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Abstract

A (k;g)-cage is a graph with the minimum order among all k-regular
graphs with girth g. As a special family of graphs, (k; g)-cages have a number
of interesting properties. In this paper, we investigate various properties of
cages, e.g., connectivity, the density of shortest cycles, bricks and braces.
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1 Introduction

A (k; g)-graph is a k-regular graph with girth g. Let f(k; g) be the smallest integer
v such that there exists a (k; g)-graph with v vertices. A (k; g)-cage is a (k; g)-graph
with f(k; g) vertices. Cages have been intensely studied since its introduction by
Tutte in [14). However, most work has focused on the existence problem and little
is known for the structural properties of cages.

Recently, several authors have studied structural properties of cages, e.g., de-
gree monotonicity [16], the factorial property [9] and separating properties [4],
but many results are in the area of connectivity. Fu et al. [2] proved that all
(k; g)-cages are 2-connected. They further conjectured that every (k; g)-cage is
k-connected and confirmed this conjecture for the case ¥ = 3. In [1, 4], it has
been proved that all (k; g)-cages with k > 3 are 3-connected. In addition, (4; g)-
cages are 4-connected (see [17]). Most recently, it was proved that when k > 4 and
g > 10, all (k; g)-cages are 4-connected (see [12]); and r-connected forr > vk + 1
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whenever & is odd (see [6]); and for the even case, r is the largest integer such that
(r - 1)® +2(r - 1)? < k (see [5]). For the edge-connectivity of (k; g)-cages, it was
shown that all (k; g)-cages are k-edge connected through some collective effort
(see [8, 15]).

Moreover, several papers have focused on refined concepts of connectivity,
such as quasi-connectivity and edge-super-connectivity {7, 11, 13]. A graph is
edge-super-connected if all its minimum edge-cuts are sets of edges incident with
one vertex.

We use 6(G) for the minimum degree of G, deg(v) for the degree of v in G,
and dg(u, v) for the distance between u and v in G, respectively. Let Ny(v) denote
the neighborhood of v in H, diam(G) denotes the diameter of G.

In [4], Jiang and Mubayi studied the separating sets of cages, such as stars and
cycles, and obtained the following general theorem about vertex cuts in cages.

Theorem 1.1 (Jiang and Mubayi, [4]). Suppose that G is a (k;g)-cageand S is a
vertex cut of G. Then diam(G[S]) 2 |_§J Furthermore, the inequality is strict if
dgys1(u, v) is maximized for exactly one pair of vertices u and v.

As a consequence of the above theorem, diam(G[S]) < I_gJ - | implies that

G - S is connected. In Section 2, we further show that if diam(G[S]) < |_§J -2,
then G — § is 2-connected.

In Section 3, we consider the density of small cycles (cycles with length g
or g + 1). In a (k; g)-cage, we call the cycles of length g as girth cycles. We are
interested in the distribution of girth cycles in cages. In particular, does there exist
a girth cycle through any given vertex or edge? In this section, we prove that in
a (k; g)-cage, each vertex and each edge is contained in a cycle of length at most
g + 1. Furthermore, we also present a necessary condition for the existence of the
girth cycles of cages.

In Section 4, we prove some propetties about bricks and braces for cages.

Throughout this paper, we use several times the Girth Monotonicity Theo-
rem, which is an important property established by numerous researchers inde-
pendently.

Theorem 1.2 (Girth Monotonicity Theorem). Ifk =2 3 and 3 < g) < g3, then
flk;g1) < f(k; g2)-

2 A Connectivity Property

To show that each (k; g)-cage is 4-connected, Marcote et al. [12] established the
following technical lemma, which will be used in our proof as well.

Lemma 1. Let G be a k-regular graph with k 2 3 and girthg 2 5. Let H be a
subgraph of G with the minimum degree k— 1. Let Q = {v € V(H) | degy(v) = k-

202



1). Suppose that Q can be partitioned into two sets Q) and Qp with || =m 2 2,
in such a way that

(a) dy(u;, v)) 2 |(g — 1)/2] for every pair of distinct vertices u;,v; € Q;;

) Q@ =1{z1,22,...,2m} S N(2) for some vertex z ¢ V(H).

Then, f(k;g) < 2|V(H)| if either |Q)| < m or 2m + 2 f} du(uinz) = g for any
i=l
{ul9u29'°-’um} c Q]-

Theorem 2.1. Let G be a (k;g)-cagewithk >3 and g = 17. Forany S € V(G), if
diam(G[S]) < lg/2] - 2, then G - S is 2-connected.

Proof. Suppose, to the contrary, that G — § has a cut vertex. We choose a cut
vertex v of G — S to minimize the order of the smallest component of G — § — v,
Let H be the smallest componentof G~ S — v, and let S’ = § U {v}. Clearly, H is
not a singleton and |Ny(v)] > 2 (otherwise, we can choose the only neighbor of v
in H as the cut vertex of G - §).

It is not hard to see that every vertex in A has at most one neighbor in S and
thus 6(H) 2 k- 2.

Case ]1.6(H)=k-2.

Clearly, there is only one vertex w € V(H) such that deg,(w) = k — 2. Other-
wise, there is a cycle with length at most 4 + (lg/2] - 2), which is less than g since
g 2 7, a contradiction. Let H' = H — w.

Case 1.1. |Ny(v)| = 3, i.e., I[Ny (v)] 2 2.

In this case, 6(H') = k- 1. Let Q; = Ny(S) U Ny (w), Q2 = Ny(v) =
{z1,22,...,2m), where |Q| = m > 2 (see Fig. 1(a)).

For any vertices x,y € Q,, if x, y € Ny (S), then dpy(x,y) 2 g—2 - (lﬂj 2)=
[ﬂ] [ J if x,y € Ny (w), thendy(x,4) 2 g-2 > [L—J, if x € Ny(S) and
Y € Ny (w), then dp(x,y) 2 g-3 - (l J 2) = { ] -1= [ J Therefore,
dy(x,y) 2 lg—J for any x,y € Q.

Suppose Q)| = m. For every {uy,u2,...,un} G €, if there is no vertex

u; € Ny (w), then 2m + 2 Z dy(uiz) 24 +2g—-4-(l9/2]-2)) =2[g/21 2 g.

If some u; € Ny (w), then 2m + 2 Z dy_o(ui,2) 24+2(g-3+1)=2g>g. By

Lemma 1, we have |V(H’)| > |V(G)l/2 a contradiction.

Case 1.2. INy(v)| = 2, i.e., [Ny ()] = 1.

Let z be the other neighborofvin H, H” = H'-zand Ny»(2) = {21,225+ - . » 241}
Since g 2 7, then 6(H”) = k— 1. Let Q1 = Ny+(S) U Nyo(w), Q2 = Ny(2) =
{z1,22, ..., Zk-1}, 50 Q2] = k — 1 > 2 (see Fig. 1(b)).
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Figure 1: (H) = k-2

Similar to Case 1.1, for any vertices x,y € i, du~(x,y) 2 l%‘] Suppose

k=1
Q1] = k- 1, for every {u1, uz,. e} S QL 2k 1)+ 2 Y, dy»(u;, 2i) 2 g. By
i=1

Lemma 1, we have [V(H")| = |V(G)|/2, a contradiction.
Case 2. 5(H)=k- 1.
Let Q) = Nu(S), Q2 = Ny(v) = {z1, 22, . .., Zm}, Q2| = m 2 2 (see Fig. l(<=))
For any two vertices x,y € Q;, we have du(x,y) = g — 2 - (l_ﬂJ =

[2] l _| If || = m, then for every {uy, ua,...,um} C Qy, it follows 2m +

2 Z dy(ui z) = 4 +2(g -4 - (19/2) - 2)) = 2[g/2] > g. By Lemma 1, we have

IV(H)I > |V(G)|/2, a contradiction.
Thus, we complete the proof of the theorem. o

It was proved in [1] that a (k; g)-cage contains no star vertex cut if g > 6, that
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is, for any vertex v, G — (N(v) U {v}) is still connected. Theorem 2.1 yields the
following corollary directly.

Corollary 1. Let G be a (k; g)-cage and S = Ng(v)U{v}). Then G-S is 2-connected
Jork>3andg > 8.

3 Girth cycles

In [3], Jiang proved the following.

Theorem 3.1 (Jiang [3]). Let G be a (k; g)-cage. Then every edge of G is con-
tained in at least k ~ 1 cycles of length at most g + 1.

From this theorem, the following result follows immediately.

Corollary 2. Every vertex of a (k; g)-cage is contained in at least k — 1 cycles of
length at most g + 1.

However, for even %, the distribution of girth cycles is better understood as
shown in the next theorem, which is well known among researchers but not appear
formally in any literature yet. It was implicitly proved in Theorem 1 of {2].

Theorem 3.2. Let G be a (k;g)-cage. If k is even, then every vertex of G is
contained in a girth cycle.

In the case of odd %, we prove the following result.

Theorem 3.3. Let G be a (k;g)-cage and k be odd. Let ¥V = {v € V(G) | the
shortest cycle through v is of length g + 1}. Then for any two vertices x,y € ¥,
dg(x,y) = 4.

Proof. Suppose that there exists two vertices x, y € ¥, such that dg(x, y) < 4. We
construct a k-regular graph G’ by deleting vertices x and y and adding some edges
(see Fig. 2).

When dg(x,y) = 1, delete the vertices x, y and add a perfect matching in
Ng(x) \ {y} and Ng(y) \ {x} (see Fig. 2(a)).

When dg(x,y) = 2, let xzy be the shortest path between x and y, delete the
vertices x and y, and add a perfect matching in Ng(y) \ {z), and add two edges
joining z to Ng(x), and a perfect matching of the remaining vertices in Ng(x) (see
Fig. 2(b)).

When dg(x, y) = 3, let xzz'y be the shortest path between x and y, delete the
vertices x, y and the edge zz', add two edges joining z to Ng(x) and two edges
joining z’ to Ng(y), and then add two perfect matchings in the remaining vertices
in Ng(x) and Ng(y) (see Fig. 2(c)).
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Figure 2: The local structure of the graph

Next, we show that the girth of G’ is at least g. Let C be a girthcycle of G'. If C
is a cycle of G, then |C| 2 g; if G’ contains only one new edge ¢ = uv, then C-e is
a path with two ends both in Ng(x) or Ng(y) and thus |[C—e| 2 g—1or|C| 2 g; if C
contains at least two new independent edges, then |C| > 2(g-4)+2 2 g. Hence G’
is a k-regular graph with girth at least g, but [V(G')| < |[V(G)|, a contradiction. O

4 Bricks and braces

A nontrivial connected graph is called matching covered if every edge is contained
in a perfect matching. A graph G is bicritical if for any two distinct vertices
u and v, G — {u, v} has a perfect matching. A brick is a 3-connected bicritical
graph. A bipartite matching covered graph G with bipartite (A, B) is called brace,
if (A - {x}, B — {y}) has a perfect matching for every x € X and y € B. Bricks and
braces have played a prominent roles in the brick decomposition and the study of
matching lattices (see [10]). Their properties and classification have attracted a
great interest.

Let G be a graph and V(S) denote edge set of G which has precisely one end
in §. Let G be a matching covered graph, a cut K = V(§) is a tight cut if for every
perfect matching M of G, IM N K| = 1. Clearly, V(v) is a tight cut for any vertex
v, such a cut is called rrivial.

Next we show that all cages with even order are either bricks or braces.

Lemma 2 (Lovész [10]). A matching covered graph has no nontrivial tight cut if
and only if it is either a brick or a brace.

Lemma 3 (Lin et al.[7]). All (k; g)-cages are edge-super-connected.

206



Lemma 4 (see [1, 4]). Ifk =3 and G is a (k; g)-cage, then G is 3-connected.
The next is the main result of this section.
Theorem 4.1. All (k; g)-cages with k > 3 of even order are bricks or braces.

Proof. Suppose that a (k; g)-cage G is not bicritical.

Claim 1. G is a bipartite graph.

If G is not bicritical, then there exists a vertex set S ¢ V(G) with |[S| = 2 such
that ¢,(G — §) > IS| - 2, where ¢,(G - §) denote the number of odd components
of G — §. By parity, ¢,(G — S) 2 |S|. Since G is k-regular, there are at most
kIS| edges going out of S. Since G is k-edge-connected, then there are at least
ke(G — §) edges going out of G — S. Hence, kc(G - S) < E(S,V ~-§) < kIS, and
¢(G - 8) =S|, and this implies that S is an independent set and every component
of G—S§ has exactly k edges going out. Moreover, G is edge-superconnected, thus
every component of G is an isolated vertex. Therefore, G is a k-regular bipartite
graph. By Hall’s Theorem, G is matching covered graph.

Claim 2. G has no nontrivial tight cut.

Otherwise, G has a nontrivial tight cut X = V(X). Since G is edge-superconnected,
then |K] > k. We contract X to a vertex x to obtain a simple graph H. Since X is
a tight cut, it is easy to verify that H is a matching covered graph. By Claim 1, H
is a bipartite graph with bipartition (U, W). Since H is matching-covered, so H of
course has perfect matching and JU| = |[W|. In H, since x is the only new vertex,
so other vertices are all in G and have degree k. Since [U| = |W], so x must have
degree k too, i.e. |K| = &, a contradiction. Therefore, G has no nontrivial tight cut,
by Lemma 2, G is a brace.

By Lemma 4, the theorem follows. o
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