that one of the eigencomponents, say z:,
is equal to 1 and the other eigencomponents are less than or equal to
1,ie, zi = land 0 < z < 1foralll < k < n Alsolet z; =
max {z : (vi,vx) € E}. Since

B~'Q(G)BX =q(G) X, 9)
we have
1 1
Q@ =df +3x > Wm<dftr 3 de (10
i (vi,ux)€EE i (vi,vx)EE
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and

qG)zj=dfz;+ = Y. bz <dizi+ ¢ + DO/

-" (vjyve)EE 2 (vi,vi)EE

From (10) and (11) we get

@©)-d) @@ -d) S X b X b =ctef

¥ 77 (vi,wk)EE  (vj,vx)EE

Therefore we obtain

df +df ]
9(G) < 5

Hence (7) holds.

(11)

Lower Bound: In order to prove lower bound we assume that one of the
eigencomponents, say z;, is equal to 1 and the other eigencomponents are
greater than or equal to 1,ie.,,z; =land zx > 1forall1 < k < n. Also

let z; = min {z : (vi,%) € E} . From (9) we have

1
9(G)=df + % > b,’:zk>d++— > b
¥ (vi,vx)EE b; (vi,vr)EE

and
1

1
q(G)$j=d;-l-xj+'6_T_’ > mekZd}'x_.,-+b—_!_ Yooy

J (vj,ux)EE J (vjvk)EE

From (12) and (13) we obtain

(¢(G) —df) (a(G) —df 'b“"" z b Z b =ctef.

t J (vi,vx)EE (vj,v)EE

By solving the above inequality with respect to the condition

dt +df = \/(d} —df)® +4c}

q(G)>max{ 7 ('v,,v,)eE},
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we arrive at

df +df +y/(dF —d})’ +4ctct
- .

7(G) 2
This completes the proof of theorem. ®

Theorem 3.3 Let G = (V, E) be a strongly connected digraph on n ver-
tices and b} € R* (1 < i< n). Then

q(G) < max {d;" + [ Y stive V(G)} (14)
(vj,%:)EE

where sf = by ) bf? and if the equality holds then df + > sf
Y (vi,v;)EE (v;,%:)€EE

(1 < i £ n) is a constant.

Proof. Let X = (z;,%2,...,%) be an eigenvector of B~'Q(G)B

corresponding to the eigenvalue g (B~!Q (G) B) , where B = diag (b7, b7 ,...,b%) .

We assume that z; = 1 and 0 < z < 1forall1 < k < n. Also let

z; = max {zx : (v;,vx) € E}. From (9), we have

b+
(@G -df) = z th
(vk,vn)EE
Using Cauchy-Schwartz inequality we get

+2
(@@ -d)m]® < ¥ 2 3 a2

(vk,vn)EE bk (vk,vn)EE

Thus we obtain

n

Z(q(G)—df)zziSZsz Z zﬁ:Z( z st)xi
k=1

k=1 k=1  (v,vn)EE (vn,vk)EE
and
n
Yo |@@-d) - 3 sflsi<o. (15)
k=1 (vn,vx)EE
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Therefore we conclude that there exist some & such that

(@@ -dt)’- Y st <o
(vh,ve)EE

Then we obtain that

q@<dt+ [ > st
(vn,vi)EE

Hence, (14) holds. If the equality holds in (14), then there exist some k,

say k = 1, such that ¢ (G) =d; + Z s}. From (15) we have
(vj,v1)EE

i [(‘I(G)—dif)z— > sZJ z2 <0.

k=2 (vn,ve)EE

By similar reasoning as above we get

9@ =df+ [ > sf,1<k<n
(vn,ve)€EE
That means d;f + Z s (1 £ k £ n) is a constant. Hence the result.
(va,vk)EE

Remark 3.4 From Theorem 3.1, 3.2 and 3.3, we obtain the following
bounds.

1) Taking b} = d}f in (6), we have the bounds in (2).

2) Taking b} =1 in (7) and (8), we have the upper and lower bounds
in (1), respectively.

8) Taking b} = d} in (7) and (8), we have the upper bound in (3) and
the lower bound in (4{), respectively.

4) Taking b =1 in (14), we have the upper bound in (5).

Remark 3.5 Obviously, for the digraph G, we can define its in-degrees,
2-indegrees and average 2-indegrees, etc. So we can easily obtain some
similar results on q(G) as in Theorem 3.1, 3.2 and 3.3.
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